Biology 3315 - Comparative Vertebrate Morphology Systematic Overview of Chordates and Vertebrates Part I: Protochordates and Fishes

Total Page:16

File Type:pdf, Size:1020Kb

Biology 3315 - Comparative Vertebrate Morphology Systematic Overview of Chordates and Vertebrates Part I: Protochordates and Fishes Biology 3315 - Comparative Vertebrate Morphology Systematic Overview of Chordates and Vertebrates Part I: Protochordates and Fishes The first laboratory period will be devoted to an overview of Chordate animals. This will serve to make the major systematic groups familiar to students when reference is made to them throughout this lab. The following outline lists some of the characteristic morphological features of each group; others will be presented as the course progresses. ________________________________________________________________________ Echinodermata (echino = hedgehog/sea urchin + dermato = skin, in reference to spiny skin) Common names: sea stars, sea urchins, sea cucumbers, sand dollars, brittle stars Diagnostic features: Larvae have bilateral symmetry, modern adults are pentameral in shape (five-fold symmetry with rays or arms in fives or multiples of fives). Some fossils have numerous variations in ray/arm number. They have a system of internal water-filled canals that may form suckered “tube-feet” that the animal may move or grip objects with. Endoskeleton is made of calcite plates. Hemichordata (hemi = half + chordata = cord, in reference to notochord) Common names: Tongue or acorn worms Diagnostic features: Larvae are free swimming and similar to echinoderm larvae. Adults have a proboscis, collar, and trunk. Stomochord (an anterior extension of the pharynx) is present within proboscis, possibly for support. Chordata Diagnostic features: bilateral symmetry, segmented body structure, coelom, three germ layers, hollow dorsal nerve cord, notochord, pharyngeal respiratory mechanism, ventral heart, blood running posterior in a dorsal vessel Cephalochordata (cephalo = head, in reference to notochord extending into head Common names: Lancelets or Amphioxus Diagnostic features: small, lance-shaped, sand-burrowing plankton feeders, notochord extends entire length of body Urochordata (uro = tail, in reference to notochord in tail region) Common names: tunicates or sea squirts Diagnostic features: pollywog-like larva has notochord in tail, sessile adults with sac-like tunic and siphons Vertebrata (Craniata) (vertebra = backbone from vertere to turn) Diagnostic features: notochord extending only to infundibulum, skeleton with vertebrae and cranium, bone of apatite, thyroid and pituitary glands, muscular chambered heart, red blood cells, advanced central nervous system, paired organs of sight and hearing; semicircular canals Agnatha (a = no, without + gnathos = jaw) Common names: cyclostomes (circle mouths) Diagnostic features: no jaws, no true paired appendages Cyclostomata Myxiniformes (myxinos = mucus) Common names: hagfishes Diagnostic features: parasitic, specialized, degenerate survivors of the class, body elongate and eel-like, mouth terminal and open, no lateral appendages, mucus glands secrete onto skin Petromyzontiformes (petro = rock + myzon = to suck) Common names: lamprey Diagnostic features: parasitic, specialized degenerate survivors, body elongate and eel-like, mouth terminal and open, no lateral appendages Pteraspidomorpha (ptera = wing + aspidos = shield) Diagnostic features: two nostrils (diplorhina) Heterostraci (heteros = different + ostraci = shell) Cephalaspidomorpha (cephalos = head + aspidos = shield) Diagnostic features: single nostril (monorhina) Osteostraci (osteo = bone + ostrachi = shell) Anaspida (an = without + aspida = shield) Gnathostomata (gnathos = jaw + stomato = mouth) Diagnostic features: jaws Placodermi (placo = tablet, plate + derm = skin) Diagnostic features: bony armor to varying degrees, head and thoracic armor joined at a moveable hinge Antiarchi (anti = opposite + arch = bow, in reference to appendages) Arthrodira (arthos = joint + dira = neck) Chondrichthyes (chondros = cartilage + ichthyes = fish) Diagnostic features: cranium solid, endoskeleton cartilaginous (no bone), pelvic fins of males with clasping organs, no lung or gas bladder, medium to large size, chiefly marine Elasmobranchii (elasmo = a plate + branch = a gill) Diagnostic features: separate gill openings (5-7 pairs), spiracle present, skin with placoid scales, teeth numerous, continuously replaced Cladoselachimorpha (clado= branch or stem + selacho = shark + morph = form) Xenacanthimorpha (xenus = stranger+ acanthi = spine or thorn + morph = form) Selachimorpha (selacho = shark + morph = form) Common names: sharks Diagnostic features: mouth ventral, paired fins with narrow bases and no median axis, tail strongly heterocercal Batidoidimorpha (bati = ray fish + id = condition of + oid = like/form + morph =form) Common names: rays and skates Diagnostic features: dorso-ventrally flattened, mouth ventral, paired fins with broad bases, weakly heterocercal tails Holocephali (holo = whole or entire + cephalos = head) Common names: chimaeras, ratfish Diagnostic features: gill openings covered by fleshly operculum, spiracle absent, skin naked, open lateral line system, teeth few, permanent crushing plates, tail diphycercal Acanthodii (acantho = spine or thorn) Diagnostic features: numerous paired fins supported by stout spines Teleostomi (teleo = an end or complete + stoma = mouth) Diagnostic features: complete bony endoskeleton Actinopterygii (actin = ray + ptery = wing or fin) Diagnostic features: fins have bony rays, no central axis, nostrils are dorsal and do not open into mouth Palaeonisciformes (paleo = ancient + form = shape) Common names: extinct primitive ray-finned fishes Diagnostic features: heavy ganoid scales, strong heterocercal tail, endoskeleton poorly ossified, spiracle generally present Paleoniscoids (paleo = ancient + oid = like/form) Chondrostei (chondro = cartilage + osteo = bone) Common names: sturgeon, paddlefishes, reedfishes, birchirs Diagnostic features: endoskeleton mostly cartilagenous, spiracle present Polypteriformes (poly = many + pteri = wing) Common names: bichirs, reedfishes Diagnostic features: fleshy pectoral fins, dorsal fin divided into numerous dorsal finlets Acipenseriformes (aci = point, barb + pen =almost, nearly + seri = a series or row + form = shape) Common names: sturgeon, paddlefish Diagnostic features: heavy ganoid scales when developed, endoskeleton poorly ossified, dermatocranium heavily ossified Neopterygii (neo = new or recent (also means swim) + ptery = wing) Common names: advanced ray-finned fishes Diagnostic features: increased jaw mobility, and in the most advanced neopterygians, reduced scales and a homocercal tail Holostei (holos = complete, entire + osteo = bone) Common names: gars, bowfins Diagnostic features: ganoiod scales, skull bones fused and thick, teeth on all bones surrounding mouth Lepisosteiformes (lepis = scale + osteo = bone + form = shape) Common names: gars Diagnostic features: ganoid scales, skull bones fused and thick, long jaw Amiiformes (amia = ”a kind of fish”+ form = shape) Common names: bowfins Diagnostic features: ganoid scales, skull bones fused and thick Teleostei (teleos = complete, perfect + oste = bone) Common names: (too numerous to mention – most living fishes) Diagnostic features: highly reduced scales, ossified vertebrae, circular scales when present without ganoine, swim bladder Sarcopterygii (sarcos = flesh + ptery = wing or fin) Diagnostic features: internal nostrils, relatively strong jaws paired fins have fleshy (muscle) base and a bony central axis Crossopterygii (cross = tassel or fringe + ptery = wing/fin) Fishes with distinct fin skeleton Rhipidistia (rhipi = fan + ist = superlative ending, referring to fan, meaning large or great fan) sister group to tetrapods Common names: “rhipidistians” (e.g., Osteolepis, Panderichthyes) Diagnostic features: highly modified skull bones for greater mobility and specialized feeding, labyrinthodont teeth Coelacanthiformes (Actinistia) (coel = hollow + acantho = spine or thorn + form = shape) Common names: Latimeria, coelacanth Diagnostic features: tiny vertebral centra, prominent notochord, swim bladder is filled with fat in non-extinct fishes Dipnoi (di = twice, two + pnoi = breath, referencing two apertures) Common names: lungfish Diagnostic features: endoskeleton poorly ossified pectoral fin with radial elements on both sides of central axis (archipterygium) teeth few, forming large crushing plates .
Recommended publications
  • Constraints on the Timescale of Animal Evolutionary History
    Palaeontologia Electronica palaeo-electronica.org Constraints on the timescale of animal evolutionary history Michael J. Benton, Philip C.J. Donoghue, Robert J. Asher, Matt Friedman, Thomas J. Near, and Jakob Vinther ABSTRACT Dating the tree of life is a core endeavor in evolutionary biology. Rates of evolution are fundamental to nearly every evolutionary model and process. Rates need dates. There is much debate on the most appropriate and reasonable ways in which to date the tree of life, and recent work has highlighted some confusions and complexities that can be avoided. Whether phylogenetic trees are dated after they have been estab- lished, or as part of the process of tree finding, practitioners need to know which cali- brations to use. We emphasize the importance of identifying crown (not stem) fossils, levels of confidence in their attribution to the crown, current chronostratigraphic preci- sion, the primacy of the host geological formation and asymmetric confidence intervals. Here we present calibrations for 88 key nodes across the phylogeny of animals, rang- ing from the root of Metazoa to the last common ancestor of Homo sapiens. Close attention to detail is constantly required: for example, the classic bird-mammal date (base of crown Amniota) has often been given as 310-315 Ma; the 2014 international time scale indicates a minimum age of 318 Ma. Michael J. Benton. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Philip C.J. Donoghue. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Robert J.
    [Show full text]
  • Metallothionein Gene Family in the Sea Urchin Paracentrotus Lividus: Gene Structure, Differential Expression and Phylogenetic Analysis
    International Journal of Molecular Sciences Article Metallothionein Gene Family in the Sea Urchin Paracentrotus lividus: Gene Structure, Differential Expression and Phylogenetic Analysis Maria Antonietta Ragusa 1,*, Aldo Nicosia 2, Salvatore Costa 1, Angela Cuttitta 2 and Fabrizio Gianguzza 1 1 Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy; [email protected] (S.C.); [email protected] (F.G.) 2 Laboratory of Molecular Ecology and Biotechnology, National Research Council-Institute for Marine and Coastal Environment (IAMC-CNR) Detached Unit of Capo Granitola, Torretta Granitola, 91021 Trapani, Italy; [email protected] (A.N.); [email protected] (A.C.) * Correspondence: [email protected]; Tel.: +39-091-238-97401 Academic Editor: Masatoshi Maki Received: 6 March 2017; Accepted: 5 April 2017; Published: 12 April 2017 Abstract: Metallothioneins (MT) are small and cysteine-rich proteins that bind metal ions such as zinc, copper, cadmium, and nickel. In order to shed some light on MT gene structure and evolution, we cloned seven Paracentrotus lividus MT genes, comparing them to Echinodermata and Chordata genes. Moreover, we performed a phylogenetic analysis of 32 MTs from different classes of echinoderms and 13 MTs from the most ancient chordates, highlighting the relationships between them. Since MTs have multiple roles in the cells, we performed RT-qPCR and in situ hybridization experiments to understand better MT functions in sea urchin embryos. Results showed that the expression of MTs is regulated throughout development in a cell type-specific manner and in response to various metals. The MT7 transcript is expressed in all tissues, especially in the stomach and in the intestine of the larva, but it is less metal-responsive.
    [Show full text]
  • Benton, M.J. and Simms, M.J. 1995. Testing the Marine and Continental
    Downloaded from geology.gsapubs.org on 18 January 2009 Geology Testing the marine and continental fossil records M. J. Benton and M. J. Simms Geology 1995;23;601-604 doi:10.1130/0091-7613(1995)023<0601:TTMACF>2.3.CO;2 Email alerting services click www.gsapubs.org/cgi/alerts to recieve free email alerts when new articles cite this article Subscribe click www.gsapubs.org/subscriptions/index.ac.dtl to subscribe to Geology Permission request click http://www.geosociety.org/pubs/copyrt.htm#gsa to contact GSA Copyright not claimed on content prepared wholly by U.S. government employees within scope of their employment. Individual scientists are hereby granted permission, without fees or further requests to GSA, to use a single figure, a single table, and/or a brief paragraph of text in subsequent works and to make unlimited copies of items in GSA's journals for noncommercial use in classrooms to further education and science. This file may not be posted to any Web site, but authors may post the abstracts only of their articles on their own or their organization's Web site providing the posting includes a reference to the article's full citation. GSA provides this and other forums for the presentation of diverse opinions and positions by scientists worldwide, regardless of their race, citizenship, gender, religion, or political viewpoint. Opinions presented in this publication do not reflect official positions of the Society. Notes © 1995 Geological Society of America Testing the marine and continental fossil records M. J. Benton Department of Geology, University of Bristol, Bristol BS8 1RJ, United Kingdom M.
    [Show full text]
  • Variation in Growth Pattern in the Sand Dollar, Echinarachnius Parma, (Lamarck)
    University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Summer 1964 VARIATION IN GROWTH PATTERN IN THE SAND DOLLAR, ECHINARACHNIUS PARMA, (LAMARCK) PRASERT LOHAVANIJAYA University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation LOHAVANIJAYA, PRASERT, "VARIATION IN GROWTH PATTERN IN THE SAND DOLLAR, ECHINARACHNIUS PARMA, (LAMARCK)" (1964). Doctoral Dissertations. 2339. https://scholars.unh.edu/dissertation/2339 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. This dissertation has been 65-950 microfilmed exactly as received LOHAVANIJAYA, Prasert, 1935- VARIATION IN GROWTH PATTERN IN THE SAND DOLLAR, ECHJNARACHNIUS PARMA, (LAMARCK). University of New Hampshire, Ph.D., 1964 Zoology University Microfilms, Inc., Ann Arbor, Michigan VARIATION IN GROWTH PATTERN IN THE SAND DOLLAR, EC’HINARACHNIUS PARMA, (LAMARCK) BY PRASERT LOHAVANUAYA B. Sc. , (Honors), Chulalongkorn University, 1959 M.S., University of New Hampshire, 1961 A THESIS Submitted to the University of New Hampshire In Partial Fulfillment of The Requirements for the Degree of Doctor of Philosophy Graduate School Department of Zoology June, 1964 This thesis has been examined and approved. May 2 2, 1 964. Date An Abstract of VARIATION IN GROWTH PATTERN IN THE SAND DOLLAR, ECHINARACHNIUS PARMA, (LAMARCK) This study deals with Echinarachnius parma, the common sand dollar of the New England coast. Some problems concerning taxonomy and classification of this species are considered.
    [Show full text]
  • Taxonomy and Classification Goals: Un Ders Tan D Traditi Onal and Hi Erarchi Cal Cl Assifi Cati Ons of Biodiversity, and What Information Classifications May Contain
    Taxonomy and classification Goals: Un ders tan d tra ditional and hi erarchi cal cl assifi cati ons of biodiversity, and what information classifications may contain. Readings: 1. Chapter 1. Figure 1-1 from Pough et al. Taxonomy and classification (cont ’d) Some new words This is a cladogram. Each branching that are very poiiint is a nod dEhbhe. Each branch, starti ng important: at the node, is a clade. 9 Cladogram 9 Clade 9 Synapomorphy (Shared, derived character) 9 Monophyly; monophyletic 9 PhlParaphyly; parap hlihyletic 9 Polyphyly; polyphyletic Definitions of cladogram on the Web: A dichotomous phylogenetic tree that branches repeatedly, suggesting the classification of molecules or org anisms based on the time sequence in which evolutionary branches arise. xray.bmc.uu.se/~kenth/bioinfo/glossary.html A tree that depicts inferred historical branching relationships among entities. Unless otherwise stated, the depicted branch lengt hs in a cl ad ogram are arbi trary; onl y th e b ranchi ng ord er is significant. See phylogram. www.bcu.ubc.ca/~otto/EvolDisc/Glossary.html TAKE-HOME MESSAGE: Cladograms tell us about the his tory of the re lati onshi ps of organi sms. K ey word : Hi st ory. Historically, classification of organisms was mainlyypg a bookkeeping task. For this monumental job, Carrolus Linnaeus invented the s ystem of binomial nomenclature that we are all familiar with. (Did you know that his name was Carol Linne? He liidhilatinized his own name th e way h e named speci i!)es!) Merely giving species names and arranging them according to similar groups was acceptable while we thought species were static entities .
    [Show full text]
  • Textbook of Zoology · Invertebrates Some Other ELBS Low-Priced Editions
    Textbook of Zoology · Invertebrates Some Other ELBS Low-priced Editions Ambrose and Easty CELL BIOLOGY Nelson Andrewartha INTRODUCTION TO THE STUDY OF ANIMAL Chapman & Hall POPULATIONS Arthur VETERINARY REPRODUCTION AND OBSTETRICS Bailliere Tindall Barrington INVERTEBRATE STRUCTURE AND FUNCTION Nelson Blood, Henderson VETERINARY MEDICINE Bailliere Tindall and Radostits Chapman THE INSECTS: STRUCTURE AND FUNCTION Hodder & Stoughton Clegg and Clegg BIOLOGY OF THE MAMMAL Heinemann Medical Clark, Geier, THE ECOLOGY OF INSECT POPULATIONS IN Methuen Hughes and Morris THEORY AND PRACTICE Crewe BLACKLOCK AND SOUTHWELL: A GUIDE TO H.K. Lewis HUMAN PARASITOLOGY Fogg PHOTOSYNTHESIS Hodder & Stoughton Freeman and AN ATLAS OF EMBRYOLOGY Heinemann Educational Bracegirdle Freeman and AN ATLAS OF HISTOLOGY Heinemann Educational Bracegirdle Graham and Wareing THE DEVELOPMENTAL BIOLOGY OF PLANTS AND Blackwell Scientific ANIMALS Highnam and Hill THE COMPARATIVE ENDOCRINOLOGY OF THE Edward Arnold INVERTEBRATES Manning AN INTRODUCTION TO ANIMAL BEHAVIOUR Edward Arnold Parker and Haswell TEXTBOOK OF ZOOLOGY, VOL. II: VERTEBRATES Macmillan Roberts BIOLOGY: A FUNCTIONAL APPROACH Nelson Souls by HELMINTHS, ARTHROPODS AND PROTOZOA OF Bailliere Tindall DOMESTICATED ANIMALS Webb, Wallwork GUIDE TO INVERTEBRATE ANIMALS Macmillan and Elgood Wigglesworth THE PRINCIPLES OF INSECT PHYSIOLOGY Chapman & Hall Williamson and Payne AN INTRODUCTION TO ANIMAL HUSBANDRY Longman IN THE TROPICS Textbook of Zoology Invertebrates Edited by the late A. J. MARSHALL, D.Phil., D.Sc. Foundation Professor ofZoology at Monash University, Melbourne, Australia and W. D. WILLIAMS, Ph.D. Professor ofZoology at the University of Adelaide This is the Seventh Edition of Textbook ofZoology, Vol. I bythelateT. JEFFERY PARKER and the late WILLIAM A. HASWELL ENGLISH LANGUAGE BOOK SOCIETY and MACMILLAN EDUCATION © The Macmillan Publishers Limited 1972 All rights reserved.
    [Show full text]
  • New Osteichthyans (Bony Fishes) from the Devonian of Central Australia
    Mitt. Mus. Nat.kd. Berl., Geowiss. Reihe 8 (2005), 13–35 / DOI 10.1002/mmng.200410002 New osteichthyans (bony fishes) from the Devonian of Central Australia Gavin C. Young*,1 & Hans-Peter Schultze2 1 Department of Earth & Marine Sciences, Australian National University, Canberra 0200, Australia 2 Museum fu¨ r Naturkunde der Humboldt-Universita¨t zu Berlin, Invalidenstr. 43, D-10115 Berlin, Germany Private: 2001 Vermont St., Lawrence, Kansas 66046, USA Received 30 October 2004, accepted 3 May 2005 Published online 02. 11. 2005 With 10 figures and 2 tables Key words: Osteichthyans, dipnoans, osteolepidids, onychodontids, Devonian, central Australia. Abstract Osteichthyan remains described from two localities in Central Australia (Mount Winter, Amadeus Basin, and southern Toom- ba Range, Georgina Basin) include the dipnoan Amadeodipterus kencampbelli n. gen., n. sp., the osteolepidid Muranjilepis winterensis n. gen., n. sp., and the onychodontid Luckeus abudda n. gen., n. sp., as well as indeterminate holoptychiid scales, osteolepidid scales of a new type from the Georgina Basin locality, and indeterminate onychodontid remains from both local- ities. Amadeodipterus n. gen. is a short-headed dipterid dipnoan with bones A and H enclosed into the skull roof; Muranjilepis n. gen. is a small form with short postparietal and parietoethmoidal shields, large orbits, and large pores of the sensory line system. It is closest to Thursius, and some Chinese osteolepidid material. Luckeus n. gen. is based on an onychodontid lower jaw with Meckel’s cartilage separately ossified perichondrally from the dentary and infradentary, and carrying the parasym- physial tooth whorl. Different osteichthyan taxa at the two localities indicate a difference in age and/or palaeoenvironment within the Early-Middle Devonian.
    [Show full text]
  • (Sarcopterygii + Actinopterygii) Son El Grupo De Peces Más Diverso
    OSTEICHTHYES (Sarcopterygii + Actinopterygii) Son el grupo de peces más diverso, contiene aproximadamente al 97% de todas las especies de peces Osteichthyes + Acanthodii formarían un grupo llamado Teleostomi, que sería el grupo hermano de Chondrichthyes La posición filogenética de Acanthodii ha sido discutida, a veces han sido relacionados a los ostracodermos, una rama independiente situada entre condríctios y osteíctios, o ubicados como un grupo de osteíctios SUBPHYLUM CRANIATA VERTEBRATA SUPERCLASE GNATHOSTOMATA (Chondrichthyes + Osteichthyes) EUTELEOSTOMI • Radios branquiostegos presentes Climatius (teleóstomo primitivo) OSTEICHTHYES •Con escamas óseas •Cráneo con suturas marcadas •Mandíbula superior formada por maxilar y premaxilar •Aberturas nasales dobles, más o menos dorsales •Desarrollo de un aparato opercular óseo dérmico •Aletas con rayos blandos, segmentados, de origen dérmico •Con pulmón o vejiga natatoria •Presencia de dientes en el paladar ORIGEN DE LOS OSTEÍCTIOS Los fósiles de los primeros peces óseos son muy similares a los acantodios, principalmente por numerosas características del cráneo y las mandíbulas, presencia de opérculo óseo, y rayos branquiostegos Esto hace pensar que los acantodios y los osteíctios comparten un ancestro común Zhu et al (1999) propusieron a Psarolepis como uno de estos posibles ancestros, dado que poseía una inusual combinación de caracteres de osteíctios y de no- osteíctios Guiyu (Silúrico, descripto en 2009) Constituiria elejemplar más cercano al Es un sarcopterigio basal, además de ser ancestro
    [Show full text]
  • A Primitive Megalichthyid Fish (Sarcopterygii, Tetrapodomorpha)
    A primitive megalichthyid fi sh (Sarcopterygii, Tetrapodomorpha) from the Upper Devonian of Turkey and its biogeographical implications Philippe JANVIER UMR 5143 du CNRS, Département Histoire de la Terre, Muséum national d’Histoire naturelle, case postale 38, 57 rue Cuvier, F-75231 Paris cedex 05 (France) [email protected] and Department of Palaeontology, The Natural History Museum, Cromwell Road, London SW7 5BD (United Kingdom) Gaël CLÉMENT UMR 5143 du CNRS, Département Histoire de la Terre, Muséum national d’Histoire naturelle, case postale 38, 57 rue Cuvier, F-75231 Paris cedex 05 (France) [email protected] Richard CLOUTIER Département de Biologie, Université du Québec à Rimouski, 300 allée des Ursulines, Rimouski, Québec, G5L 3A1 (Canada) [email protected] Janvier P., Clément G. & Cloutier R. 2007. — A primitive megalichthyid fi sh (Sarcopterygii, Tetrapodomorpha) from the Upper Devonian of Turkey and its biogeographical implications. Geodiversitas 29 (2) : 249-268. ABSTRACT KEY WORDS Sarcopterygii, Th e vertebrate fauna of the red sandstone of Pamucak-Sapan Dere Unit of Tetrapodomorpha, the Upper Antalya Nappe (Frasnian?, Turkey) is reviewed on the basis of new Megalichthyidae, “Osteolepiformes”, material. Th e association of the phyllolepid Placolepis with the arthrodire Holo- Devonian, nema in this fauna strongly suggests a Frasnian age or, at any rate, older than Turkey, the Famennian. Th e unique osteolepiform sarcopterygian of this fauna is here biogeography, new genus, described in detail and referred to Sengoerichthys ottoman n. gen., n. sp., which new species. is considered as the most generalized megalichthyid known to date. GEODIVERSITAS • 2007 • 29 (2) © Publications Scientifi ques du Muséum national d’Histoire naturelle, Paris.
    [Show full text]
  • Достающее Звено. Книга 1. Обезьяны И Все-Все-Все Серия «Primus» Серия «Достающее Звено», Книга 1
    Станислав Владимирович Дробышевский Достающее звено. Книга 1. Обезьяны и все-все-все Серия «Primus» Серия «Достающее звено», книга 1 Текст предоставлен правообладателем http://www.litres.ru/pages/biblio_book/?art=24427200 Достающее звено. Книга первая: Обезьяны и все-все-все / Станислав Дробышевский: АСТ : CORPUS; Москва; 2017 ISBN 978-5-17-099215-7 Аннотация Кто был непосредственным предком человека? Как выглядит цепь, на конце которой находится Homo sapiens, и все ли ее звенья на месте? Почему некоторые находки оказываются не тем, чем кажутся поначалу? И почему разумными стали именно гоминиды, а не другие млекопитающие? “Достающее звено” – история происхождения человека в двух книгах – подробно и увлекательно отвечает на эти и другие животрепещущие вопросы о нашем прошлом. Ведущий российский антрополог, научный редактор портала “Антропогенез.ру” и блестящий лектор Станислав Дробышевский знает об этом, вероятно, больше, чем любой другой живущий потомок палеоантропов, и как никто другой умеет заразить интересом к современной, бурно развивающейся науке, имеющей прямое отношение к каждому из нас. Первая книга посвящена тем, кто внес вклад в формирование нашего вида задолго до того, как мы встали на ноги, расправили плечи и отрастили мозг. Содержание Пролог, 8 Введение, 13 Методы познания бытия 18 Глава 1 20 Сила Духа: креационизм 22 Сила мысли: философские концепции 27 антропогенеза Сила доказательств: научные 32 концепции антропогенеза Глава 2 43 Палеоантропологические методы 43 Смежные науки 50 Глава 3 57 Особая обезьяна 67 Глава 4 67 Глава 5 77 Прямохождение 79 Рука, приспособленная к 115 использованию и изготовлению орудий Мозг 124 Тело человека от докембрия до наших 180 дней (история в четырнадцати звеньях с прологом и эпилогом) Пролог 180 Глава 6 185 Глава 7 190 Глава 8 201 Глава 9 220 Глава 10 230 Глава 11 239 Глава 12 251 Конец ознакомительного фрагмента.
    [Show full text]
  • PHYLUM CHORDATA Subphylum VERTEBRATA FISHES
    Natural Sciences 360 Legacy of Life Lecture 10 Dr. Stuart Sumida PHYLUM CHORDATA Subphylum VERTEBRATA FISHES So, then what’s a vertebrate…? Phylogenetic Context for Vertebrata: Vertebrates are chordates Echinodermata Hemichordata Urochordata Cephalochordata Chordata Vertebrata All vertebrates possess an embryological material known as NEURAL CREST. Neural crest gives rise to particular structures found in all vertebrates, and only in vertebrates. Phylogenetic Context for Vertebrata Echinodermata Hemichordata Urochordata Cephalochordata Vertebrata (Posess neural crest and its derivatives) EVERYONE will be able to demonstrate a cross-sectional view of a vertebrate… Remember the basic chordate features: •Dorsal Hollow Nerve Cord •Notochord •Pharyngeal Gill Slits •Post Anal Tail So what exactly is a fish…? Jawless fish Conodonts Placodermi Chondrichthyes Gnathostomata Acanthodii Actinopterygii Osteichthyes (“Bony Fish”) Sarcopterygii THE ORIGINAL CONDITION Jawless fish OF VEWRTEBRATES WAS WITHOUT JAWS Conodonts Placodermi Chondrichthyes Gnathostomata Acanthodii Actinopterygii Osteichthyes (“Bony Fish”) Sarcopterygii Jawless fish Conodonts Placodermi Chondrichthyes Gnathostomata Acanthodii Actinopterygii Osteichthyes (“Bony Fish”) Sarcopterygii CONDONTS: Originally thought not to be vertebrates, but their best known components made of same material as teeth and bones (probably from neural crest material) CONDONTS: Originally thought not to be vertebrates, but their best known components made of same material as teeth and bones (probably from
    [Show full text]
  • SCIENCE CHINA Cranial Morphology of the Silurian Sarcopterygian Guiyu Oneiros (Gnathostomata: Osteichthyes)
    SCIENCE CHINA Earth Sciences • RESEARCH PAPER • December 2010 Vol.53 No.12: 1836–1848 doi: 10.1007/s11430-010-4089-6 Cranial morphology of the Silurian sarcopterygian Guiyu oneiros (Gnathostomata: Osteichthyes) QIAO Tuo1,2 & ZHU Min1* 1 Key Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; 2 Graduate School of Chinese Academy of Sciences, Beijing 100049, China Received April 6, 2010; accepted July 13, 2010 Cranial morphological features of the stem-group sarcopterygian Guiyu oneiros Zhu et al., 2009 provided here include the dermal bone pattern and anatomical details of the ethmosphenoid. Based on those features, we restored, for the first time, the skull roof bone pattern in the Guiyu clade that comprises Psarolepis and Achoania. Comparisons with Onychodus, Achoania, coelacanths, and actinopterygians show that the posterior nostril enclosed by the preorbital or the preorbital process is shared by actinopterygians and sarcopterygians, and the lachrymals in sarcopterygians and actinopterygians are not homologous. The endocranium closely resembles that of Psarolepis, Achoania and Onychodus; however, the attachment area of the vomer pos- sesses irregular ridges and grooves as in Youngolepis and Diabolepis. The orbito-nasal canal is positioned mesial to the nasal capsule as in Youngolepis and porolepiforms. The position of the hypophysial canal at the same level or slightly anterior to the ethmoid articulation represents a synapmorphy of the Guiyu clade. The large attachment area of the basicranial muscle indi- cates the presence of a well-developed intracranial joint in Guiyu. Sarcopterygii, Osteichthyes, Cranial morphology, homology, Silurian, China Citation: Qiao T, Zhu M.
    [Show full text]