A C Tiv Itie S
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Columbia River Treaty: Recommendations December 2013
L O CA L GOVERNMEN TS’ COMMI TTEE Columbia River Treaty: Recommendations December 2013 The BC Columbia River Treaty Local Governments’ Committee (the Committee) has prepared these Recommendations in response to the Columbia River Treaty-related interests and issues raised by Columbia River Basin residents in Canada. These Recommendations are based on currently-available information. They have been submitted to the provincial and federal governments for incorporation into current decisions regarding the future of the Columbia River Treaty (CRT). The Committee plans to monitor the BC, Canadian and U.S. CRT-related processes and be directly involved when appropriate. As new information becomes available, the Committee will review this information, seek input from Basin residents, and submit further recommendations to the provincial and federal governments, if needed. The CRT Local Governments’ Committee will post its recommendations and other documents at www.akblg.ca/content/columbia-river-treaty. For more information contact the Committee Chair, Deb Kozak ([email protected] 250 352-9383) or the Executive Director, Cindy Pearce ([email protected] 250 837-3966). Background Beginning in 2024, either the U.S. or Canada can The Columbia River Treaty (Treaty) was ratified terminate substantial portions of the Treaty, by Canada and the United States (the U.S.) in with at least 10 years’ prior notice. Canada—via 1964, resulting in the construction of three the BC Provincial Government—and the U.S. are dams in Canada—Mica Dam north of both conducting reviews to consider whether to Revelstoke; Hugh Keenleyside Dam near continue, amend or terminate the Treaty. Castlegar; and Duncan Dam north of Kaslo—and Local governments within the Basin have Libby Dam near Libby, Montana. -
Optimal Production of Chinook Salmon from the Stikine River
Fishery Manuscript No. 00-1 Optimal Production of Chinook Salmon from the Stikine River by David R. Bernard Scott A. McPherson Keith A. Pahlke and Peter Etherton July 2000 Alaska Department of Fish and Game Division of Sport Fish FISHERY MANUSCRIPT NO. 00-1 OPTIMAL PRODUCTION OF CHINOOK SALMON FROM THE STIKINE RIVER by David R. Bernard Division of Sport Fish, Anchorage Scott A. McPherson Keith A. Pahlke Division of Sport Fish, Douglas Peter Etherton Department of Fisheries and Oceans, Whitehorse, Yukon Territory Canada Alaska Department of Fish and Game Division of Sport Fish 333 Raspberry Road Anchorage, AK 99518-1599 July 2000 This investigation was partially financed by the Federal Aid in Sport Fish Restoration Act (16 U.S.C. 777-777K) The Fishery Manuscript series was established in 1987 for the publication of technically-oriented results of several years' work undertaken on a project to address common objectives, provide an overview of work undertaken through multiple projects to address specific research or management goal(s), or new and/or highly technical methods. Fishery Manuscripts are intended for fishery and other technical professionals. Fishery Manuscripts are available through the Alaska State Library and on the Internet: http://www.sf.adfg.state.ak.us/statewide/divreports/html/intersearch.cfm This publication has undergone editorial and peer review. David R. Bernard a Alaska Department of Fish and Game, Division of Sport Fish, PTS 333 Raspberry Road, Anchorage, AK 99518-1599, USA Scott A. McPherson Keith A. Pahlke Alaska Department of Fish and Game, Division of Sport Fish, Region I P. O. -
KR/KL Burbot Conservation Strategy
January 2005 Citation: KVRI Burbot Committee. 2005. Kootenai River/Kootenay Lake Conservation Strategy. Prepared by the Kootenai Tribe of Idaho with assistance from S. P. Cramer and Associates. 77 pp. plus appendices. Conservation strategies delineate reasonable actions that are believed necessary to protect, rehabilitate, and maintain species and populations that have been recognized as imperiled, but not federally listed as threatened or endangered under the US Endangered Species Act. This Strategy resulted from cooperative efforts of U.S. and Canadian Federal, Provincial, and State agencies, Native American Tribes, First Nations, local Elected Officials, Congressional and Governor’s staff, and other important resource stakeholders, including members of the Kootenai Valley Resource Initiative. This Conservation Strategy does not necessarily represent the views or the official positions or approval of all individuals or agencies involved with its formulation. This Conservation Strategy is subject to modification as dictated by new findings, changes in species status, and the completion of conservation tasks. 2 ACKNOWLEDGEMENTS The Kootenai Tribe of Idaho would like to thank the Kootenai Valley Resource Initiative (KVRI) and the KVRI Burbot Committee for their contributions to this Burbot Conservation Strategy. The Tribe also thanks the Boundary County Historical Society and the residents of Boundary County for providing local historical information provided in Appendix 2. The Tribe also thanks Ray Beamesderfer and Paul Anders of S.P. Cramer and Associates for their assistance in preparing this document. Funding was provided by the Bonneville Power Administration through the Northwest Power and Conservation Council’s Fish and Wildlife Program, and by the Idaho Congressional Delegation through a congressional appropriation administered to the Kootenai Tribe by the Department of Interior. -
Kootenai River Resident Fish Mitigation: White Sturgeon, Burbot, Native Salmonid Monitoring and Evaluation
KOOTENAI RIVER RESIDENT FISH MITIGATION: WHITE STURGEON, BURBOT, NATIVE SALMONID MONITORING AND EVALUATION Annual Progress Report May 1, 2016 — April 31, 2017 BPA Project # 1988-065-00 Report covers work performed under BPA contract # 68393 IDFG Report Number 08-09 April 2018 This report was funded by the Bonneville Power Administration (BPA), U.S. Department of Energy, as part of BPA's program to protect, mitigate, and enhance fish and wildlife affected by the development and operation of hydroelectric facilities on the Columbia River and its tributaries. The views in this report are the author's and do not necessarily represent the views of BPA. This report should be cited as follows: Ross et al. 2018. Report for 05/01/2016 – 04/30/2017. TABLE OF CONTENTS Page CHAPTER 1: KOOTENAI STURGEON MONITORING AND EVALUATION ............................... 1 ABSTRACT ................................................................................................................................. 1 INTRODUCTION ........................................................................................................................2 OBJECTIVE ................................................................................................................................3 STUDY SITE ...............................................................................................................................3 METHODS ..................................................................................................................................3 Water -
Ethnohistory of the Kootenai Indians
University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 1983 Ethnohistory of the Kootenai Indians Cynthia J. Manning The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Manning, Cynthia J., "Ethnohistory of the Kootenai Indians" (1983). Graduate Student Theses, Dissertations, & Professional Papers. 5855. https://scholarworks.umt.edu/etd/5855 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. COPYRIGHT ACT OF 1976 Th is is an unpublished m a n u s c r ip t in w h ic h c o p y r ig h t su b s i s t s . Any further r e p r in t in g of it s c o n ten ts must be a ppro ved BY THE AUTHOR. MANSFIELD L ib r a r y Un iv e r s it y of Montana D a te : 1 9 8 3 AN ETHNOHISTORY OF THE KOOTENAI INDIANS By Cynthia J. Manning B.A., University of Pittsburgh, 1978 Presented in partial fu lfillm en t of the requirements for the degree of Master of Arts UNIVERSITY OF MONTANA 1983 Approved by: Chair, Board of Examiners Fan, Graduate Sch __________^ ^ c Z 3 ^ ^ 3 Date UMI Number: EP36656 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. -
Link to Full Text
~ .......... ~ ~ - - -- .. ~~ -- .... ..... .., - .. - ... ...., .... IX. ADYNAMIC HESEHV01H SIMULATION MODEL-DYHESM:5 i\ 311 c. transverse and longitUdinal direction playa secondary role and only the variations) ." I in the vertical enter lhe first order balances of mass, momentum and energy. 1/ I Departures from this Stilte of horizontalisopyc'nalsare possible, but these \ tI l A DYNAMIC RESERVOIR SIl\olULATION MODEL enter only as isolated events or as \I/eak pe.!lurbatiQ.D.S. In both cases the.•net eJJ;cJ,J CI DYRESM: 5 is e~plured wi(h a parame!efizalion of their inp,ut (0 the vertical s(rUelure"iiild , ) I comparison of the model prediction and field data must thus be confined to ~ ~ .....of.............,.calm when the structure is truly one-dimensional. lorg 1mberger and John C.. Pattetsun .. ~ ,. The constraints imposed by ~uch a one-dimer.:Jional model may best be University of Western Australia quantified by defining a series of non-dimensional llUmbers. The value of the Nedlands, Western Australia Wedderburn number :) LV =.i.!!.. h (.J" I I '( 14.2 • L- '7 y(l .. n, (I) , \ ..,' I / 1. INTRODUCTION where g' is an effective reoufed gravity across the thermocline, h the depth of the mixed layer, L the basin scale, and u· the surface shear velocity, is a measure of """·".',j<}·,t-·;~·'",,,"~~,'ti The dynamic reservoir simulation model, DYRESM, is a one-dimensional the activity within the mixed layer. Spigel and Imberger (I980) have shown thah, numerical model for the prediction of temperature and salinity in small to medium for W > 00) the departure fmm one-dimensionality is minimal and for I ':I sized reservoirs and Jakes. -
Escapements of Chinook Salmon in Southeast Alaska and Transboundary Rivers in 1998
Fishery Data Series No. 99-17 Escapements of Chinook Salmon in Southeast Alaska and Transboundary Rivers in 1998 by Keith A. Pahlke August 1999 Alaska Department of Fish and Game Division of Sport Fish FISHERY DATA SERIES NO. 99-17 ESCAPEMENTS OF CHINOOK SALMON IN SOUTHEAST ALASKA AND TRANSBOUNDARY RIVERS IN 1998 by Keith A. Pahlke Division of Sport Fish, Douglas Alaska Department of Fish and Game Division of Sport Fish P. O. Box 240020 Douglas, AK 99824-0020 August 1999 Development and publication of this manuscript were partially financed by the Federal Aid in Sport Fish Restoration Act (16 U.S.C. 777-777K ) under Project F-10-14, Job No. S-1-6. The Fishery Data Series was established in 1987 for the publication of technically oriented results for a single project or group of closely related projects. Fishery Data Series reports are intended for fishery and other technical professionals. Distribution is to state and local publication distribution centers, libraries and individuals and, on request, to other libraries, agencies, and individuals. This publication has undergone editorial and peer review. Keith A. Pahlke Alaska Department of Fish and Game, Division of Sport Fish P. O. Box 240020, Douglas, AK 99824-0020, USA This document should be cited as: Pahlke, Keith A. 1999. Escapements of chinook salmon in Southeast Alaska and transboundary rivers in 1998. Alaska Department of Fish and Game, Fishery Data Series No. 99-17, Anchorage. The Alaska Department of Fish and Game administers all programs and activities free from discrimination on the basis of sex, color, race, religion, national origin, age, marital status, pregnancy, parenthood, or disability. -
Draft Navigability Report for Stikine River
United States Department of the Interior IJ:::.~ ~ .. BUREAU OF LAND MANAGEMENT "\ TAKE PRIDE" Alaska State Office INAMERICA 222 W. 7th Avenue, # 13 Anchorage, Alaska 99513-7599 http://www.ak.blm.gov To: File AA-085787 (1864) From: Navigable Waters Specialist Subject: Navigability ofStikine River, Southeast Alaska On February 17, 2005, the State of Alaska (State) filed an application for a recordable disclaimer of interest for the bed of the Stikine River from its mouth to the United States-Canada International Boundary, a distance of approximately 27 miles. The State also applied for lands underlying "all named interconnecting sloughs including Binkleys Slough, Red Slough, Guerin Slough, King Slough, Andrew Slough, Hooligan Slough, Shakes Slough, Shakes Lake, North Arm, and Ketili River, between the ordinary high water lines of the left and right banks .... " The State included with its application a legal description of the river, supporting evidence, and a map dated April 5, 2004 showing the Stikine River.l The State's submissions are more fully described in Attachment A. On June 4, 2007, the State submitted additional information in support of its application for the bed ofthe Stikine River. In this letter, the State asserted that the Tongass National Forest did not include the beds of navigable waters within the exterior boundaries of the reserve and, therefore, did not defeat the State's title to the bed ofthe navigable Stikine River.2 As the State's evidence shows, the Stikine River has been used almost continuously as a highway of commerce since before the Purchase of Alaska in 1867. Both Great Britain and the United States recognized the river's importance as a highway in the Washington Treaty of May 8, 1871. -
Escapements of Chinook Salmon in Southeast Alaska and Transboundary Rivers in 1994
Fishery Data Series No. 95-35 Escapements of Chinook Salmon in Southeast Alaska and Transboundary Rivers in 1994 bY Keith A. Pahlke November 1995 Alaska Department of Fish and Game Division of Sport Fish FISHERY DATA SERIES NO. 95-35 ESCAPEMENTS OF CHINOOK SALMON IN SOUTHEAST ALASKA AND TRANSBOUNDARY RIVERS IN 1994 Keith A. Pahlke Division of Sport Fish, Douglas Alaska Department of Fish and Game Division of Sport Fish, Research and Technical Services 333 Raspberry Road, Anchorage, Alaska, 995 18-1599 November 1995 The Fishery Data Series was established in 1987 for the publication of technically oriented results for a single project or group of closely related projects. Fishery Data Series reports are intended for fishery and other technical professionals. Distribution is to state and local publication distribution centers, libraries and individuals and, on request, to other libraries, agencies, and individuals. This publication has undergone editorial and peer review. Keith A. Pahlke Alaska Department of Fish and Game, Division of Sport Fish P. 0. Box 240020, Douglas, AK 99824-0020, USA This document should be cited as: Pahlke, Keith A. 1995. Escapement of chinook salmon in Southeast Alaska and Transboundaty Rivers in 1994. Alaska Department of Fish and Game, Fishery Data Series No. 9.5-3.5,Anchorage. The Alaska Department of Fish and Game administers all programs and activities free from discrimination on the basis of sex, color, race, religion, national origin, age, marital status, pregnancy, parenthood, or disability. For information on alternative formats available for this and other department publications, contact the department ADA Coordinator at (voice) 907-465-4120, or (TDD) 907-465-3646. -
White Paper on COLUMBIA RIVER POST-2024 FLOOD RISK MANAGEMENT PROCEDURE
White Paper on COLUMBIA RIVER POST-2024 FLOOD RISK MANAGEMENT PROCEDURE U.S. Army Corps of Engineers Northwestern Division September 2011 This page intentionally left blank PREFACE The Columbia River, the fourth largest river on the continent as measured by average annual flow, provides more hydropower than any other river in North America. While its headwaters originate in British Columbia, only about 15 percent of the 259,500 square miles of the river’s basin is located in Canada. Yet the Canadian water accounts for about 38 percent of the average annual flow volume, and up to 50 percent of the peak flood waters, that flow on the lower Columbia River between Oregon and Washington. In the 1940s, officials from the United States and Canada began a long process to seek a collaborative solution to reduce the risks of flooding caused by the Columbia River and to meet the postwar demand for energy. That effort resulted in the implementation of the Columbia River Treaty in 1964. This agreement between Canada and the United States called for the cooperative development of water resource regulation in the upper Columbia River Basin. The Columbia River Treaty has provided significant flood control (also termed flood risk management) and hydropower generation benefiting both countries. The Treaty, and subsequent Protocol, include provisions that both expire on September 16, 2024, 60 years after the Treaty’s ratification, and continue throughout the life of the associated facilities whether the Treaty continues or is terminated by either country. This white paper focuses on the flood risk management changes that will occur on that milestone date and satisfies the following purposes: 1. -
Water Storage Opportunities in the South Saskatchewan River Basin in Alberta
Water Storage Opportunities in the South Saskatchewan River Basin in Alberta Submitted to: Submitted by: SSRB Water Storage Opportunities AMEC Environment & Infrastructure, Steering Committee a Division of AMEC Americas Limited Lethbridge, Alberta Lethbridge, Alberta 2014 amec.com WATER STORAGE OPPORTUNITIES IN THE SOUTH SASKATCHEWAN RIVER BASIN IN ALBERTA Submitted to: SSRB Water Storage Opportunities Steering Committee Lethbridge, Alberta Submitted by: AMEC Environment & Infrastructure Lethbridge, Alberta July 2014 CW2154 SSRB Water Storage Opportunities Steering Committee Water Storage Opportunities in the South Saskatchewan River Basin Lethbridge, Alberta July 2014 Executive Summary Water supply in the South Saskatchewan River Basin (SSRB) in Alberta is naturally subject to highly variable flows. Capture and controlled release of surface water runoff is critical in the management of the available water supply. In addition to supply constraints, expanding population, accelerating economic growth and climate change impacts add additional challenges to managing our limited water supply. The South Saskatchewan River Basin in Alberta Water Supply Study (AMEC, 2009) identified re-management of existing reservoirs and the development of additional water storage sites as potential solutions to reduce the risk of water shortages for junior license holders and the aquatic environment. Modelling done as part of that study indicated that surplus water may be available and storage development may reduce deficits. This study is a follow up on the major conclusions of the South Saskatchewan River Basin in Alberta Water Supply Study (AMEC, 2009). It addresses the provincial Water for Life goal of “reliable, quality water supplies for a sustainable economy” while respecting interprovincial and international apportionment agreements and other legislative requirements. -
Main Arm Kootenay Lake FIM 2011
Foreshore Inventory and 3Mapping KKOOOOTTEENNAAYY LLAAKKEE MMAAIINN AARRMM Prepared For: Regional District of Central Kootenay Prepared By: Ecoscape Environmental Consultants Ltd. September, 2010 File No.: 09-513 #102 – 450 Neave Court Kelowna, BC V1V 2M2 Phone: 250.491.7337 Fax: 250.491.7772 Email: [email protected] FORESHORE INVENTORY AND MAPPING Regional District of Central Kootenay Kootenay Lake Main Arm Prepared For: Regional District of Central Kootenay Box 590, 202 Lakeside Dr. Nelson, BC V1L 5R4 Prepared By: ECOSCAPE ENVIRONMENTAL CONSULTANTS LTD. #102 – 450 Neave Court Kelowna, B.C. V1W 3A1 January 2011 File No. 09-513 #102 – 450 Neave Ct. Kelowna BC. V1V 2M2 ph: 250.491.7337 fax: 250.491.7772 [email protected] 09-513 i January 2011 ACKNOWLEDGEMENTS This project was made possible through collaboration between the Regional District of Central Kootenay and Fisheries and Oceans Canada. The following parties carried out or organized fieldwork for this assessment: Fisheries and Oceans Canada: Bruce MacDonald, Sheldon Romaine, Brian Ferguson, Kristin Murphy, and Darryl Hussey The author of this report was: Jason Schleppe, M.Sc., R.P.Bio. (Ecoscape) The report was reviewed by: Kyle Hawes, B.Sc., R.P.Bio. (Ecoscape) Geographical Information Systems (GIS) mapping and analysis was prepared by: Robert Wagner, B.Sc. (Ecoscape) Recommended Citation: Schleppe, J., 2009. Kootenay Lake Foreshore Inventory and Mapping. Ecoscape Environmental Consultants Ltd.. Project File: 09-513. September, 2010. Prepared for: Regional District Central Kootenay. #102 – 450 Neave Ct. Kelowna BC. V1V 2M2 ph: 250.491.7337 fax: 250.491.7772 [email protected] 09-513 ii January 2011 EXECUTIVE SUMMARY This report has been prepared based upon the belief that it is possible to manage our watersheds and their natural surroundings in a sustainable manner.