Manuscrit Accepté / Accepted Manuscript Arumberiamorph

Total Page:16

File Type:pdf, Size:1020Kb

Manuscrit Accepté / Accepted Manuscript Arumberiamorph Manuscrit accepté / Accepted manuscript Arumberiamorph structure in modern microbial mats: implications for Ediacaran palaeobiology A.V. KOLESNIKOV, T. DANELIAN, M. GOMMEAUX, A.V. MASLOV and D.V. GRAZHDANKIN Reçu le /Received date: 25/06/16 Accepté le /Accepted date: 17/01/2017 Prière de citer l’article de la façon suivante / Please cite this article as: KOLESNIKOV A.V., DANELIAN T., GOMMEAUX M., MASLOV A.V. and GRAZHDANKIN D.V. (2017). – Arumberiamorph structure in modern microbial mats: implications for Ediacaran palaeobiology. – Bulletin de la Société géologique de France, 188, n° thématique (sous presse). Arumberiamorph structure in modern microbial mats: implications for Ediacaran palaeobiology Présence de structure arumbériamorphe dans des tapis microbiens modernes: implications pour la paléobiologie à l’Édiacarien A. V. Kolesnikov,1, 2 T. Danelian,2 M. Gommeaux,3 A. V. Maslov4 and D. V. Grazhdankin1, 5 1Trofimuk Institute of Petroleum Geology and Geophysics of Siberian Branch Russian Academy of Sciences, prospekt Akademika Koptyuga 3, Novosibirsk 630090, Russia, [email protected] 2Université de Lille 1 – Sciences et Technologies, CNRS, UMR 8198 Evo-Eco-Paleo, F 59655 Villeneuve d’Ascq, France, [email protected] 3Groupe d’Étude sur les Géomatériaux et les Environnements naturels Anthropiques et Archéologiques EA 3795 (GEGENAA) – Université de Reims Champagne-Ardenne, 2 esplanade Roland Garros, F 51100 Reims, France, [email protected] 4Zavaritsky Institute of Geology and Geochemistry of Ural Branch Russian Academy of Sciences, ulitsa Vonsovskogo 15, Yekaterinburg 620016, Russia, [email protected] 5Novosibirsk State University, ulitsa Pirogova 2, Novosibirsk 630090, Russia, [email protected] Keywords. – Microbial mats, microbiallyBSGF induced sedimentary structures, Guérande salinas, Ediacaran, Arumberia Mots-clés. – Tapis microbien, structures sédimentaires microbiennes, salines de Guérande, Édiacarien, Arumberia Abstract. – In the course of studying modern halotolerant microbial mats in salterns near the village of Kervalet, western France, we observed fanning-out and curved series of macroscopic ridges on the surface of a newly formed biofilm. The structure resembles the late Ediacaran fossil Arumberia which is globally distributed in Australia, Avalonia, Baltica, Siberia and India, always confined to intertidal and delta-plain settings subject to periodic desiccation or fluctuating salinity. Although the origin of the structure observed in modern microbial mats remains enigmatic, wrinkled and rugose variants of microbial biofilms in general exhibit increased levels of resistance to several environmental stresses. By analogy, the fossil Arumberia !1 ACCEPTED MANUSCRIPT could be interpreted as a microbial mat morphotype (the “Arumberia” morph) developed in response to environmental perturbations in terminal Ediacaran shallow marine basins. If environmental conditions are likely to be responsible for the formation of Arumberia, it is not that a specific biological community has survived since the Ediacaran – it is that the biological response of microbial communities that manifested itself quite commonly in certain terminal Ediacaran and early Cambrian environments can still be found (seemingly in much more restricted settings) today. Résumé. – Dans le cadre d'une étude des tapis microbiens halotolérants actuels, dans des salines situées près du village de Kervalet (France), nous avons observé des ensembles de rides curvilignes disposées en éventail, à la surface d'un tapis microbien nouvellement formé. La structure actuelle observée rappelle Arumberia, fossile de l'Édiacarien supérieur, qui a une très large distribution (Australie, Avalonia, Baltica, Sibérie et Inde), présent uniquement dans des contextes intertidaux ou de plaines deltaïques, sujets à une dessication périodique et à une salinité variable. Même si l'origine de la structure observée dans les tapis microbiens actuels demeure inconnue, les tapis montrant une structure froncée ou rugueuse sont généralement dotés d'une résistance supérieure à différents stress environnementaux. Par analogie, le fossile Arumberia pourrait être interprété comme un morphotype (dit “arumbériamorphe”) de tapis microbien développé en réponse à des perturbations de l'environnement de l'Édiacarien terminal, dans des bassins marins peu profonds. Si le facteur causant la formation d’Arumberia est vraisemblablement les conditions environnementales, on ne peut pas conclureBSGF qu’une communauté biologique particulière ait survécu depuis l’Édiacarien – mais plutôt que certaines communautés microbiennes répondent de la même façon aujourd’hui qu’à l’Édiacarien ou au début du Cambrien mais que ceci se manifeste dans des contextes bien plus restreints. INTRODUCTION Few Ediacaran fossils pose more problems in terms of pattern recognition and fabricational constraints than does Arumberia. The iconic Arumberia represents series of subparallel, curved or fanning- out ridges preserved on upper bedding plane surfaces of sandstone beds. Although originally interpreted as cup-shaped epibenthic organisms [Glaessner and Walter, 1975], an alternative view would be that these structures are either microbially mediated or even inorganic [Brasier, 1979; Jenkins, 1981; Jenkins et al. 1981; McIlroy and Walter, 1997; Gehling, 1999; Seilacher, 2007]. The regular arrangement of ridges in !2 ACCEPTED MANUSCRIPT Arumberia is akin of the quilted body plan of vendobiont organisms (Arumberia was originally compared to Natalia villiersiensis, Nasepia altae, and Baikalina sessilis), although the paucity of distinctive margins to individuals calls for a broader comparison with dissipative systems (to which the vendobiont construction may seemingly belong). With the rare exception of two lower Neoproterozoic localities, one in the Diabaig Formation of northwest Scotland [Callow et al. 2011] and another in the Zilmerdak Formation of South Urals (pers. obs.), and one early Palaeozoic locality in the Port Lazo Formation of France [Bland, 1984; Davies et al. 2016], Arumberia appears to be restricted to the uppermost Ediacaran strata, which presents a serious obstacle to the inorganic interpretation. Furthermore, Ediacaran fossil occurrences of Arumberia in Australia, Avalonia, Baltica, Siberia and India are all confined to intertidal or delta-plain settings subject to periodic desiccation or fluctuating salinity [Bland, 1984; Gehling, 1999; McIlroy et al. 2005; Mapstone and McIlroy, 2006; Kumar and Pandey, 2008; Kolesnikov et al. 2012, 2015]. The prospect of discovering relict elements of Ediacaran ecosystems that survived in modern biosphere has been tremendously appealing, but very few convincing analogues have been found. Xenophyophores, a group of giant deep-sea multinucleate rhizopodial protists are sometimes regarded as model organisms for vendobiont palaeobiology and even as possible living counterparts of Ediacaran palaeopascichnids [Zhuravlev, 1993; Seilacher et al. 2003; Seilacher and Mrinjek, 2011]. Another example are the detached cormidial bracts of siphonophore organisms [O’Hara et al. 2016] that have been compared to Ediacaran fossils Albumares brunsae, Anfesta stankovskii, and Rugoconites enigmaticus [Just et al. 2014]. In addition, concentric ring structures occasionallyBSGF observed in modern microbial mats resemble some of the Ediacaran discoidal fossils, specifically Cyclomedusa davidi and Ediacaria flindersi [Grazhdankin and Gerdes, 2007; Banerjee et al. 2014]. Here we describe fanning-out and curved series of macroscopic ridges on the surface on a newly formed microbial mat and discuss their similarities with the enigmatic Ediacaran fossil Arumberia banksi. FIELD OBSERVATIONS In the summer of 2015, we studied modern microbial mats growing in salterns of the Salines de Guérande Cooperative of Loire-Atlantique, Region of Pays de la Loire, western France (fig. 1A, B). Each saltern, called “salina” (fig. 2A–B) by local residents and cooperative workers, represents a system of reservoirs that are fed by seawater flowing through narrow channels and, occasionally, tubes. During spring tides the turbid seawater from a tide input channel (étier) passes through a gate (controlled by a salt worker) !3 ACCEPTED MANUSCRIPT and enters a special first decantation pond (vasière) where the suspended particles settle down as water salinity increases due to evaporation. Salinity has been measured by refractometer in each pond along the entire water circuit in three salinas (fig. 2A). The water becomes progressively more clear and salty (and hence of higher density) as it flows through an optional secondary filtering decantation pond (cobier) and a chain of fares ponds (salinity values vary between 5.5% and 17%) until it reaches the maximum clarity and salinity in brine storage adernes ponds (salinity up to 34%). The salt is collected in œillets ponds where salt workers (paludières) regularly sweep the salt crystals with a wooden spade and pile it on a round platform called the ladure. The floor in the salina (except for the œillets ponds) is covered with halotolerant microbial mats which stabilise the sediment and prevent it from further suspension by meteoric water and wind action [Giani et al. 1989; Gerdes et al. 1993, 1994; Gerdes, 2007]. The uppermost layer in microbial mats is dominated by cyanobacteria and diatom algae. The layers underneath record a steep gradient in redox potential. The fares and adernes ponds are cleaned, on average, once every 10 years when the
Recommended publications
  • Ediacaran) of Earth – Nature’S Experiments
    The Early Animals (Ediacaran) of Earth – Nature’s Experiments Donald Baumgartner Medical Entomologist, Biologist, and Fossil Enthusiast Presentation before Chicago Rocks and Mineral Society May 10, 2014 Illinois Famous for Pennsylvanian Fossils 3 In the Beginning: The Big Bang . Earth formed 4.6 billion years ago Fossil Record Order 95% of higher taxa: Random plant divisions domains & kingdoms Cambrian Atdabanian Fauna Vendian Tommotian Fauna Ediacaran Fauna protists Proterozoic algae McConnell (Baptist)College Pre C - Fossil Order Archaean bacteria Source: Truett Kurt Wise The First Cells . 3.8 billion years ago, oxygen levels in atmosphere and seas were low • Early prokaryotic cells probably were anaerobic • Stromatolites . Divergence separated bacteria from ancestors of archaeans and eukaryotes Stromatolites Dominated the Earth Stromatolites of cyanobacteria ruled the Earth from 3.8 b.y. to 600 m. [2.5 b.y.]. Believed that Earth glaciations are correlated with great demise of stromatolites world-wide. 8 The Oxygen Atmosphere . Cyanobacteria evolved an oxygen-releasing, noncyclic pathway of photosynthesis • Changed Earth’s atmosphere . Increased oxygen favored aerobic respiration Early Multi-Cellular Life Was Born Eosphaera & Kakabekia at 2 b.y in Canada Gunflint Chert 11 Earliest Multi-Cellular Metazoan Life (1) Alga Eukaryote Grypania of MI at 1.85 b.y. MI fossil outcrop 12 Earliest Multi-Cellular Metazoan Life (2) Beads Horodyskia of MT and Aust. at 1.5 b.y. thought to be algae 13 Source: Fedonkin et al. 2007 Rise of Animals Tappania Fungus at 1.5 b.y Described now from China, Russia, Canada, India, & Australia 14 Earliest Multi-Cellular Metazoan Animals (3) Worm-like Parmia of N.E.
    [Show full text]
  • (Siphonophorae: Physonectae: Rhodaliidae) В Районе Подводного Вулкана Пийпа (Северо-Западная Часть Тихого Океана) К.Э
    Invertebrate Zoology, 2018, 15(4): 323–332 © INVERTEBRATE ZOOLOGY, 2018 Находка глубоководной донной сифонофоры (Siphonophorae: Physonectae: Rhodaliidae) в районе подводного вулкана Пийпа (северо-западная часть Тихого океана) К.Э. Санамян1, Н.П. Санамян1, C.В. Галкин2, В.В. Ивин3,4 1 Камчатский филиал Тихоокеанского института географии ДВО РАН, ул. Партизанская, 6, Петропавловск-Камчатский 683000, Россия. E-mail: [email protected]. 2 Институт океанологии им. П.П. Ширшова РАН, Нахимовский пр., 36, Москва 117997 Россия. E-mail: [email protected] 3 Национальный научный центр морской биологии им. А.В. Жирмунского ДВО РАН, ул. Пальчевского, 17, Владивосток 690041, Россия. E-mail: [email protected] 4 Государственный научно-исследовательский институт озерного и речного рыбного хозяй- ства им. Л.С. Берга, наб. Макарова 26, Санкт-Петербург 199004, Россия. РЕЗЮМЕ: В ходе погружений телеуправляемого подводного аппарата «Comanche 18» в районе подводного вулкана Пийпа, расположенного к северу от Командорских островов в Северо-Западной Пацифике, на глубинах 1711–1914 м обнаружено несколько экземпляров донных сифонофор семейства Rhodaliidae. Они не были собраны, однако были достаточно детально сняты на видео, имеются также прижиз- ненные подводные фотографии. В отличие от всех других известных сифонофор, представители этого семейства ведут донный образ жизни. Все представители Rhodaliidae, за двумя исключениями, крайне плохо изучены и известны по единич- ным экземплярам, в некоторых случаях собранным более 100 лет назад. В северо- западной части Тихого океана на глубинах свыше 1000 м родалииды до настоящего времени не были известны. В статье дана краткая история изучения родалиид, описание морфологии найденных экземпляров по фото и видео материалам, а также краткий обзор известных к настоящему времени видов семейства. Показано, что родовое название Tridensa Hissmann, 2005 не является пригодным и не может быть использовано.
    [Show full text]
  • The Lower Bathyal and Abyssal Seafloor Fauna of Eastern Australia T
    O’Hara et al. Marine Biodiversity Records (2020) 13:11 https://doi.org/10.1186/s41200-020-00194-1 RESEARCH Open Access The lower bathyal and abyssal seafloor fauna of eastern Australia T. D. O’Hara1* , A. Williams2, S. T. Ahyong3, P. Alderslade2, T. Alvestad4, D. Bray1, I. Burghardt3, N. Budaeva4, F. Criscione3, A. L. Crowther5, M. Ekins6, M. Eléaume7, C. A. Farrelly1, J. K. Finn1, M. N. Georgieva8, A. Graham9, M. Gomon1, K. Gowlett-Holmes2, L. M. Gunton3, A. Hallan3, A. M. Hosie10, P. Hutchings3,11, H. Kise12, F. Köhler3, J. A. Konsgrud4, E. Kupriyanova3,11,C.C.Lu1, M. Mackenzie1, C. Mah13, H. MacIntosh1, K. L. Merrin1, A. Miskelly3, M. L. Mitchell1, K. Moore14, A. Murray3,P.M.O’Loughlin1, H. Paxton3,11, J. J. Pogonoski9, D. Staples1, J. E. Watson1, R. S. Wilson1, J. Zhang3,15 and N. J. Bax2,16 Abstract Background: Our knowledge of the benthic fauna at lower bathyal to abyssal (LBA, > 2000 m) depths off Eastern Australia was very limited with only a few samples having been collected from these habitats over the last 150 years. In May–June 2017, the IN2017_V03 expedition of the RV Investigator sampled LBA benthic communities along the lower slope and abyss of Australia’s eastern margin from off mid-Tasmania (42°S) to the Coral Sea (23°S), with particular emphasis on describing and analysing patterns of biodiversity that occur within a newly declared network of offshore marine parks. Methods: The study design was to deploy a 4 m (metal) beam trawl and Brenke sled to collect samples on soft sediment substrata at the target seafloor depths of 2500 and 4000 m at every 1.5 degrees of latitude along the western boundary of the Tasman Sea from 42° to 23°S, traversing seven Australian Marine Parks.
    [Show full text]
  • Downloaded from Genbank (Table S1)
    water Article Integrated Taxonomy for Halistemma Species from the Northwest Pacific Ocean Nayeon Park 1 , Andrey A. Prudkovsky 2,* and Wonchoel Lee 1,* 1 Department of Life Science, Hanyang University, Seoul 04763, Korea; [email protected] 2 Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia * Correspondence: [email protected] (A.A.P.); [email protected] (W.L.) Received: 16 October 2020; Accepted: 20 November 2020; Published: 22 November 2020 Abstract: During a survey of the siphonophore community in the Kuroshio Extension, Northwest Pacific Ocean, a new Halistemma Huxley, 1859 was described using integrated molecular and morphological approaches. The Halistemma isabu sp. nov. nectophore is most closely related morphologically to H. striata Totton, 1965 and H. maculatum Pugh and Baxter, 2014. These species can be differentiated by their nectosac shape, thrust block size, ectodermal cell patches and ridge patterns. The new species’ bracts are divided into two distinct types according to the number of teeth. Type A bracts are more closely related to ventral bracts in H. foliacea (Quoy and Gaimard, 1833) while Type B bracts are more similar to H. rubrum (Vogt, 1852). Each type differs, however, from the proximal end shape, distal process and bracteal canal. Both of the new species’ morphological type and phylogenetic position within the genus Halistemma are supported by phylogenetic analysis of concatenated DNA dataset (mtCOI, 16S rRNA and 18S rRNA). Integrated morphological and molecular approaches to the taxonomy of siphonophores showed a clear delimitation of the new species from the congeners. Halistemma isabu sp. nov. is distributed with the congeners H.
    [Show full text]
  • The Lower Bathyal and Abyssal Seafloor Fauna of Eastern Australia T
    The lower bathyal and abyssal seafloor fauna of eastern Australia T. O’hara, A. Williams, S. Ahyong, P. Alderslade, T. Alvestad, D. Bray, I. Burghardt, N. Budaeva, F. Criscione, A. Crowther, et al. To cite this version: T. O’hara, A. Williams, S. Ahyong, P. Alderslade, T. Alvestad, et al.. The lower bathyal and abyssal seafloor fauna of eastern Australia. Marine Biodiversity Records, Cambridge University Press, 2020, 13 (1), 10.1186/s41200-020-00194-1. hal-03090213 HAL Id: hal-03090213 https://hal.archives-ouvertes.fr/hal-03090213 Submitted on 29 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. O’Hara et al. Marine Biodiversity Records (2020) 13:11 https://doi.org/10.1186/s41200-020-00194-1 RESEARCH Open Access The lower bathyal and abyssal seafloor fauna of eastern Australia T. D. O’Hara1* , A. Williams2, S. T. Ahyong3, P. Alderslade2, T. Alvestad4, D. Bray1, I. Burghardt3, N. Budaeva4, F. Criscione3, A. L. Crowther5, M. Ekins6, M. Eléaume7, C. A. Farrelly1, J. K. Finn1, M. N. Georgieva8, A. Graham9, M. Gomon1, K. Gowlett-Holmes2, L. M. Gunton3, A. Hallan3, A. M. Hosie10, P.
    [Show full text]
  • Back Matter (PDF)
    Index Acraman impact ejecta layer 53–4, 117, 123, 126–9, Aspidella 130–2, 425–7 controversy 300, 301–3, 305 acritarchs ecology 303 Amadeus and Officer Basins 119 synonyms 302 biostratigraphy 115–25, 130–2 Australia Australian correlations 130–2 Acraman impact ejecta layer 53–4, 117, 123, 126–9, composite zonation scheme 119, 131, 132 130–2, 425–7 India 318–20 carbon isotope chemostratigraphy 126–9 Ireland 289 correlations of Ediacaran System and Period 18, Spain 232 115–35 sphaeromorphid 324 Marinoan glaciation 53–4, 126 Adelaide, Hallett Cove 68 Australia, Ediacaran System and Period Adelaide Rift Complex 115–22, 425 Bunyeroo–Wonoka Formation transition correlations with Officer Basin 127 137–9, 426 dating (Sr–Rb) 140 Centralian Superbasin 118, 125 generalized time–space diagram, correlations composite zonation scheme 131 between tectonic units 120 correlation methods and results 125–32 location maps 116, 118 time–space diagram 120 SE sector cumulative strata thickness 139 Vendian climatic indicators 17 stratigraphic correlation with Officer Basin 127 See also Adelaide Rift Complex; Flinders Ranges Stuart Shelf drill holes, correlations 117 Avalonian assemblages, Newfoundland 237–57, Sturtian (Umberatana) Group 116, 138 303–7, 427 Umberatana Group 116, 138 Africa backarc spreading, Altenfeld Formation 44–5, 47–8 Vendian climatic indicators 17 Baliana–Krol Group, NW Himalaya 319 see also Namibia Barut Formation, Iran 434 Aldanellidae 418 Bayesian analysis algal metaphyta, White Sea Region 271–4 eumetazoans 357–9 algal microfossils, White
    [Show full text]
  • A Solution to Darwin's Dilemma: Differential Taphonomy of Ediacaran and Palaeozoic Non-Mineralised Discoidal Fossils
    Provided by the author(s) and NUI Galway in accordance with publisher policies. Please cite the published version when available. Title A Solution to Darwin's Dilemma: Differential Taphonomy of Ediacaran and Palaeozoic Non-Mineralised Discoidal Fossils Author(s) MacGabhann, Breandán Anraoi Publication Date 2012-08-29 Item record http://hdl.handle.net/10379/3406 Downloaded 2021-09-26T20:57:04Z Some rights reserved. For more information, please see the item record link above. A Solution to Darwin’s Dilemma: Differential taphonomy of Palaeozoic and Ediacaran non- mineralised discoidal fossils Volume 1 of 2 Breandán Anraoi MacGabhann Supervisor: Dr. John Murray Earth and Ocean Sciences, School of Natural Sciences, NUI Galway August 2012 Differential taphonomy of Palaeozoic and Ediacaran non-mineralised fossils Table of Contents List of Figures ........................................................................................................... ix List of Tables ........................................................................................................... xxi Taxonomic Statement ........................................................................................... xxiii Acknowledgements ................................................................................................ xxv Abstract ................................................................................................................. xxix 1. Darwin’s Dilemma ...............................................................................................
    [Show full text]
  • New Ediacara Fossils Preserved in Marine Limestone and Their Ecological Implications
    OPEN New Ediacara fossils preserved in SUBJECT AREAS: marine limestone and their ecological PALAEONTOLOGY GEOLOGY implications Zhe Chen1, Chuanming Zhou1, Shuhai Xiao2, Wei Wang1, Chengguo Guan1, Hong Hua3 & Xunlai Yuan1 Received 22 November 2013 1LPS and LESP, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China, Accepted 2Department of Geosciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA, 3State Key Laboratory 7 February 2014 of Continental Dynamics and Department of Geology, Northwest University, Xi’an 710069, China. Published 25 February 2014 Ediacara fossils are central to our understanding of animal evolution on the eve of the Cambrian explosion, because some of them likely represent stem-group marine animals. However, some of the iconic Ediacara fossils have also been interpreted as terrestrial lichens or microbial colonies. Our ability to test these hypotheses is limited by a taphonomic bias that most Ediacara fossils are preserved in sandstones and Correspondence and siltstones. Here we report several iconic Ediacara fossils and an annulated tubular fossil (reconstructed as an requests for materials erect epibenthic organism with uniserial arranged modular units), from marine limestone of the 551– should be addressed to 541 Ma Dengying Formation in South China. These fossils significantly expand the ecological ranges of Z.C. (zhechen@ several key Ediacara taxa and support that they are marine organisms rather than terrestrial lichens or nigpas.ac.cn) or microbial colonies. Their close association with abundant bilaterian burrows also indicates that they could tolerate and may have survived moderate levels of bioturbation. S.H.X. ([email protected]) he Ediacara biota, exemplified by fossils preserved in the Ediacara Member of South Australia, provides key information about the origin, diversification, and disappearance of a distinct group of soft-bodied, mac- T roscopic organisms on the eve of the Cambrian diversification of marine animals1–3.
    [Show full text]
  • From Sea Surface to Seafloor: a Benthic Allochthonous Edna Survey for the Abyssal Ocean
    bioRxiv preprint doi: https://doi.org/10.1101/2020.05.07.082602; this version posted May 7, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. From sea surface to seafloor: a benthic allochthonous eDNA survey for the abyssal ocean Olivier Laroche1*, Oliver Kersten2, Craig R. Smith1, Erica Goetze1 1 Department of Oceanography, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, USA; 2 Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Norway; Keywords (6 max): environmental DNA, metabarcoding, legacy eDNA, deep sea, abyssal plains, Clarion Clipperton Zone (CCZ), deep-sea mining Short running title (45 characters): Allochthonous eDNA in the abyss * Corresponding author, Current address: Institute of Marine Research, PO Box 6606 Langnes 9296 Tromsø, Norway E-mail: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.05.07.082602; this version posted May 7, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Abstract 2 Diverse and remote deep-sea communities are critically under-sampled and increasingly 3 threatened by anthropogenic impacts. Environmental DNA (eDNA) metabarcoding could 4 facilitate rapid and comprehensive biotic surveys in the deep ocean, yet many aspects of the 5 sources and distribution of eDNA in the deep sea are still poorly understood.
    [Show full text]
  • A Unique View on the Evolution of Marine Life
    EXCEPTIONAL FOSSIL PRESERVATION: A Unique View on the Evolution of Marine Life Edited by DAVID J. BOTTJER COLUMBIA UNIVERSITY PRESS Bottjer_00FM 5/16/02 1:23 PM Page i EXCEPTIONAL FOSSIL PRESERVATION Critical Moments and Perspectives in Earth History and Paleobiology DAVID J. BOTTJER RICHARD K. BAMBACH Editors Bottjer_00FM 5/16/02 1:23 PM Page ii Critical Moments and Perspectives in Earth History and Paleobiology David J. Bottjer and Richard K. Bambach, Editors The Emergence of Animals: The Cambrian Breakthrough Mark A. S. McMenamin and Dianna L. S. McMenamin Phanerozoic Sea-Level Changes Anthony Hallam The Great Paleozoic Crisis: Life and Death in the Permian Douglas H. Erwin Tracing the History of Eukaryotic Cells: The Enigmatic Smile Betsey Dexter Dyer and Robert Alan Obar The Eocene-Oligocene Transition: Paradise Lost Donald R. Prothero The Late Devonian Mass Extinction: The Frasnian/Famennian Crisis George R. McGhee Jr. Dinosaur Extinction and the End of an Era: What the Fossils Say J. David Archibald One Long Experiment: Scale and Process in Earth History Ronald E. Martin Interpreting Pre-Quaternary Climate from the Geologic Record Judith Totman Parrish Theoretical Morphology: The Concept and Its Applications George R. McGhee Jr. Principles of Paleoclimatology Thomas M. Cronin The Ecology of the Cambrian Radiation Andrey Yu. Zhuravlev and Robert Riding, Editors Plants Invade the Land: Evolutionary and Environmental Perspectives Patricia G. Gensel and Dianne Edwards, Editors Bottjer_00FM 5/16/02 1:23 PM Page iii EXCEPTIONAL FOSSIL PRESERVATION A Unique View on the Evolution of Marine Life Edited by DAVID J. BOTTJER, WALTER ETTER, JAMES W.
    [Show full text]
  • Ediacaran Extinction and Cambrian Explosion
    Opinion Ediacaran Extinction and Cambrian Explosion 1, 2 3 4 Simon A.F. Darroch, * Emily F. Smith, Marc Laflamme, and Douglas H. Erwin The Ediacaran–Cambrian (E–C) transition marks the most important geobio- Highlights logical revolution of the past billion years, including the Earth’s first crisis of We provide evidence for a two-phased biotic turnover event during the macroscopic eukaryotic life, and its most spectacular evolutionary diversifica- Ediacaran–Cambrian transition (about tion. Here, we describe competing models for late Ediacaran extinction, 550–539 Ma), which both comprises the Earth’s first major biotic crisis of summarize evidence for these models, and outline key questions which will macroscopic eukaryotic life (the disap- drive research on this interval. We argue that the paleontological data suggest pearance of the enigmatic ‘Ediacara – – two pulses of extinction one at the White Sea Nama transition, which ushers biota’) and immediately precedes the Cambrian explosion. in a recognizably metazoan fauna (the ‘Wormworld’), and a second pulse at the – E C boundary itself. We argue that this latest Ediacaran fauna has more in Wesummarizetwocompetingmodelsfor – common with the Cambrian than the earlier Ediacaran, and thus may represent the turnover pulses an abiotically driven model(catastrophe)analogoustothe‘Big the earliest phase of the Cambrian Explosion. 5’ Phanerozoic mass extinction events, and a biotically driven model (biotic repla- Evolutionary and Geobiological Revolution in the Ediacaran cement) suggesting that the evolution of The late Neoproterozoic Ediacara biota (about 570–539? Ma) are an enigmatic group of soft- bilaterian metazoans and ecosystem engineering were responsible. bodied organisms that represent the first radiation of large, structurally complex multicellular eukaryotes.
    [Show full text]
  • Scope and Results of Meeting
    2003 Meetings, Field Excursions, and Activities Report Form Re: UNESCO-IUGS/IGCP Project Number and Title: IGCP493, The Rise and Fall of the Vendian Biota 1. FIELD EXCURSIONS Date: 4 June-12 July 2003. Place: White Sea, northern Russia Itinerary: Moscow-Archangelsk-Souz’ma (Summer Coast) to Zimnegorsky Region of Winter Coast-Moscow SCOPE AND RESULTS OF MEETING: 1.1 Scope of Meeting (program or outline of geological study) The aims of IGCP 493 activities during this field conference were: (1) To continue to examine in detail the White Sea sediments producing one of the four important Vendian metatzoan biotas and allow in depth discussions in the field of the mode of accumulation, the palaeoenvironmental setting and dating of this sequence in order to compare its setting with regard to faunas from Australia, North America and Namibia. (2) To finalize a field guide to sites in this type area of the Vendian. (3) To visit known sites and attempt to collect more complete material in place, for the sake of better dating and secondly a better understanding of the taphonomy and palaeogeograpic relations with other known Vendian faunas, using the diverse backgrounds of the participants in the hope that new discoveries would be made. (4) To finalize selection of a number of possible student projects to be supervised by many of those involved in IGCP493 and encourage the development of joint projects between the participants from a number of countries represented. (5) To finalize the photography of field sites and specimens with the intent to use both in scientific and popular publications, again under joint authorship, and to develop concepts to be used both in these publications and in a planned major traveling exhibition .
    [Show full text]