Globalization and Infectious Diseases: a Review of the Linkages

Total Page:16

File Type:pdf, Size:1020Kb

Globalization and Infectious Diseases: a Review of the Linkages TDR/STR/SEB/ST/04.2 SPECIAL TOPICS NO.3 Globalization and infectious diseases: A review of the linkages Social, Economic and Behavioural (SEB) Research UNICEF/UNDP/World Bank/WHO Special Programme for Research & Training in Tropical Diseases (TDR) The "Special Topics in Social, Economic and Behavioural (SEB) Research" series are peer-reviewed publications commissioned by the TDR Steering Committee for Social, Economic and Behavioural Research. For further information please contact: Dr Johannes Sommerfeld Manager Steering Committee for Social, Economic and Behavioural Research (SEB) UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (TDR) World Health Organization 20, Avenue Appia CH-1211 Geneva 27 Switzerland E-mail: [email protected] TDR/STR/SEB/ST/04.2 Globalization and infectious diseases: A review of the linkages Lance Saker,1 MSc MRCP Kelley Lee,1 MPA, MA, D.Phil. Barbara Cannito,1 MSc Anna Gilmore,2 MBBS, DTM&H, MSc, MFPHM Diarmid Campbell-Lendrum,1 D.Phil. 1 Centre on Global Change and Health London School of Hygiene & Tropical Medicine Keppel Street, London WC1E 7HT, UK 2 European Centre on Health of Societies in Transition (ECOHOST) London School of Hygiene & Tropical Medicine Keppel Street, London WC1E 7HT, UK TDR/STR/SEB/ST/04.2 Copyright © World Health Organization on behalf of the Special Programme for Research and Training in Tropical Diseases 2004 All rights reserved. The use of content from this health information product for all non-commercial education, training and information purposes is encouraged, including translation, quotation and reproduction, in any medium, but the content must not be changed and full acknowledgement of the source must be clearly stated. A copy of any resulting product with such content should be sent to TDR, World Health Organization, Avenue Appia, 1211 Geneva 27, Switzerland. TDR is a World Health Organization (WHO) execut- ed UNICEF/UNDP/World Bank/World Health Organization Special Programme for Research and Training in Tropical Diseases. This information product is not for sale. The use of any information or content whatsoever from it for publicity or advertising, or for any commercial or income-generating purpose, is strictly prohibited. No elements of this information product, in part or in whole, may be used to promote any specific individual, entity or product, in any manner whatsoever. The designations employed and the presentation of material in this health information product, including maps and other illus- trative materials, do not imply the expression of any opinion whatsoever on the part of WHO, including TDR, the authors or any parties cooperating in the production, concerning the legal status of any country, territory, city or area, or of its authori- ties, or concerning the delineation of frontiers and borders. Mention or depiction of any specific product or commercial enterprise does not imply endorsement or recommendation by WHO, including TDR, the authors or any parties cooperating in the production, in preference to others of a similar nature not men- tioned or depicted. The views expressed in this health information product are those of the authors and do not necessarily reflect those of WHO, including TDR. WHO, including TDR, and the authors of this health information product make no warranties or representations regard- ing the content, presentation, appearance, completeness or accuracy in any medium and shall not be held liable for any dam- ages whatsoever as a result of its use or application. WHO, including TDR, reserves the right to make updates and changes with- out notice and accepts no liability for any errors or omissions in this regard. Any alteration to the original content brought about by display or access through different media is not the responsibility of WHO, including TDR, or the authors. WHO, including TDR, and the authors accept no responsibility whatsoever for any inaccurate advice or information that is pro- vided by sources reached via linkages or references to this health information product. Acknowledgement The authors wish to thank colleagues at the Centre on Global Change and Health, London School of Hygiene and Tropical Medicine, for their helpful advice in the writing of this paper. We are particularly grateful to Professor David Bradley for his detailed comments and expertise in reviewing the final draft.. Design and layout: Lisa Schwarb TABLE OF CONTENTS LIST OF TABLES, FIGURES AND BOXES . v ABBREVIATIONS AND ACRONYMS . vi EXECUTIVE SUMMARY . 1 1. INTRODUCTION . 3 2. BACKGROUND 2.1 What is globalization? . 5 2.2 Global burden of infectious disease . 6 3. GLOBALIZATION AND THE CHANGING NATURE OF INFECTIOUS DISEASE . 9 4. ECONOMIC GLOBALIZATION AND INFECTIOUS DISEASE . 13 4.1 World Trade Organization and multilateral trade agreements . 13 4.2 The global trade in food . 14 4.3 The global trade in pharmaceuticals . 15 5 GLOBAL ENVIRONMENTAL CHANGE AND INFECTIOUS DISEASE . 17 5.1 Global climate change . 18 5.1.1 Global warming . 18 5.1.2 Global weather change . 25 5.1.3 Vulnerability to global climate changes . 26 5.2 Water supply . 26 5.2.1 Large dams . 26 5.2.2 Small water projects . 28 5.2.3 Displacements, disruptions, distant effects and migrations . 29 5.3 Deforestation and land clearance . 30 5.3.1 Deforestation, land clearance and “new” or “emerging” infections . 31 5.3.2 Vector-borne infections . 31 5.3.3 Pharmacological implications of loss of biodiversity . 34 6 GLOBAL DEMOGRAPHIC CHANGE AND INFECTIOUS DISEASE 6.1 Globalization and population mobility 6.1.1 Trends in population mobility . 35 6.1.2 The causes of population mobility . 35 6.1.3 Population mobility and infectious disease . 36 6.2 Refugees and displaced persons . 37 6.3 Long-term migration . 37 6.3.1 Migration to low-income countries . 38 6.3.2 Migration to high-income countries . 39 6.4 Urbanization 6.4.1 The growth in urban populations and the influence of globalization . 39 6.4.2 Urbanization and infectious disease . 40 iii 7 GLOBAL TECHNOLOGICAL CHANGE AND INFECTIOUS DISEASE . 45 7.1 Information and communication technologies . 45 7.2 Transportation technologies: the growth in short-term travel . 46 7.2.1 The growth in short-term travel . 47 7.2.2 Short-term travel and infectious diseases . 49 7.2.3 Transport of goods and infectious diseases . 49 7.3 Medical technologies . 49 8CONCLUSIONS . 51 REFERENCES . 55 iv LIST OF TABLES, BOXES AND FIGURES BOXES Box 1: Transmission of infectious diseases . 9 Box 2: Infectious diseases and the natural environment . 10 Box 3: Preventing and treating human infections . 11 Box 4: Projections of the health impacts of global environmental change . 17 Box 5: The scientific evidence for global environmental change . 21 Box 6: Global climate change and vector-borne diseases . .22 Box 7: Climate effects on vectorial capacity, basic reproductive number, vector abundance and distribution . 24 Box 8: El Niño and infectious diseases . 25 Box 9: Infection and water projects along the Nile river . 28 Box 10: Malaria . 32 Box 11: Dengue . 42 Box 12: Infectious disease and the Haj . ..
Recommended publications
  • Estimating the Instantaneous Asymptomatic Proportion with a Simple Approach: Exemplified with the Publicly Available COVID-19 Surveillance Data in Hong Kong
    ORIGINAL RESEARCH published: 03 May 2021 doi: 10.3389/fpubh.2021.604455 Estimating the Instantaneous Asymptomatic Proportion With a Simple Approach: Exemplified With the Publicly Available COVID-19 Surveillance Data in Hong Kong Chunyu Li 1†, Shi Zhao 2,3*†, Biao Tang 4,5, Yuchen Zhu 1, Jinjun Ran 6, Xiujun Li 1*‡ and Daihai He 7*‡ 1 2 Edited by: Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China, JC 3 Catherine Ropert, School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, China, Chinese University of 4 Federal University of Minas Hong Kong (CUHK) Shenzhen Research Institute, Shenzhen, China, School of Mathematics and Statistics, Xi’an Jiaotong 5 Gerais, Brazil University, Xi’an, China, Laboratory for Industrial and Applied Mathematics, Department of Mathematics and Statistics, York University, Toronto, ON, Canada, 6 School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Reviewed by: Hong Kong, China, 7 Department of Applied Mathematics, Hong Kong Polytechnic University, Hong Kong, China Mohammad Javanbakht, Baqiyatallah University of Medical Sciences, Iran Background: The asymptomatic proportion is a critical epidemiological characteristic Changjing Zhuge, that modulates the pandemic potential of emerging respiratory virus, which may vary Beijing University of Technology, China *Correspondence: depending on the nature of the disease source, population characteristics, source–host Daihai He interaction, and environmental factors. [email protected] Xiujun Li Methods: We developed a simple likelihood-based framework to estimate the [email protected] instantaneous asymptomatic proportion of infectious diseases. Taking the COVID-19 Shi Zhao epidemics in Hong Kong as a case study, we applied the estimation framework [email protected] to estimate the reported asymptomatic proportion (rAP) using the publicly available † These authors share first authorship surveillance data.
    [Show full text]
  • Small Drinking Water Systems Project
    Strong evidence, stronger public health Small Drinking Water-borne Disease Outbreaks in Water Systems Canadian Small Drinking Water Systems Project Hannah Moffatt, Sylvia Struck Report Highlights Information about Canadian drinking water systems and past water-borne disease outbreaks is incomplete and non-standardized. Standard definitions and coordinated surveillance systems for water-borne disease outbreaks would help inform policy and practice. A relatively high proportion of past water-borne disease outbreaks in Canada are estimated to have occurred in small drinking water systems serving populations of 5,000 people or less. Water-borne disease outbreaks in small drinking water systems are often the result of a combination of water system failures; contributing factors often include a lack of source water protection and inadequate drinking water treatment. Analyses suggest small drinking water systems face challenges associated with infrastructure, technology, and financial constraints. Investments in drinking water systems and operator training have the potential to reduce the burden of water-borne disease in Canada. Executive Summary Generally, Canadians have access to safe and secure drinking water. However, as demonstrated by the events of Walkerton in 2000, the exception can be tragic. Outbreaks of water-borne disease are preventable, yet evidence-informed policy and practice is hampered, in part, by our limited knowledge of drinking water systems that experience outbreaks and the factors that contribute to outbreaks in Canada. There is no national surveillance system for systematic collection of water-borne disease outbreak data. Investigating past water-borne disease outbreaks is a valuable approach to collect information to inform practice and policy. Investigations of water-borne disease outbreaks are challenging because the outbreak events are rare, the pathogenic agents involved may be transmitted via multiple routes (e.g., person to person, food-borne, as well as water-borne), and gastrointestinal illnesses are frequently under-reported.
    [Show full text]
  • Communicable Disease Control
    LECTURE NOTES For Nursing Students Communicable Disease Control Mulugeta Alemayehu Hawassa University In collaboration with the Ethiopia Public Health Training Initiative, The Carter Center, the Ethiopia Ministry of Health, and the Ethiopia Ministry of Education 2004 Funded under USAID Cooperative Agreement No. 663-A-00-00-0358-00. Produced in collaboration with the Ethiopia Public Health Training Initiative, The Carter Center, the Ethiopia Ministry of Health, and the Ethiopia Ministry of Education. Important Guidelines for Printing and Photocopying Limited permission is granted free of charge to print or photocopy all pages of this publication for educational, not-for-profit use by health care workers, students or faculty. All copies must retain all author credits and copyright notices included in the original document. Under no circumstances is it permissible to sell or distribute on a commercial basis, or to claim authorship of, copies of material reproduced from this publication. ©2004 by Mulugeta Alemayehu All rights reserved. Except as expressly provided above, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without written permission of the author or authors. This material is intended for educational use only by practicing health care workers or students and faculty in a health care field. Communicable Disease Control Preface This lecture note was written because there is currently no uniformity in the syllabus and, for this course additionally, available textbooks and reference materials for health students are scarce at this level and the depth of coverage in the area of communicable diseases and control in the higher learning health institutions in Ethiopia.
    [Show full text]
  • Global Governance, International Health Law and WHO: Looking Towards the Future Allyn L
    Global governance, international health law and WHO: looking towards the future Allyn L. Taylor1 Abstract The evolving domain of international health law encompasses increasingly diverse and complex concerns. Commentators agree that health development in the twenty-first century is likely to expand the use of conventional international law to create a framework for coordination and cooperation among states in an increasingly interdependent world. This article examines the forces and factors behind the emerging expansion of conventional international health law as an important tool for present and future multilateral cooperation. It considers challenges to effective international health cooperation posed for intergovernmental organizations and other actors involved in lawmaking. Although full consolidation of all aspects of future international health lawmaking under the auspices of a single international organization is unworkable and undesirable, the World Health Organization (WHO) should endeavour to serve as a coordinator, catalyst and, where appropriate, platform for future health law codification. Such leadership by WHO could enhance coordination, coherence and implementation of international health law policy. Keywords Treaties; International law; Legislation, Health; World health; International cooperation; Intersectoral cooperation; World Health Organization (source: MeSH, NLM). Mots cle´s Traite´ s; Droit international; Le´gislation sanitaire; Sante´ mondiale; Coope´ration internationale; Coope´ration intersectorielle; Organisation mondiale de la Sante´(source: MeSH, INSERM). Palabras clave Tratados; Derecho internacional; Legislacio´ n sanitaria; Salud mundial; Cooperacio´ n internacional; Cooperacio´n intersectorial; Organizacio´ n Mundial de la Salud (fuente: DeCS, BIREME). Bulletin of the World Health Organization 2002;80:975-980. Voir page 979 le re´sume´ en franc¸ais. En la pa´ gina 980 figura un resumen en espan˜ ol.
    [Show full text]
  • Global SDG Baseline for WASH in Health Care Facilities Practical Steps to Achieve Universal WASH in Health Care Facilities
    Global SDG baseline for WASH in health care facilities Practical steps to achieve universal WASH in health care facilities Questions and Answers What is meant by WASH in health care facilities? The term “WASH in health care facilities” refers to the provision of water, sanitation, health care waste, hygiene and environmental cleaning infrastructure and services across all parts of a facility. “Health care facilities” encompass all formally-recognized facilities that provide health care, including primary (health posts and clinics), secondary, and tertiary (district or national hospitals), public and private (including faith-run), and temporary structures designed for emergency contexts (e.g., cholera treatment centers). They may be located in urban or rural areas. Why is WASH in health care facilities so important? WASH services are fundamental to providing quality care. Without such services, health goals, especially those for reducing maternal and neonatal mortality, reducing the spread of antimicrobial resistance and preventing and containing disease outbreaks will be not met. WASH is also critical to the experience of care. Services such as functional and accessible toilets with menstrual hygiene facilities and safe drinking-water support patient and staff dignity and fulfill basic human rights. With a renewed focus on primary health care services through the Astana Declaration and a renewed focus on preventing early childhood deaths through the Every Child Alive Campaign the opportunity to address WASH in health systems strengthening has never been greater. What are the current global estimates for WASH in health care facilities? The WHO and UNICEF Joint Monitoring Programme (JMP) 2019 SDG baseline report establishes national, regional and global baseline estimates that contribute towards global monitoring of SDG 6, universal access to WASH.
    [Show full text]
  • On Confinement and Quarantine Concerns on an SEIAR Epidemic
    S S symmetry Article On Confinement and Quarantine Concerns on an SEIAR Epidemic Model with Simulated Parameterizations for the COVID-19 Pandemic Manuel De la Sen 1,* , Asier Ibeas 2 and Ravi P. Agarwal 3 1 Campus of Leioa, Institute of Research and Development of Processes IIDP, University of the Basque Country, 48940 Leioa (Bizkaia), Spain 2 Department of Telecommunications and Systems Engineering, Universitat Autònoma de Barcelona, UAB, 08193 Barcelona, Spain; [email protected] 3 Department of Mathematics, Texas A & M University, 700 Univ Blvd, Kingsville, TX 78363, USA; [email protected] * Correspondence: [email protected] Received: 7 September 2020; Accepted: 30 September 2020; Published: 7 October 2020 Abstract: This paper firstly studies an SIR (susceptible-infectious-recovered) epidemic model without demography and with no disease mortality under both total and under partial quarantine of the susceptible subpopulation or of both the susceptible and the infectious ones in order to satisfy the hospital availability requirements on bed disposal and other necessary treatment means for the seriously infectious subpopulations. The seriously infectious individuals are assumed to be a part of the total infectious being described by a time-varying proportional function. A time-varying upper-bound of those seriously infected individuals has to be satisfied as objective by either a total confinement or partial quarantine intervention of the susceptible subpopulation. Afterwards, a new extended SEIR (susceptible-exposed-infectious-recovered) epidemic model, which is referred to as an SEIAR (susceptible-exposed-symptomatic infectious-asymptomatic infectious-recovered) epidemic model with demography and disease mortality is given and focused on so as to extend the above developed ideas on the SIR model.
    [Show full text]
  • Water-Borne Diseases
    Bronx Community Health Dashboard: Communicable Disease Last Updated: 9/24/2019 See last slide for more information about this project. 1 Food- & Water-Borne Diseases Data note: All data are reported by labs and are not a measure of true incidence in the population as not all people seek care or are tested. 2 Overall, salmonella rates have declined in all five boroughs Bronx Brooklyn Manhattan Queens Staten Island 25 Salmonella is a group of bacteria that is one of the most common causes of food poisoning in the U.S. Most infected people develop diarrhea, fever, and abdominal cramps 12 to 72 hours after infection. The illness 20 typically lasts 4 to 7 days, and most people recover without treatment. However, in some people, the diarrhea may be so severe that they need to be hospitalized. 16.0 16.2 15 15.5 13.5 12.6 13.1 12.3 10 10.1 adjusted rate per adjusted 100,000 Salmonella 7.0 - Age 5 0 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 3 Data source: New York City Department of Health and Mental Hygiene Communicable Disease Surveillance Data, 2000-2017. Salmonella rates are above average in the Morrisania, Pelham, and Fordham areas of the Bronx compared to New York City overall 101 101 Kingsbridge 103 102 16 15.5 102 Northeast Bronx 14.4 13.9 103 Fordham 105 104 12.8 104 Pelham 106 105 Crotona 107 12 106 Morrisania 10.3 10.1 107 Mott Haven 8.8 8 4 adjusted rate per adjusted 100,000 Salmonella - 0 Age 4 Data source: New York City Department of Health and Mental Hygiene Communicable Disease Surveillance Data, 2017.
    [Show full text]
  • Environmental Sanitation and Water Borne Diseases
    ENVIRONMENTAL SANITATION AND WATER BORNE DISEASES Dr.Harpreet Singh MD, DM (Gastroenterology) COMPONENTS OF ENVIRNOMENTAL SANITATION • WATER SANITATION • FOOD AND MILK SANITATION • EXCRETA DISPOSAL • SEWAGE DISPOSAL • REFUSE DISPOSAL • VECTOR AND VERMIN CONTROL • HOUSING • AIR SANITATION WATER SANITATION WATER ANALYSIS CONSISTS OF: • PHYSICAL • CHEMICAL • RADIOLOGICAL • BIOLOGICAL • BACTERIOLOGICAL WATER SANITATION • PUBLIC WATER SUPPLY MUST BE- – SAFE – REASONABLY SOFT – PLENTIFUL – CHEAP WATER SANITATION • HOUSEHOLD TREATMENT OF WATER – BOILING, i.e., beyond 2 minutes – CHLORINATION- 1-5ppm – IODINE TREATMENT- 10 drops per gallon – FILTRATION – AERATION What is a Water-Borne Disease? • “Pathogenic microbes that can be directly spread through contaminated water.” -CDC • Humans contract waterborne infections by contact with contaminated water or food. • May result from human actions, such as improper disposal of sewage wastes, or extreme weather events like storms and hurricanes. Climate Change Promotes Water-borne Disease • Rainfall: transport and disseminates infectious agents • Flooding: sewage treatment plants overflow; water sources contaminated • Sea level rise: enhances risk of severe flooding • Higher temperatures: Increases growth and prolongs survival rates of infectious agents • Drought: increases concentrations of pathogens, impedes hygiene Water Quantity and Quality Issues IPCC, 2007a Burden of Waterborne Disease • 1.8 million deaths (4 million cases) in 2004 due to gastroenteritis (WHO) – 88% due to unsafe water and poor sanitation Prüss-Üstün et al., 2008 Burden of Diarrheal Diseases • Diarrheal diseases are vastly underestimated – 211 million cases estimated in the US annually (Mead et al., 1999) Reported cases Actual cases > 38 x reported cases Diarrheal Disease Pathways Prüss-Üstün et al., 2008 CHOLERA Cholera • Found in water or food Global Prevalence of Cholera (WHO) sources contaminated by feces from an infected person • Transmitted by contaminated food, water • Prevalence increases with increasing temperature and rainfall amounts V.
    [Show full text]
  • Opisthorchiasis: an Emerging Foodborne Helminthic Zoonosis of Public Health Significance
    IJMPES International Journal of http://ijmpes.com doi 10.34172/ijmpes.2020.27 Medical Parasitology & Vol. 1, No. 4, 2020, 101-104 eISSN 2766-6492 Epidemiology Sciences Review Article Opisthorchiasis: An Emerging Foodborne Helminthic Zoonosis of Public Health Significance Mahendra Pal1* ID , Dimitri Ketchakmadze2 ID , Nino Durglishvili3 ID , Yagoob Garedaghi4 ID 1Narayan Consultancy on Veterinary Public Health and Microbiology, Gujarat, India 2Faculty of Chemical Technologies and Metallurgy, Georgian Technical University, Tbilisi, Georgia 3Department of Sociology and Social Work, Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia 4Department of Parasitology, Tabriz Branch, Islamic Azad University, Tabriz, Iran Abstract Opisthorchiasis is an emerging foodborne parasitic zoonosis that has been reported from developing as well as developed nations of the world. Globally, around 80 million people are at risk of acquiring Opisthorchis infection. The source of infection is exogenous, and ingestion is considered as the primary mode of transmission. Humans get the infection by consuming raw or undercooked fish. In most cases, the infection remains asymptomatic. However, in affected individuals, the clinical manifestations are manifold. Occasionally, complications including cholangitis, cholecystitis, and cholangiocarcinoma are observed. The people who have the dietary habit of eating raw fish usually get the infection. Certain occupational groups, such as fishermen, agricultural workers, river fleet employees, and forest industry personnel are mainly infected with Opisthorchis. The travelers to the endemic regions who consume raw fish are exposed to the infection. Parasitological, immunological, and molecular techniques are employed to confirm the diagnosis of disease. Treatment regimens include oral administration of praziquantel and albendazole. In the absence of therapy, the acute phase transforms into a chronic one that may persist for two decades.
    [Show full text]
  • Litter Pollution in Densely Versus Sparsely Populated Areas: Dog River Watershed
    LITTER POLLUTION IN DENSELY VERSUS SPARSELY POPULATED AREAS: DOG RIVER WATERSHED Gabrielle M. Hudson, Department of Earth Sciences, University of South Alabama, Mobile, AL 36688. E-mail: [email protected]. It is commonly known that when humans populate an area that area is usually subject to some environmental degradation. One of the more common aspects of environmental degradation is litter. This type of degradation is no stranger to the Dog River watershed. For years residents have seen the rivers in this watershed covered in trash, specifically after rain events. The vast majority of the trash is a result of litter from roadsides being carried into the river via drainage pipes. This paper is a comparative study of litter in areas of varying population densities in the Dog River watershed. It seeks to distinguish between the amount of litter found in densely populated areas and sparsely populated areas, and to find out if there is a correlation between population density and litter. I utilize GIS to map population density of the Dog River watershed, and analyze and compare the amounts of litter in areas of sparse and dense populations. The results show that there is no correlation between population density and litter. It also shows that there is no difference in the amounts of litter found in densely and sparsely populated areas. Keyword: litter, population density, watershed Introduction Pollution has long been an issue in the Dog River watershed, in particular litter pollution. The extent of the pollution has not gone unnoticed. There are groups of people and organizations who have taken increased interest in the Dog River watershed with intentions of reducing pollution, including Dog River Clearwater Revival and its numerous volunteers.
    [Show full text]
  • Guidelines for the Management of Sexually Transmitted Infections
    GUIDELINES FOR THE MANAGEMENT OF SEXUALLY TRANSMITTED INFECTIONS World Health Organization GUIDELINES FOR THE MANAGEMENT OF SEXUALLY TRANSMITTED INFECTIONS WHO Library Cataloguing-in-Publication Data World Health Organization. Guidelines for the management of sexually transmitted infections. 1.Sexually transmitted diseases - diagnosis 2.Sexually transmitted diseases - therapy 3.Anti-infective agents - therapeutic use 4.Practice guidelines I.Expert Consultation on Improving the Management of Sexually Transmitted Infections (2001 : Geneva, Switzerland) ISBN 92 4 154626 3 (NLM classifi cation: WC 142) © World Health Organization 2003 All rights reserved. Publications of the World Health Organization can be obtained from Marketing and Dissemination, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel: +41 22 791 2476; fax: +41 22 791 4857; email: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to Publications, at the above address (fax: +41 22 791 4806; email: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specifi c companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned.
    [Show full text]
  • Vector Control
    Residential Good Housekeeping 1. Objective: The objective of the following site housekeeping practices is to reduce impacts from stormwater runoff by developing and using good housekeeping practices. Everyday activities such as driving to work, gardening or washing your car affect the quality of water in local creeks and the San Francisco Bay. Water from garden hoses, sprinklers and rainfall washes materials into gutters and storm drains. Chemicals such as motor oil, paint products, pet waste and pesticides flow from yards, parking lots and streets, sending contaminated water, or urban runoff, untreated into local creeks, groundwater and the San Francisco Bay, where it harms fish and other wildlife. It is estimated that 50% to 80% of all pollutants entering the San Francisco Bay are discharged from storm drain systems. PLEASE NOTE: If you see someone pouring auto fluids or any other substance into the storm drain, call 911. Pouring substances into the storm drain is against the law. 2. Automotive Housekeeping 2.1 Do not store automotive parts, fluids, batteries or chemicals outside. These items should be stored in an area not exposed to the weather. 2.2 Check driveway and garage surfaces daily for leaks, spills and litter. Clean up spills with a broom, not a hose. Use absorbents to soak up spills (i.e. cat litter, sawdust, or cornmeal), as needed, then sweep up absorbents after use. 2.3 Check for vehicle leaks. Use a drip pan until repair is complete. 2.4 Consider washing vehicles at a commercial car wash or on a pervious area (landscape, gravel, etc.
    [Show full text]