Echinoderms 459
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Educators' Resource Guide
EDUCATORS' RESOURCE GUIDE Produced and published by 3D Entertainment Distribution Written by Dr. Elisabeth Mantello In collaboration with Jean-Michel Cousteau’s Ocean Futures Society TABLE OF CONTENTS TO EDUCATORS .................................................................................................p 3 III. PART 3. ACTIVITIES FOR STUDENTS INTRODUCTION .................................................................................................p 4 ACTIVITY 1. DO YOU Know ME? ................................................................. p 20 PLANKton, SOURCE OF LIFE .....................................................................p 4 ACTIVITY 2. discoVER THE ANIMALS OF "SECRET OCEAN" ......... p 21-24 ACTIVITY 3. A. SECRET OCEAN word FIND ......................................... p 25 PART 1. SCENES FROM "SECRET OCEAN" ACTIVITY 3. B. ADD color to THE octoPUS! .................................... p 25 1. CHristmas TREE WORMS .........................................................................p 5 ACTIVITY 4. A. WHERE IS MY MOUTH? ..................................................... p 26 2. GIANT BasKET Star ..................................................................................p 6 ACTIVITY 4. B. WHat DO I USE to eat? .................................................. p 26 3. SEA ANEMONE AND Clown FISH ......................................................p 6 ACTIVITY 5. A. WHO eats WHat? .............................................................. p 27 4. GIANT CLAM AND ZOOXANTHELLAE ................................................p -
Reproduction in Plants Which But, She Has Never Seen the Seeds We Shall Learn in This Chapter
Reproduction in 12 Plants o produce its kind is a reproduction, new plants are obtained characteristic of all living from seeds. Torganisms. You have already learnt this in Class VI. The production of new individuals from their parents is known as reproduction. But, how do Paheli thought that new plants reproduce? There are different plants always grow from seeds. modes of reproduction in plants which But, she has never seen the seeds we shall learn in this chapter. of sugarcane, potato and rose. She wants to know how these plants 12.1 MODES OF REPRODUCTION reproduce. In Class VI you learnt about different parts of a flowering plant. Try to list the various parts of a plant and write the Asexual reproduction functions of each. Most plants have In asexual reproduction new plants are roots, stems and leaves. These are called obtained without production of seeds. the vegetative parts of a plant. After a certain period of growth, most plants Vegetative propagation bear flowers. You may have seen the It is a type of asexual reproduction in mango trees flowering in spring. It is which new plants are produced from these flowers that give rise to juicy roots, stems, leaves and buds. Since mango fruit we enjoy in summer. We eat reproduction is through the vegetative the fruits and usually discard the seeds. parts of the plant, it is known as Seeds germinate and form new plants. vegetative propagation. So, what is the function of flowers in plants? Flowers perform the function of Activity 12.1 reproduction in plants. Flowers are the Cut a branch of rose or champa with a reproductive parts. -
Feeding-Dependent Tentacle Development in the Sea Anemone Nematostella Vectensis
bioRxiv preprint doi: https://doi.org/10.1101/2020.03.12.985168; this version posted March 12, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Feeding-dependent tentacle development in the sea anemone Nematostella vectensis Aissam Ikmi1,2*, Petrus J. Steenbergen1, Marie Anzo1, Mason R. McMullen2,3, Anniek Stokkermans1, Lacey R. Ellington2, and Matthew C. Gibson2,4 Affiliations: 1Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany. 2Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA. 3Department of Pharmacy, The University of Kansas Health System, Kansas City, Kansas 66160, USA. 4Department of Anatomy and Cell Biology, The University of Kansas School of Medicine, Kansas City, Kansas 66160, USA. *Corresponding author. Email: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.03.12.985168; this version posted March 12, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Summary In cnidarians, axial patterning is not restricted to embryonic development but continues throughout a prolonged life history filled with unpredictable environmental changes. How this developmental capacity copes with fluctuations of food availability and whether it recapitulates embryonic mechanisms remain poorly understood. To address these questions, we utilize the tentacles of the sea anemone Nematostella vectensis as a novel paradigm for developmental patterning across distinct life history stages. -
Systematic Comparison of Sea Urchin and Sea Star Developmental Gene Regulatory Networks Explains How Novelty Is Incorporated in Early Development
ARTICLE https://doi.org/10.1038/s41467-020-20023-4 OPEN Systematic comparison of sea urchin and sea star developmental gene regulatory networks explains how novelty is incorporated in early development Gregory A. Cary 1,3,5, Brenna S. McCauley1,4,5, Olga Zueva1, Joseph Pattinato1, William Longabaugh2 & ✉ Veronica F. Hinman 1 1234567890():,; The extensive array of morphological diversity among animal taxa represents the product of millions of years of evolution. Morphology is the output of development, therefore phenotypic evolution arises from changes to the topology of the gene regulatory networks (GRNs) that control the highly coordinated process of embryogenesis. A particular challenge in under- standing the origins of animal diversity lies in determining how GRNs incorporate novelty while preserving the overall stability of the network, and hence, embryonic viability. Here we assemble a comprehensive GRN for endomesoderm specification in the sea star from zygote through gastrulation that corresponds to the GRN for sea urchin development of equivalent territories and stages. Comparison of the GRNs identifies how novelty is incorporated in early development. We show how the GRN is resilient to the introduction of a transcription factor, pmar1, the inclusion of which leads to a switch between two stable modes of Delta-Notch signaling. Signaling pathways can function in multiple modes and we propose that GRN changes that lead to switches between modes may be a common evolutionary mechanism for changes in embryogenesis. Our data additionally proposes a model in which evolutionarily conserved network motifs, or kernels, may function throughout development to stabilize these signaling transitions. 1 Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA. -
Coastal and Marine Ecological Classification Standard (2012)
FGDC-STD-018-2012 Coastal and Marine Ecological Classification Standard Marine and Coastal Spatial Data Subcommittee Federal Geographic Data Committee June, 2012 Federal Geographic Data Committee FGDC-STD-018-2012 Coastal and Marine Ecological Classification Standard, June 2012 ______________________________________________________________________________________ CONTENTS PAGE 1. Introduction ..................................................................................................................... 1 1.1 Objectives ................................................................................................................ 1 1.2 Need ......................................................................................................................... 2 1.3 Scope ........................................................................................................................ 2 1.4 Application ............................................................................................................... 3 1.5 Relationship to Previous FGDC Standards .............................................................. 4 1.6 Development Procedures ......................................................................................... 5 1.7 Guiding Principles ................................................................................................... 7 1.7.1 Build a Scientifically Sound Ecological Classification .................................... 7 1.7.2 Meet the Needs of a Wide Range of Users ...................................................... -
(Echinodermata: Holothuroidea) from the Latest Cretaceous Of
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Universität München: Elektronischen Publikationen 285 Zitteliana 89 Short Communication First report of sea cucumbers (Echinodermata: Holothuroidea) from the latest Cretaceous of Paläontologie Bayerische Bavaria,GeoBio- Germany & Geobiologie Center Staatssammlung 1,2,3 LMU München für Paläontologie und Geologie LMUMike MünchenReich 1 n München, 01.07.2017 SNSB - Bayerische Staatssammlung für Paläontologie und Geologie, Richard-Wagner-Straße 10, 80333 Munich, Germany 2 n Manuscript received Ludwig-Maximilians-Universität München, Department für Geo- und Umweltwissenschaften, 30.12.2016; revision ac- Paläontologie und Geobiologie, Richard-Wagner-Straße 10, 80333 Munich, Germany 3 cepted 21.01.2017 GeoBio-Center der Ludwig-Maximilians-Universität München, Richard-Wagner-Straße 10, 80333 Munich, Germany n ISSN 0373-9627 E-mail: [email protected] n ISBN 978-3-946705-00-0 Zitteliana 89, 285–289. Key words: fossil Holothuroidea; Cretaceous; Maastrichtian; Bavaria; Germany Schüsselwörter: fossile Holothuroidea; Kreide; Maastrichtium; Bayern; Deutschland The Bavarian Gerhardtsreit Formation (‶Gerhardts- 1993; Smith 2004) due to different reasons (Reich reiter Mergel″ / ‶Gerhardtsreiter Schichten″; cf. 2013). There are nearly 1,700 valid extant sea cucum- Böhm 1891; Hagn 1960; Wagreich et al. 2004), also ber species (Smiley 1994; Kerr 2003; Paulay pers. known as Gerhartsreit Formation (‶Gerhartsreiter comm.) known worldwide. The fossil record (since Schichten″; Hagn et al. 1981, 1992; Schwarzhans the Middle Ordovician; Reich 1999, 2010), by con- 2010; Pollerspöck & Beaury 2014) or ‶Gerhards- trast, is discontinuous in time and recorded ranges reuter Schichten″ (Egger 1899; Hagn & Hölzl 1952; of species with around 1,000 reported forms (Reich de Klasz 1956; Herm 1979, 2000) is exposed in Up- 2013, 2014, 2015b) since the early 19th century. -
Echinoidea: Diadematidae) to the Mediterranean Coast of Israel
Zootaxa 4497 (4): 593–599 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2018 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4497.4.9 http://zoobank.org/urn:lsid:zoobank.org:pub:268716E0-82E6-47CA-BDB2-1016CE202A93 Needle in a haystack—genetic evidence confirms the expansion of the alien echinoid Diadema setosum (Echinoidea: Diadematidae) to the Mediterranean coast of Israel OMRI BRONSTEIN1,2 & ANDREAS KROH1 1Natural History Museum Vienna, Geological-Paleontological Department, 1010 Vienna, Austria. E-mails: [email protected], [email protected] 2Corresponding author Abstract Diadema setosum (Leske, 1778), a widespread tropical echinoid and key herbivore in shallow water environments is cur- rently expanding in the Mediterranean Sea. It was introduced by unknown means and first observed in southern Turkey in 2006. From there it spread eastwards to Lebanon (2009) and westwards to the Aegean Sea (2014). Since late 2016 spo- radic sightings of black, long-spined sea urchins were reported by recreational divers from rock reefs off the Israeli coast. Numerous attempts to verify these records failed; neither did the BioBlitz Israel task force encounter any D. setosum in their campaigns. Finally, a single adult specimen was observed on June 17, 2017 in a deep rock crevice at 3.5 m depth at Gordon Beach, Tel Aviv. Although the specimen could not be recovered, spine fragments sampled were enough to genet- ically verify the visual underwater identification based on morphology. Sequences of COI, ATP8-Lysine, and the mito- chondrial Control Region of the Israel specimen are identical to those of the specimen collected in 2006 in Turkey, unambiguously assigning the specimen to D. -
Preliminary Mass-Balance Food Web Model of the Eastern Chukchi Sea
NOAA Technical Memorandum NMFS-AFSC-262 Preliminary Mass-balance Food Web Model of the Eastern Chukchi Sea by G. A. Whitehouse U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service Alaska Fisheries Science Center December 2013 NOAA Technical Memorandum NMFS The National Marine Fisheries Service's Alaska Fisheries Science Center uses the NOAA Technical Memorandum series to issue informal scientific and technical publications when complete formal review and editorial processing are not appropriate or feasible. Documents within this series reflect sound professional work and may be referenced in the formal scientific and technical literature. The NMFS-AFSC Technical Memorandum series of the Alaska Fisheries Science Center continues the NMFS-F/NWC series established in 1970 by the Northwest Fisheries Center. The NMFS-NWFSC series is currently used by the Northwest Fisheries Science Center. This document should be cited as follows: Whitehouse, G. A. 2013. A preliminary mass-balance food web model of the eastern Chukchi Sea. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-262, 162 p. Reference in this document to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA. NOAA Technical Memorandum NMFS-AFSC-262 Preliminary Mass-balance Food Web Model of the Eastern Chukchi Sea by G. A. Whitehouse1,2 1Alaska Fisheries Science Center 7600 Sand Point Way N.E. Seattle WA 98115 2Joint Institute for the Study of the Atmosphere and Ocean University of Washington Box 354925 Seattle WA 98195 www.afsc.noaa.gov U.S. DEPARTMENT OF COMMERCE Penny. S. Pritzker, Secretary National Oceanic and Atmospheric Administration Kathryn D. -
BEHAVIOURAL RESPONSE of NORTHERN BASKET STAR GORGONOCEPHALUS ARCTICUS to MECHANICAL STIMULATIONS J.-F Hamel, a Mercier
BEHAVIOURAL RESPONSE OF NORTHERN BASKET STAR GORGONOCEPHALUS ARCTICUS TO MECHANICAL STIMULATIONS J.-F Hamel, A Mercier To cite this version: J.-F Hamel, A Mercier. BEHAVIOURAL RESPONSE OF NORTHERN BASKET STAR GOR- GONOCEPHALUS ARCTICUS TO MECHANICAL STIMULATIONS. Vie et Milieu / Life & En- vironment, Observatoire Océanologique - Laboratoire Arago, 1993, pp.197-203. hal-03045834 HAL Id: hal-03045834 https://hal.sorbonne-universite.fr/hal-03045834 Submitted on 8 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. VIE MILIEU, 1993, 43 (4): 197-203 BEHAVIOURAL RESPONSE OF NORTHERN BASKET STAR GORGONOCEPHALUS ARCTICUS TO MECHANICAL STIMULATIONS J.-F. HAMEL and A. MERCIER Département d'océanographie, Université du Québec à Rimouski, Centre Océanographique de Rimouski, 310 allée des Ursulines, Rimouski (Québec), Canada G5L 3A1 GORGONOCEPHALUS RÉSUME - L'Ophiure ramifiée Gorgonocephalus arcticus, retrouvée dans les eaux OPHIURE profondes de l'estuaire du Saint-Laurent, montre une capacité de discrimination COMPORTEMENT tactile qui lui permet de répondre proportionnellement à diverses intensités de sti- MECANO-SENSIBILITE mulation. Une stimulation ponctuelle du disque provoque l'enroulement général des bras et la couverture du disque par les radii. Une comparaison de la vitesse du mouvement des bras, induite par différents niveaux de stimulation, montre que G. -
Biology of Echinoderms
Echinoderms Branches on the Tree of Life Programs ECHINODERMS Written and photographed by David Denning and Bruce Russell Produced by BioMEDIA ASSOCIATES ©2005 - Running time 16 minutes. Order Toll Free (877) 661-5355 Order by FAX (843) 470-0237 The Phylum Echinodermata consists of about 6,000 living species, all of which are marine. This video program compares the five major classes of living echinoderms in terms of basic functional biology, evolution and ecology using living examples, animations and a few fossil species. Detailed micro- and macro- photography reveal special adaptations of echinoderms and their larval biology. (THUMBNAIL IMAGES IN THIS GUIDE ARE FROM THE VIDEO PROGRAM) Summary of the Program: Introduction - Characteristics of the Class Echinoidea phylum. spine adaptations, pedicellaria, Aristotle‘s lantern, sand dollars, urchin development, Class Asteroidea gastrulation, settlement skeleton, water vascular system, tube feet function, feeding, digestion, Class Holuthuroidea spawning, larval development, diversity symmetry, water vascular system, ossicles, defensive mechanisms, diversity, ecology Class Ophiuroidea regeneration, feeding, diversity Class Crinoidea – Topics ecology, diversity, fossil echinoderms © BioMEDIA ASSOCIATES (1 of 7) Echinoderms ... ... The characteristics that distinguish Phylum Echinodermata are: radial symmetry, internal skeleton, and water-vascular system. Echinoderms appear to be quite different than other ‘advanced’ animal phyla, having radial (spokes of a wheel) symmetry as adults, rather than bilateral (worm-like) symmetry as in other triploblastic (three cell-layer) animals. Viewers of this program will observe that echinoderm radial symmetry is secondary; echinoderms begin as bilateral free-swimming larvae and become radial at the time of metamorphosis. Also, in one echinoderm group, the sea cucumbers, partial bilateral symmetry is retained in the adult stages -- sea cucumbers are somewhat worm–like. -
A Fossil Crinoid with Four Arms, Mississippian (Lower Carboniferous) of Clitheroe, Lancashire, UK
Swiss Journal of Palaeontology (2018) 137:255–258 https://doi.org/10.1007/s13358-018-0163-z (0123456789().,-volV)(0123456789().,- volV) SHORT CONTRIBUTION A fossil crinoid with four arms, Mississippian (Lower Carboniferous) of Clitheroe, Lancashire, UK 1 2,3 Andrew Tenny • Stephen K. Donovan Received: 16 May 2018 / Accepted: 29 August 2018 / Published online: 17 September 2018 Ó Akademie der Naturwissenschaften Schweiz (SCNAT) 2018 Abstract One of the characteristic features used to define the echinoderms is five-fold symmetry. The monobathrid camerate crinoid genus Amphoracrinus Austin normally has five arms, but an aberrant specimen from Salthill Quarry, Clitheroe, Lancashire (Mississippian, lower Chadian), has only four. The radial plate in the B-ray supports only interbrachial and/or tegminal plates; there never has been an arm in this position. The reason why this arm failed to grow is speculative, but there is no evidence for the common drivers of aberrant growth in crinoids such as borings; rather, a genetic or developmental flaw, or infestation by an unidentified parasite, must be suspected. In the absence of the B-ray arm, the other arms of Am- phoracrinus sp. have arrayed themselves at 90° to each other to make the most efficient feeding structure possible. Keywords Salthill Quarry Á Chadian Á Amphoracrinus Á Symmetry Introduction unexpectedly, the normal five-fold symmetry of some taxa may be modified in some individuals as deformities, such The echinoderms are commonly recognized on the pres- as showing four- or six-fold symmetry, or asymmetries, in, ence of three features: a stereom calcite microstructure to for example, echinoids (Kier 1967, pp. -
A Literature Review of the Ophiuroidea (Echinodermata) from the Pacific Coast of Mexico
A literature review of the Ophiuroidea (Echinodermata) from the Pacific coast of Mexico Rebeca Granja-Fernández1, María Dinorah Herrero-Pérezrul2, Andrés López-Pérez3, Alejandro Hernández-Morales4 & Pedro Diego Rangel-Solís3 1. Doctorado en Ciencias Biológicas y de la Salud. Universidad Autónoma Metropolitana. San Rafael Atlixco 186, Col. Vicentina. CP 09340. D.F., México; [email protected] 2. Centro Interdisciplinario de Ciencias Marinas-Instituto Politécnico Nacional. Depto. de Pesquerías y Biología Marina. Avenida Instituto Politécnico Nacional s/n. Col. Playa Palo de Santa Rita. C.P. 23096. La Paz, Baja California Sur, México; [email protected] 3. Departamento de Hidrobiología, División CBS, UAM-Iztapalapa. Av. San Rafael Atlixco 186, Col. Vicentina, CP 09340, AP 55-535. D.F., México; [email protected], [email protected] 4. Programa de Licenciatura en Ecología Marina, Laboratorio de Ecología Cuantitativa, Universidad Autónoma de Guerrero. Av. Gran Vía Tropical 20, Fraccionamiento Las Playas, CP 39390. Acapulco, Guerrero, México; [email protected] Received 30-V-2014. Corrected 03-X-2014. Accepted 17-XI-2014. Abstract: Despite the important effort of knowing the Ophiuroidea diversity in the Mexican Pacific, some mis- takes in the taxonomic nomenclature have pervaded through time. In order to clarify the latter, a checklist based on literature review of brittle stars from the Mexican Pacific is provided. We reviewed a total of 105 references that in total summarized 125 species of brittle stars from the Mexican Pacific (112) and the Gulf of California (97), belonging to two orders, 16 families and 50 genera. These records are higher than those reported on previ- ous studies carried out in the area.