MF-$0.75 HC Not Available from EDRS. PLUS POSTAGE Geometry

Total Page:16

File Type:pdf, Size:1020Kb

MF-$0.75 HC Not Available from EDRS. PLUS POSTAGE Geometry DOCUMENT RESUME ED 100 648 SE 018 119 AUTHOR Yates, Robert C. TITLE Curves and Their Properties. INSTITUTION National Council of Teachers of Mathematics, Inc., Washington, D.C. PUB DATE 74 NOTE 259p.; Classics in Mathematics Education, Volume 4 AVAILABLE FROM National Council of Teachers of Mathematics, Inc., 1906 Association Drive, Reston, Virginia 22091 ($6.40) EDRS PRICE MF-$0.75 HC Not Available from EDRS. PLUS POSTAGE DESCRIPTORS Analytic Geometry; *College Mathematics; Geometric Concepts; *Geometry; *Graphs; Instruction; Mathematical Enrichment; Mathematics Education;Plane Geometry; *Secondary School Mathematics IDENTIFIERS *Curves ABSTRACT This volume, a reprinting of a classic first published in 1952, presents detailed discussions of 26 curves or families of curves, and 17 analytic systems of curves. For each curve the author provides a historical note, a sketch orsketches, a description of the curve, a a icussion of pertinent facts,and a bibliography. Depending upon the curve, the discussion may cover defining equations, relationships with other curves(identities, derivatives, integrals), series representations, metricalproperties, properties of tangents and normals, applicationsof the curve in physical or statistical sciences, and other relevantinformation. The curves described range from thefamiliar conic sections and trigonometric functions through tit's less well knownDeltoid, Kieroid and Witch of Agnesi. Curve related - systemsdescribed include envelopes, evolutes and pedal curves. A section on curvesketching in the coordinate plane is included. (SD) U S DEPARTMENT OFHEALTH. EDUCATION II WELFARE NATIONAL INSTITUTE OF EDUCATION THIS DOCuME N1 ITASOLE.* REPRO MAE° EXACTLY ASRECEIVED F ROM THE PERSON ORORGANI/AlICIN ORIGIN ATING 11 POINTS OF VIEWOH OPINIONS STATED DO NOT NECESSARILYREPRE INSTITUTE OF SENT OFFICIAL NATIONAL EDUCATION POSITION ORPOLICY $1 loor oiltyi.4410,0 kom niAttintitd.: t .111/11.061 . 141 52.1 "411;2gkE Nn:littitt!riTt" A. , 4 1 44'1,LIAI:iit .11 ,j{j..11:,,stilenhg.,1 L'it!LY II ,.,' itI ,ft ,Mt" )1'14 !!!111%,11,1 ,±14 ROI 911 .14 *f.A Cita. /1" 1!It 1 l' 41 CURVES AND THEIR PROPERTIES CLASSICS IN MATHEMATICS EDUCATION Volume 1: The Pythagorean haposition by Elisha Scott Loomis Volume 2: Number Stories of Long Ago by David Eugene Smith Volume 3: The Trisection Problem by Robert C. Yates Volume 4: Curves and Their Properties by Robert C. Yates RIIRIABLE BESICOP1 CONES AID THE II PROPERTIES OW CAMS THE NATIONAL COUNCIL or TEACHERS OF MATHEMATICS Copyright 1952 by Hobert C. Yates Library of Congress Catalog Card Number: 7.140222 Printed in the United States of America 1974 tV FOREWORD Some mathematical works of considerable vintage havea timeless quality about them. Like classics inany field, they still bring joy and guidance to the reader. Books of this kind, ifno longer readily available, are being sought out by the National Council of Teachers of Mathematics, which has begun to publisha series of such classics. The present title is the fourth volume of the series. A Handbook on Curves and Their Propertieswas first published in 1952 when the author was teaching at the United States Military Academyat West Point. A photoithoprint reproductionwas issued in 1959 by Edwards Brothers, Inc., Lithoprinters, of Ann Arbor,Michigan. The present reprint edition has been similarly produced, by photo-offset, from a copy of the 1959 edition. Except for providing new front matter, includ- ing a biographical sketch of the author and this Foreword byway of, explanation, no attempt has been made to modernize the bookin any way. To do so would surely detract from, rather than add to, its value. ABOUT THE AUTHOR Robert Carl Yates was born in .Falls Church, Virginia,on 10 March 1904. In 1924 he receiveda B.S. degree in civil engineering from Virginia Military Institute. This degreewas followed by an A.B. degree in psy- chology and education from Washington and LeeUniversity in 1926 and by the M.A. and Ph.D. degrees in mathematics andapplied mathematics from Johns Hopkins University in 1928 and 1930. While working on these later degrees Bob Yateswas an instructor at Virginia Military Institute, the University of Maryland,and Johns Hop- kins University. After completing his Ph.D.degree, he accepted a Posi- tion as assistant professor, in 1931, at the University of Maryland,where later he was promoted to associate professor. In 1939 hebecame associate professor of mathematics at Louisiana StateUniversity. As a captain in the Army Reserves, Professor Yates reportedto the United States Military Academy for active dutyon 6 June 1942. Before leaving the Academy herose to the rank of colonel and the title of associate professor of mathematics. He left West Point in August 1954, whena reduction in the number of colonels was authorized at USMA, and accepteda position as professor of mathematics at Virginia PolytechnicInstitute.In 1955 he became professor of mathematics and chairman of the departmentat the College of William and Mary. The last position he heldwas as one of the original professors at the University of South Florida, beginningin 1960. He went to this rew institution as chairman of the Department of Mathematics, resigning the chairmanship in 1962 in order to devotemore time to teach- ing, lecturing, and writing. During his tour of duty at West Point, Dr. Yatesspent many of his summers as a visiting professor. Among the institutions he served were Teachers College, Columbia University; YeshivaUniversity; and johns Hopkins University. Robert Yates wasa man of many talents. Although he was trained in pure and applied mathematics, he became interested In the field of mathematics education rather early in his professionqlcareer. In both vii viii AuouT THE AUTHOR al'eaS he Wilt lip a (Ilse reputation as alecturer and a writer. During his lifetime he had sixty-odd papers published in various researchand mathe- matical-education journals, including the Mathematics Teacher, and in NCTM yearbooks. He also wrote five books dealing with various aspects of geometry, the calculus. and differential equations. From1937 until he was called to active duty atWest Point in 1942, he served on the editorial hoard, and as editor of one department, of the NationalMathematics Magazine. These were some of his professional achievements. Ms activities,how ever, were not limited to theworld of mathematics.At VM1where he was a member of thetrack squad, dramatics and journalism claimed some of his time. Music became a continuing resource. In laterlife his recrea- tions included playing the piano as well as sailing,skating, and golf. Dr. Yates, whose social fraternity was Kappa Alpha, waselected to two scientific honor societies: Gamma Alpha and Sigma Xi. Holding member- ship in the American Mathematical Society, the Mathematical Association of America, and the National Council of Teachersof Mathematics, he was at one period a governor ofthe MAA. He was also a member of the MAA's original ad hoc Committee on the UndergraduateProgram in Mathematics (CUPM ).In late 1961 he was selected by the Association of Higher Education as one of twenty-five"outstanding college andUni- versity educators in America today," and on 4February 1962 he was featured on the ABC-TV program "Meet the Professor." Dr. Yates had been interested in mathematicseducation before 1939. Howcwer, when he came to Louisiana State University, his work inthis field began to expand. Owing to his efforts, the Departmentof Mathe- matics and the College of Education made some importantchanges in the mathematical curriculum for the training of prospective secondaryschool teachers. One of the most important additions was six semesterhours in geometry. Dr. Yates was given this course toteach, and for a text he used his first book, Geometrical Tools, From this beginninghis interest and work in mathematics education increased, while hecontinued to lecture and write in the areas of pure and applied mathematics, The atmosphere at Nk'est Point was quite a change for Dr.Yates. How- ever, even here he continuedhis activities in mathematics education. One of his duties was to supervise and conduct courses inthe techniques of teaching mathematics. These were courses designed forthe groups of new instructors whojoined the departntme staff annually; for most of the faculty at the Academy, then as now, were active-duty officerswho came on a first or second tour ofthree to four years' duration. In performing this duty he was considered a superior instructor and also anexcellent teacher of teachers. ABOUT THE AUTHOR ix After leaving the service Professor Yates continued his effortsto improve mathematics education. During thesummers he taught in several different mathematics institutes, and hewas a guest lecturer in many summer and academic-year institutes supported by the National Science Foundation. In earlier years he both taught and lectured in the grandfather of all institutes, the one developed by Professor W. W. Rankin at Duke Uni- versity.In Virginia and later in Florida he servedas a consultant to teachers of mathematics in various school districts. During the academic years 1961/62 and 1962/63 the University of South Florida was engaged in an experimental television program. Professor Yateswas the television lecturer in the course materials deNeloped through thisprogram. As a result of this programas well as the MAA lectureship program for high schools, supported by he NSF, he traveledto all parts of Florida giving lectures and consulting with high school teachers. Through all these activities Dr. Yates greatly enhancedthe field of mathematics education. He builtup a reputation as an outstanding lec- turer with a pleasing, interest-provoking presentation anda rare ability to talk while illustrating his subject. Those who have heard him will long remember bhp and his great ability. Others will find thathis writ- ings show, soinevAat vicariously, thesesame characteristics. By his first wife, Naomi Sherman, who died in childbirth, he had three children. Robert Jefferson, the eldest, isnow in business in California. Melinda Susan, the youngest, isnow Mrs. Richard B. Shaw, the wife of a Missouri surgeon.
Recommended publications
  • 1915-16.] the " Geometria Organica" of Colin Maclaurin. 87 V.—-The
    1915-16.] The " Geometria Organica" of Colin Maclaurin. 87 V.—-The " Geometria Organica " of Colin Maclaurin: A Historical and Critical Survey. By Charles Tweedie, M.A., B.Sc, Lecturer in Mathematics, Edinburgh University. (MS. received October 15, 1915. Bead December 6,1915.) INTRODUCTION. COLIN MACLATJBIN, the celebrated mathematician, was born in 1698 at Kilmodan in Argyllshire, where his father was minister of the parish. In 1709 he entered Glasgow University, where his mathematical talent rapidly developed under the fostering care of Professor Robert Simson. In 171*7 he successfully competed for the Chair of Mathematics in the Marischal College of Aberdeen University. In 1719 he came directly under the personal influence of Newton, when on a visit to London, bearing with him the manuscript of the Geometria Organica, published in quarto in 1720. The publication of this work immediately brought him into promi- nence in the scientific world. In 1725 he was, on the recommendation of Newton, elected to the Chair of Mathematics in Edinburgh University, which he occupied until his death in 1746. As a lecturer Maclaurin was a conspicuous success. He took great pains to make his subject as clear and attractive as possible, so much so that he made mathematics " a fashionable study." The labour of teaching his numerous students seriously curtailed the time he could spare for original research. In quantity his works do not bulk largely, but what he did produce was, in the main, of superlative quality, presented clearly and concisely. The Geometria Organica and the Geometrical Appendix to his Treatise on Algebra give him a place in the first rank of great geometers, forming as they do the basis of the theory of the Higher Plane Curves; while his Treatise of Fluxions (1742) furnished an unassailable bulwark and text-book for the study of the Calculus.
    [Show full text]
  • Curve Sketching and Relative Maxima and Minima the Goal
    Curve Sketching and Relative Maxima and Minima The Goal The purpose of the first derivative sign diagram is to indicate where a function is increasing and decreasing. The purpose of this is to identify where the relative maxima and minima are, since we know that if a function switches from increasing to decreasing at some point and remains continuous there it has to have a relative maximum there (likewise for switching in the other direction for a relative minimum). This is known as the First Derivative Test. It is possible to come up with functions that are NOT continuous at a certain point and may not even switch direction but still have a relative maximum or minimum there, but we can't really deal with those here. Plot x - Floor x , x, 0, 4 , AspectRatio ® Automatic 1.0 0.8 @ @ D 8 < D 0.6 0.4 0.2 1 2 3 4 The purpose of the second derivative sign diagram is to fill in the shape of the function a little more for sketching purposes, since changes in curvature happen at different locations than changes in direction and are distinctive features of the curve. Addition- ally, in certain circumstances (when the second derivative exists and is not zero) the sign of the second derivative at a critical value will also indicate whether there is a maximum there (downward curvature, f''(x) < 0) or a minimum (upward curvature, f''(x) > 0). This is known as the Second Derivative Test. Also, the change in direction of the curvature also corresponds to the locations of the steepest slope, which turns out to be useful in certain applications.
    [Show full text]
  • Combination of Cubic and Quartic Plane Curve
    IOSR Journal of Mathematics (IOSR-JM) e-ISSN: 2278-5728,p-ISSN: 2319-765X, Volume 6, Issue 2 (Mar. - Apr. 2013), PP 43-53 www.iosrjournals.org Combination of Cubic and Quartic Plane Curve C.Dayanithi Research Scholar, Cmj University, Megalaya Abstract The set of complex eigenvalues of unistochastic matrices of order three forms a deltoid. A cross-section of the set of unistochastic matrices of order three forms a deltoid. The set of possible traces of unitary matrices belonging to the group SU(3) forms a deltoid. The intersection of two deltoids parametrizes a family of Complex Hadamard matrices of order six. The set of all Simson lines of given triangle, form an envelope in the shape of a deltoid. This is known as the Steiner deltoid or Steiner's hypocycloid after Jakob Steiner who described the shape and symmetry of the curve in 1856. The envelope of the area bisectors of a triangle is a deltoid (in the broader sense defined above) with vertices at the midpoints of the medians. The sides of the deltoid are arcs of hyperbolas that are asymptotic to the triangle's sides. I. Introduction Various combinations of coefficients in the above equation give rise to various important families of curves as listed below. 1. Bicorn curve 2. Klein quartic 3. Bullet-nose curve 4. Lemniscate of Bernoulli 5. Cartesian oval 6. Lemniscate of Gerono 7. Cassini oval 8. Lüroth quartic 9. Deltoid curve 10. Spiric section 11. Hippopede 12. Toric section 13. Kampyle of Eudoxus 14. Trott curve II. Bicorn curve In geometry, the bicorn, also known as a cocked hat curve due to its resemblance to a bicorne, is a rational quartic curve defined by the equation It has two cusps and is symmetric about the y-axis.
    [Show full text]
  • Differential Geometry
    Differential Geometry J.B. Cooper 1995 Inhaltsverzeichnis 1 CURVES AND SURFACES—INFORMAL DISCUSSION 2 1.1 Surfaces ................................ 13 2 CURVES IN THE PLANE 16 3 CURVES IN SPACE 29 4 CONSTRUCTION OF CURVES 35 5 SURFACES IN SPACE 41 6 DIFFERENTIABLEMANIFOLDS 59 6.1 Riemannmanifolds .......................... 69 1 1 CURVES AND SURFACES—INFORMAL DISCUSSION We begin with an informal discussion of curves and surfaces, concentrating on methods of describing them. We shall illustrate these with examples of classical curves and surfaces which, we hope, will give more content to the material of the following chapters. In these, we will bring a more rigorous approach. Curves in R2 are usually specified in one of two ways, the direct or parametric representation and the implicit representation. For example, straight lines have a direct representation as tx + (1 t)y : t R { − ∈ } i.e. as the range of the function φ : t tx + (1 t)y → − (here x and y are distinct points on the line) and an implicit representation: (ξ ,ξ ): aξ + bξ + c =0 { 1 2 1 2 } (where a2 + b2 = 0) as the zero set of the function f(ξ ,ξ )= aξ + bξ c. 1 2 1 2 − Similarly, the unit circle has a direct representation (cos t, sin t): t [0, 2π[ { ∈ } as the range of the function t (cos t, sin t) and an implicit representation x : 2 2 → 2 2 { ξ1 + ξ2 =1 as the set of zeros of the function f(x)= ξ1 + ξ2 1. We see from} these examples that the direct representation− displays the curve as the image of a suitable function from R (or a subset thereof, usually an in- terval) into two dimensional space, R2.
    [Show full text]
  • Evolute-Involute Partner Curves According to Darboux Frame in the Euclidean 3-Space E3
    Fundamentals of Contemporary Mathematical Sciences (2020) 1(2) 63 { 70 Evolute-Involute Partner Curves According to Darboux Frame in the Euclidean 3-space E3 Abdullah Yıldırım 1,∗ Feryat Kaya 2 1 Harran University, Faculty of Arts and Sciences, Department of Mathematics S¸anlıurfa, T¨urkiye 2 S¸ehit Abdulkadir O˘guzAnatolian Imam Hatip High School S¸anlıurfa, T¨urkiye, [email protected] Received: 29 February 2020 Accepted: 29 June 2020 Abstract: In this study, evolute-involute curves are researched. Characterization of evolute-involute curves lying on the surface are examined according to Darboux frame and some curves are obtained. Keywords: Curve, surface, geodesic, curvature, frame. 1. Introduction The interest of special curves has increased recently. Some of these are associated curves. They are curves where one of the Frenet vectors at opposite points is linearly dependent to the other curve. One of the best examples of these curves is the evolute-involute partner curves. An involute thought known to have been used in his optical work came up in 1658 by C. Huygens. C. Huygens discovered involute curves while trying to make more accurate measurement studies [5]. Many researches have been conducted about evolute-involute partner curves. Some of them conducted recently are Bilici and C¸alı¸skan [4], Ozyılmaz¨ and Yılmaz [9], As and Sarıo˘glugil[2]. Bekta¸sand Y¨uceconsider the notion of the involute-evolute curves lying on the surfaces for a special situation. They determine the special involute-evolute partner D−curves in E3: By using the Darboux frame of the curves they obtain the necessary and sufficient conditions between κg , ∗ − ∗ ∗ τg; κn and κn for a curve to be the special involute partner D curve.
    [Show full text]
  • On the Topology of Hypocycloid Curves
    Física Teórica, Julio Abad, 1–16 (2008) ON THE TOPOLOGY OF HYPOCYCLOIDS Enrique Artal Bartolo∗ and José Ignacio Cogolludo Agustíny Departamento de Matemáticas, Facultad de Ciencias, IUMA Universidad de Zaragoza, 50009 Zaragoza, Spain Abstract. Algebraic geometry has many connections with physics: string theory, enu- merative geometry, and mirror symmetry, among others. In particular, within the topo- logical study of algebraic varieties physicists focus on aspects involving symmetry and non-commutativity. In this paper, we study a family of classical algebraic curves, the hypocycloids, which have links to physics via the bifurcation theory. The topology of some of these curves plays an important role in string theory [3] and also appears in Zariski’s foundational work [9]. We compute the fundamental groups of some of these curves and show that they are in fact Artin groups. Keywords: hypocycloid curve, cuspidal points, fundamental group. PACS classification: 02.40.-k; 02.40.Xx; 02.40.Re . 1. Introduction Hypocycloid curves have been studied since the Renaissance (apparently Dürer in 1525 de- scribed epitrochoids in general and then Roemer in 1674 and Bernoulli in 1691 focused on some particular hypocycloids, like the astroid, see [5]). Hypocycloids are described as the roulette traced by a point P attached to a circumference S of radius r rolling about the inside r 1 of a fixed circle C of radius R, such that 0 < ρ = R < 2 (see Figure 1). If the ratio ρ is rational, an algebraic curve is obtained. The simplest (non-trivial) hypocycloid is called the deltoid or the Steiner curve and has a history of its own both as a real and complex curve.
    [Show full text]
  • Calculus Terminology
    AP Calculus BC Calculus Terminology Absolute Convergence Asymptote Continued Sum Absolute Maximum Average Rate of Change Continuous Function Absolute Minimum Average Value of a Function Continuously Differentiable Function Absolutely Convergent Axis of Rotation Converge Acceleration Boundary Value Problem Converge Absolutely Alternating Series Bounded Function Converge Conditionally Alternating Series Remainder Bounded Sequence Convergence Tests Alternating Series Test Bounds of Integration Convergent Sequence Analytic Methods Calculus Convergent Series Annulus Cartesian Form Critical Number Antiderivative of a Function Cavalieri’s Principle Critical Point Approximation by Differentials Center of Mass Formula Critical Value Arc Length of a Curve Centroid Curly d Area below a Curve Chain Rule Curve Area between Curves Comparison Test Curve Sketching Area of an Ellipse Concave Cusp Area of a Parabolic Segment Concave Down Cylindrical Shell Method Area under a Curve Concave Up Decreasing Function Area Using Parametric Equations Conditional Convergence Definite Integral Area Using Polar Coordinates Constant Term Definite Integral Rules Degenerate Divergent Series Function Operations Del Operator e Fundamental Theorem of Calculus Deleted Neighborhood Ellipsoid GLB Derivative End Behavior Global Maximum Derivative of a Power Series Essential Discontinuity Global Minimum Derivative Rules Explicit Differentiation Golden Spiral Difference Quotient Explicit Function Graphic Methods Differentiable Exponential Decay Greatest Lower Bound Differential
    [Show full text]
  • Plotting the Spirograph Equations with Gnuplot
    Plotting the spirograph equations with gnuplot V´ıctor Lua˜na∗ Universidad de Oviedo, Departamento de Qu´ımica F´ısica y Anal´ıtica, E-33006-Oviedo, Spain. (Dated: October 15, 2006) gnuplot1 internal programming capabilities are used to plot the continuous and segmented ver- sions of the spirograph equations. The segmented version, in particular, stretches the program model and requires the emmulation of internal loops and conditional sentences. As a final exercise we develop an extensible minilanguage, mixing gawk and gnuplot programming, that lets the user combine any number of generalized spirographic patterns in a design. Article published on Linux Gazette, November 2006 (#132) I. INTRODUCTION S magine the movement of a small circle that rolls, with- ¢ O ϕ Iout slipping, on the inside of a rigid circle. Imagine now T ¢ 0 ¢ P ¢ that the small circle has an arm, rigidly atached, with a plotting pen fixed at some point. That is a recipe for β drawing the hypotrochoid,2 a member of a large family of curves including epitrochoids (the moving circle rolls on the outside of the fixed one), cycloids (the pen is on ϕ Q ¡ ¡ ¡ the edge of the rolling circle), and roulettes (several forms ¢ rolling on many different types of curves) in general. O The concept of wheels rolling on wheels can, in fact, be generalized to any number of embedded elements. Com- plex lathe engines, known as Guilloch´e machines, have R been used since the XVII or XVIII century for engrav- ing with beautiful designs watches, jewels, and other fine r p craftsmanships. Many sources attribute to Abraham- Louis Breguet the first use in 1786 of Gilloch´eengravings on a watch,3 but the technique was already at use on jew- elry.
    [Show full text]
  • Coverrailway Curves Book.Cdr
    RAILWAY CURVES March 2010 (Corrected & Reprinted : November 2018) INDIAN RAILWAYS INSTITUTE OF CIVIL ENGINEERING PUNE - 411 001 i ii Foreword to the corrected and updated version The book on Railway Curves was originally published in March 2010 by Shri V B Sood, the then professor, IRICEN and reprinted in September 2013. The book has been again now corrected and updated as per latest correction slips on various provisions of IRPWM and IRTMM by Shri V B Sood, Chief General Manager (Civil) IRSDC, Delhi, Shri R K Bajpai, Sr Professor, Track-2, and Shri Anil Choudhary, Sr Professor, Track, IRICEN. I hope that the book will be found useful by the field engineers involved in laying and maintenance of curves. Pune Ajay Goyal November 2018 Director IRICEN, Pune iii PREFACE In an attempt to reach out to all the railway engineers including supervisors, IRICEN has been endeavouring to bring out technical books and monograms. This book “Railway Curves” is an attempt in that direction. The earlier two books on this subject, viz. “Speed on Curves” and “Improving Running on Curves” were very well received and several editions of the same have been published. The “Railway Curves” compiles updated material of the above two publications and additional new topics on Setting out of Curves, Computer Program for Realignment of Curves, Curves with Obligatory Points and Turnouts on Curves, with several solved examples to make the book much more useful to the field and design engineer. It is hoped that all the P.way men will find this book a useful source of design, laying out, maintenance, upgradation of the railway curves and tackling various problems of general and specific nature.
    [Show full text]
  • Around and Around ______
    Andrew Glassner’s Notebook http://www.glassner.com Around and around ________________________________ Andrew verybody loves making pictures with a Spirograph. The result is a pretty, swirly design, like the pictures Glassner EThis wonderful toy was introduced in 1966 by Kenner in Figure 1. Products and is now manufactured and sold by Hasbro. I got to thinking about this toy recently, and wondered The basic idea is simplicity itself. The box contains what might happen if we used other shapes for the a collection of plastic gears of different sizes. Every pieces, rather than circles. I wrote a program that pro- gear has several holes drilled into it, each big enough duces Spirograph-like patterns using shapes built out of to accommodate a pen tip. The box also contains some Bezier curves. I’ll describe that later on, but let’s start by rings that have gear teeth on both their inner and looking at traditional Spirograph patterns. outer edges. To make a picture, you select a gear and set it snugly against one of the rings (either inside or Roulettes outside) so that the teeth are engaged. Put a pen into Spirograph produces planar curves that are known as one of the holes, and start going around and around. roulettes. A roulette is defined by Lawrence this way: “If a curve C1 rolls, without slipping, along another fixed curve C2, any fixed point P attached to C1 describes a roulette” (see the “Further Reading” sidebar for this and other references). The word trochoid is a synonym for roulette. From here on, I’ll refer to C1 as the wheel and C2 as 1 Several the frame, even when the shapes Spirograph- aren’t circular.
    [Show full text]
  • On the Topology of Hypocycloids
    ON THE TOPOLOGY OF HYPOCYCLOIDS ENRIQUE ARTAL BARTOLO AND JOSE´ IGNACIO COGOLLUDO-AGUST´IN Abstract. Algebraic geometry has many connections with physics: string theory, enumerative geometry, and mirror symmetry, among others. In par- ticular, within the topological study of algebraic varieties physicists focus on aspects involving symmetry and non-commutativity. In this paper, we study a family of classical algebraic curves, the hypocycloids, which have links to physics via the bifurcation theory. The topology of some of these curves plays an important role in string theory [3] and also appears in Zariski’s foundational work [9]. We compute the fundamental groups of some of these curves and show that they are in fact Artin groups. 1. Introduction Hypocycloid curves have been studied since the Renaissance (apparently D¨urer in 1525 described epitrochoids in general and then Roemer in 1674 and Bernoulli in 1691 focused on some particular hypocycloids, like the astroid, see [5]). Hypocy- cloids are described as the roulette traced by a point P attached to a circumference S of radius r rolling about the inside of a fixed circle C of radius R, such that r 1 0 < ρ = R < 2 (see Figure 1). If the ratio ρ is rational, an algebraic curve is ob- tained. The simplest (non-trivial) hypocycloid is called the deltoid or the Steiner curve and has a history of its own both as a real and complex curve. S r C P arXiv:1703.08308v1 [math.AG] 24 Mar 2017 R Figure 1. Hypocycloid Key words and phrases. hypocycloid curve, cuspidal points, fundamental group.
    [Show full text]
  • Strophoids, a Family of Cubic Curves with Remarkable Properties
    Hellmuth STACHEL STROPHOIDS, A FAMILY OF CUBIC CURVES WITH REMARKABLE PROPERTIES Abstract: Strophoids are circular cubic curves which have a node with orthogonal tangents. These rational curves are characterized by a series or properties, and they show up as locus of points at various geometric problems in the Euclidean plane: Strophoids are pedal curves of parabolas if the corresponding pole lies on the parabola’s directrix, and they are inverse to equilateral hyperbolas. Strophoids are focal curves of particular pencils of conics. Moreover, the locus of points where tangents through a given point contact the conics of a confocal family is a strophoid. In descriptive geometry, strophoids appear as perspective views of particular curves of intersection, e.g., of Viviani’s curve. Bricard’s flexible octahedra of type 3 admit two flat poses; and here, after fixing two opposite vertices, strophoids are the locus for the four remaining vertices. In plane kinematics they are the circle-point curves, i.e., the locus of points whose trajectories have instantaneously a stationary curvature. Moreover, they are projections of the spherical and hyperbolic analogues. For any given triangle ABC, the equicevian cubics are strophoids, i.e., the locus of points for which two of the three cevians have the same lengths. On each strophoid there is a symmetric relation of points, so-called ‘associated’ points, with a series of properties: The lines connecting associated points P and P’ are tangent of the negative pedal curve. Tangents at associated points intersect at a point which again lies on the cubic. For all pairs (P, P’) of associated points, the midpoints lie on a line through the node N.
    [Show full text]