Updated Methodology and Results for Report Card 2015

Total Page:16

File Type:pdf, Size:1020Kb

Updated Methodology and Results for Report Card 2015 Modelling pollutant load changes due to improved management practices in the Great Barrier Reef catchments: updated methodology and results Technical Report for Reef Report Card 2015 Prepared by Contact Gillian McCloskey and David Waters David Waters 07 4529 1395 Ownership of intellectual property rights Unless otherwise noted, copyright (and any other intellectual property rights, if any) in this publication is owned by the State of Queensland. Creative Commons This material is licensed under a Creative Commons - Attribution 3.0 Australia licence. Creative Commons Attribution 3.0 Australia License is a standard form license agreement that allows you to copy, distribute, transmit and adapt this publication provided you attribute the work. A summary of the licence terms is available from www.creativecommons.org/licenses/by/3.0/au/deed.en.The full licence terms are available from www.creativecommons.org/licenses/by/3.0/au/legalcode. To reference this volume McCloskey, G.L., Waters. D., Baheerathan, R., Darr, S., Dougall, C., Ellis, R., Fentie, B., Hateley, L. 2017. Modelling pollutant load changes due to improved management practices in the Great Barrier Reef catchments: updated methodology and results – Technical Report for Reef Report Cards 2015, Queensland Department of Natural Resources and Mines, Brisbane, Queensland. Disclaimer The information contained herein is subject to change without notice. The Queensland Government shall not be liable for technical or other errors or omissions contained herein. The reader/user accepts all risks and responsibility for losses, damages, costs and other consequences resulting directly or indirectly from using this information. Acknowledgments: This project is part of the Queensland and Australian Government’s Paddock to Reef program. The project is funded by the Queensland Department of Natural Resources and Mines ‘Queensland Regional Natural Resource Management Investment Program 2013–2018’ with support from the Department of Science, Information Technology, Innovation and the Arts (DSITIA). Technical support was provided by a number of organisations and individuals, including Environmental Monitoring and Assessment Science (DSITIA), Queensland Hydrology (DSITIA) and the Commonwealth Scientific and Industrial Research Organisation (CSIRO). We would also like to thank the reviewers for providing feedback on this report. Source Catchments modelling – Updated methodology and results Executive Summary In this report the updated methodology and latest Great Barrier Reef (GBR) Report Card load reduction results are presented. Minor methodological changes have occurred since the release of the previous report card (Report Card 2014 (RC2014)). These include, recalibration of hydrology in a number of regions to better represent the baseflow portion of total flow, the implementation of instream deposition and remobilisation in three regions, and minor updates to adjustable parameters. The recalibration of hydrology to align baseflow proportions with calculated values produced more typical ranges of baseflow particularly in the larger, drier, grazing catchments (Burdekin, Fitzroy and Cape York (CY)). In these regions many gauges were recalibrated and commonly the baseflow portion decreased from previous calibration proportions. The recalibration had negligible impact on average annual flow across the GBR with a small increase of 1% to 73,500,000 ML/yr. Instream deposition and remobilisation functionality were implemented in the Wet Tropics (WT), Mackay Whitsunday (MW) and Burnett Mary (BM) regions for RC2015. The average annual baseline loads for RC2015 are presented in Table 1. Generally the updated average annual baseline loads are higher than the RC2014 loads, except for the photosynthesis II toxic equivalent (PSII TE) pesticides which are approximately 10% lower than RC2014. The minor increase in loads from the previous Report Card are in part due to the recalibration of hydrology resulting in a minor increase in flow and therefore constituent loads. The decrease in PSII TE load from RC2014 is likely a product of a shift to alternative products. Table 1 Baseline GBR constituent loads TSS TN DIN DON PN TP DIP DOP PP PSII TE (kt/yr) (t/yr) (t/yr) (t/yr) (t/yr) (t/yr) (t/yr) (t/yr) (t/yr) (kg/yr) 9,925 55,083 12,028 18,303 24,753 13,418 2,143 1,074 10,201 6,758 The progress towards Reef Plan targets is presented in Figure 1. ‘Moderate’ progress has been made towards the fine sediment load reduction target of 20%. The cumulative reduction across the GBR is 12.3%, with the Burdekin region at 17.2%. ‘Very good’ progress is reported for Particulate Phosphorus (PP) reduction, which is well over half way towards the target at 14.7%. The WT is the only region to have reached the target having achieved a 20.7% reduction. For Particulate Nitrogen (PN), the cumulative reduction is 11.6%, which is classified as ‘moderate’ progress, with the Burdekin region showing the greatest progress with a reported 15.3% reduction thus far. Progress towards the DIN target of 50% is classified as ‘very poor’ as it stands at 18.1% for RC2015. Only the Burnett Mary region is making ‘good’ progress at 31.5%. Reductions in PSII TE load are rated as ‘moderate’ with a reduction of 33.7% across the GBR. Progress has been most improved in the MW region with a 44% reduction thus far. 3 Source Catchments modelling – Updated methodology and results In summary, progress is being made for all constituents towards reaching the Reef Plan water quality targets. There is scope for greater reductions to be achieved managing DIN in the WT where progress is at 14.7% or ‘very poor’, and for sediment in the Fitzroy and BM regions, with both regions reporting ‘very poor’ progress at 5.5% and 3% respectively. The ratings of performance for load reductions are available at www.reefplan.qld.gov.au. It should be noted that the scoring system has changed since RC2014. Figure 1 Progress towards Reef Plan targets till 2015 for the whole of GBR 4 Source Catchments modelling – Updated methodology and results Contents Executive Summary ................................................................................................................................ 3 List of Tables ......................................................................................................................................... 11 List of Figures ........................................................................................................................................ 15 Acronyms .............................................................................................................................................. 18 Definitions of sources and sinks ........................................................................................................... 19 Modelling assumptions .......................................................................................................................... 20 Introduction............................................................................................................................................ 22 Model Improvement Cycle ................................................................................................................. 23 Integrating modelling and monitoring ............................................................................................. 24 Application of modelling outputs .................................................................................................... 25 Quality assurance and peer review ............................................................................................... 25 Methods................................................................................................................................................. 27 GBR methodology updates ............................................................................................................... 28 Hydrology ....................................................................................................................................... 28 Hillslope generation model ............................................................................................................ 29 Sugarcane constituent generation ................................................................................................. 30 HowLeaky cropping constituent generation ................................................................................... 30 In-stream models ........................................................................................................................... 30 Predevelopment Model .................................................................................................................. 31 Constituent load validation ................................................................................................................ 31 Performance ratings ....................................................................................................................... 31 Scenario modelling – All A and All B management ........................................................................... 32 Baseline Model .............................................................................................................................. 32 All B Scenario ................................................................................................................................ 33 All A Scenario ...............................................................................................................................
Recommended publications
  • Queensland Public Boat Ramps
    Queensland public boat ramps Ramp Location Ramp Location Atherton shire Brisbane city (cont.) Tinaroo (Church Street) Tinaroo Falls Dam Shorncliffe (Jetty Street) Cabbage Tree Creek Boat Harbour—north bank Balonne shire Shorncliffe (Sinbad Street) Cabbage Tree Creek Boat Harbour—north bank St George (Bowen Street) Jack Taylor Weir Shorncliffe (Yundah Street) Cabbage Tree Creek Boat Harbour—north bank Banana shire Wynnum (Glenora Street) Wynnum Creek—north bank Baralaba Weir Dawson River Broadsound shire Callide Dam Biloela—Calvale Road (lower ramp) Carmilla Beach (Carmilla Creek Road) Carmilla Creek—south bank, mouth of creek Callide Dam Biloela—Calvale Road (upper ramp) Clairview Beach (Colonial Drive) Clairview Beach Moura Dawson River—8 km west of Moura St Lawrence (Howards Road– Waverley Creek) Bund Creek—north bank Lake Victoria Callide Creek Bundaberg city Theodore Dawson River Bundaberg (Kirby’s Wall) Burnett River—south bank (5 km east of Bundaberg) Beaudesert shire Bundaberg (Queen Street) Burnett River—north bank (downstream) Logan River (Henderson Street– Henderson Reserve) Logan Reserve Bundaberg (Queen Street) Burnett River—north bank (upstream) Biggenden shire Burdekin shire Paradise Dam–Main Dam 500 m upstream from visitors centre Barramundi Creek (Morris Creek Road) via Hodel Road Boonah shire Cromarty Creek (Boat Ramp Road) via Giru (off the Haughton River) Groper Creek settlement Maroon Dam HG Slatter Park (Hinkson Esplanade) downstream from jetty Moogerah Dam AG Muller Park Groper Creek settlement Bowen shire (Hinkson
    [Show full text]
  • Christie Gallen, Kristie Thompson, Chris Paxman, Jochen Mueller
    2 0 1 4 - 2 0 1 5 Christie Gallen, Kristie Thompson, Chris Paxman, Jochen Mueller Project Team - Inshore Marine Water Quality Monitoring - Christie Gallen1, Chris Paxman1, Kristie Thompson1, Elissa O’Malley1, Natalia Montero Ruiz1, Jochen Mueller1 Project Team - Assessment of Terrestrial Run-off Entering the Reef: Christie Gallen1, Kristie Thompson1, Chris Paxman1, Jochen Mueller1, Eduardo Da Silva2, Dominique O’Brien2, Dieter Tracey2, Caroline Petus2, Michelle Devlin2 1The National Research Centre for Environmental Toxicology (Entox) The University of Queensland 39 Kessels Rd Coopers Plains Qld 4108 2 The Centre for Tropical Water & Aquatic Ecosystem Research (TropWATER), Catchment to Reef Processes Research Group, James Cook University Townsville, Qld 4811 © Copyright University of Queensland 2016 All rights are reserved and no part of this document may be reproduced, stored or copied in any form or by any means whatsoever except with the prior written permission of the University of Queensland. ISBN: 9781742721668 Report should be cited as: Gallen, C., Thompson, K., Paxman, C., Devlin, M., Mueller, J. (2016) Marine Monitoring Program. Annual Report for inshore pesticide monitoring: 2014 to 2015. Report for the Great Barrier Reef Marine Park Authority. The University of Queensland, The National Research Centre for Environmental Toxicology (Entox), Brisbane. Front cover image: View south towards the Russell River National Park and the junction of the Russell and Mulgrave Rivers over flooded sugar fields © Dieter Tracey, 2015. DISCLAIMER While reasonable efforts have been made to ensure that the contents of this document are factually correct, Entox does not make any representation or give any warranty regarding the accuracy, completeness, currency or suitability for any particular purpose of the information or statements contained in this document.
    [Show full text]
  • Basin-Specific Ecologically Relevant Water Quality Targets for the Great Barrier Reef
    Development of basin-specific ecologically relevant water quality targets for the Great Barrier Reef Jon Brodie, Mark Baird, Jane Waterhouse, Mathieu Mongin, Jenny Skerratt, Cedric Robillot, Rachael Smith, Reinier Mann and Michael Warne TropWATER Report number 17/38 June 2017 Development of basin-specific ecologically relevant water quality targets for the Great Barrier Reef Report prepared by Jon Brodie1, Mark Baird2, Jane Waterhouse1, Mathieu Mongin2, Jenny Skerratt2, Cedric Robillot3, Rachael Smith4, Reinier Mann4 and Michael Warne4,5 2017 1James Cook University, 2CSIRO, 3eReefs, 4Department of Science, Information Technology and Innovation, 5Centre for Agroecology, Water and Resilience, Coventry University, Coventry, United Kingdom EHP16055 – Update and add to the existing 2013 Scientific Consensus Statement to incorporate the most recent science and to support the 2017 update of the Reef Water Quality Protection Plan Input and review of the development of the targets provided by John Bennett, Catherine Collier, Peter Doherty, Miles Furnas, Carol Honchin, Frederieke Kroon, Roger Shaw, Carl Mitchell and Nyssa Henry throughout the project. Centre for Tropical Water & Aquatic Ecosystem Research (TropWATER) James Cook University Townsville Phone: (07) 4781 4262 Email: [email protected] Web: www.jcu.edu.au/tropwater/ Citation: Brodie, J., Baird, M., Waterhouse, J., Mongin, M., Skerratt, J., Robillot, C., Smith, R., Mann, R., Warne, M., 2017. Development of basin-specific ecologically relevant water quality targets for the Great Barrier
    [Show full text]
  • Surface Water Ambient Network (Water Quality) 2020-21
    Surface Water Ambient Network (Water Quality) 2020-21 July 2020 This publication has been compiled by Natural Resources Divisional Support, Department of Natural Resources, Mines and Energy. © State of Queensland, 2020 The Queensland Government supports and encourages the dissemination and exchange of its information. The copyright in this publication is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. Under this licence you are free, without having to seek our permission, to use this publication in accordance with the licence terms. You must keep intact the copyright notice and attribute the State of Queensland as the source of the publication. Note: Some content in this publication may have different licence terms as indicated. For more information on this licence, visit https://creativecommons.org/licenses/by/4.0/. The information contained herein is subject to change without notice. The Queensland Government shall not be liable for technical or other errors or omissions contained herein. The reader/user accepts all risks and responsibility for losses, damages, costs and other consequences resulting directly or indirectly from using this information. Summary This document lists the stream gauging stations which make up the Department of Natural Resources, Mines and Energy (DNRME) surface water quality monitoring network. Data collected under this network are published on DNRME’s Water Monitoring Information Data Portal. The water quality data collected includes both logged time-series and manual water samples taken for later laboratory analysis. Other data types are also collected at stream gauging stations, including rainfall and stream height. Further information is available on the Water Monitoring Information Data Portal under each station listing.
    [Show full text]
  • Functioning and Changes in the Streamflow Generation of Catchments
    Ecohydrology in space and time: functioning and changes in the streamflow generation of catchments Ralph Trancoso Bachelor Forest Engineering Masters Tropical Forests Sciences Masters Applied Geosciences A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2016 School of Earth and Environmental Sciences Trancoso, R. (2016) PhD Thesis, The University of Queensland Abstract Surface freshwater yield is a service provided by catchments, which cycle water intake by partitioning precipitation into evapotranspiration and streamflow. Streamflow generation is experiencing changes globally due to climate- and human-induced changes currently taking place in catchments. However, the direct attribution of streamflow changes to specific catchment modification processes is challenging because catchment functioning results from multiple interactions among distinct drivers (i.e., climate, soils, topography and vegetation). These drivers have coevolved until ecohydrological equilibrium is achieved between the water and energy fluxes. Therefore, the coevolution of catchment drivers and their spatial heterogeneity makes their functioning and response to changes unique and poses a challenge to expanding our ecohydrological knowledge. Addressing these problems is crucial to enabling sustainable water resource management and water supply for society and ecosystems. This thesis explores an extensive dataset of catchments situated along a climatic gradient in eastern Australia to understand the spatial and temporal variation
    [Show full text]
  • Waterpark Creek Fishway Project James Donaldson, Matthew Moore & Tim Marsden
    Department of Employment, and Innovation Development Economic Department Waterpark Creek Fishway Project James Donaldson, Matthew Moore & Tim Marsden 1 © The State of Queensland, Department of Employment, Economic Development and Innovation, 2012. Except as permitted by the Copyright Act 1968, no part of the work may in any form or by any electronic, mechanical, photocopying, recording, or any other means be reproduced, stored in a retrieval system or be broadcast or transmitted without the prior written permission of the Department of Employment, Economic Development and Innovation. The information contained herein is subject to change without notice. The copyright owner shall not be liable for technical or other errors or omissions contained herein. The reader/user accepts all risks and responsibility for losses, damages, costs and other consequences resulting directly or indirectly from using this information. For further information contact: Tim Marsden Fisheries Biologist Fisheries Queensland Ph: (07) 49670 724 Copyright protects this publication. Except for purposes permitted by the Copyright Act, reproduction by whatever means is prohibited without the prior written permission of the Department of Primary Industries and Fisheries, Queensland. Enquires should be addressed to: Deputy Director General (Fisheries) Fisheries Queensland GPO Box 46 BRISBANE QLD 4001 Cover Figure: Top: Waterpark Creek vertical slot fishway. Bottom left: Backpack electrofish sampling in Waterpark Ck. Bottom right: Bullrout, a diadromous species, sampled
    [Show full text]
  • Surface Water Network Review Final Report
    Surface Water Network Review Final Report 16 July 2018 This publication has been compiled by Operations Support - Water, Department of Natural Resources, Mines and Energy. © State of Queensland, 2018 The Queensland Government supports and encourages the dissemination and exchange of its information. The copyright in this publication is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. Under this licence you are free, without having to seek our permission, to use this publication in accordance with the licence terms. You must keep intact the copyright notice and attribute the State of Queensland as the source of the publication. Note: Some content in this publication may have different licence terms as indicated. For more information on this licence, visit https://creativecommons.org/licenses/by/4.0/. The information contained herein is subject to change without notice. The Queensland Government shall not be liable for technical or other errors or omissions contained herein. The reader/user accepts all risks and responsibility for losses, damages, costs and other consequences resulting directly or indirectly from using this information. Interpreter statement: The Queensland Government is committed to providing accessible services to Queenslanders from all culturally and linguistically diverse backgrounds. If you have difficulty in understanding this document, you can contact us within Australia on 13QGOV (13 74 68) and we will arrange an interpreter to effectively communicate the report to you. Surface
    [Show full text]
  • Downloaded from the SKM Website at Management/STEDI.Aspx
    Department of Environment and Resource Management Improved Assessment of the Impact of Stock and Domestic Farm Dams in Queensland STATEWIDE ASSESSMENT: REPORT 2 Hydrological assessment of stock and domestic farm dams in Queensland Final 28 March 2012 Department of Environment and Resource Management Improved Assessment of the Impact of Stock and Domestic Farm Dams in Queensland STATEWIDE ASSESSMENT: REPORT 2 Hydrological assessment of stock and domestic farm dams in Queensland Final 28 March 2012 This project was funded by the Australian Government through the National Water Commission’s Raising National Water Standards Program. Sinclair Knight Merz ABN 37 001 024 095 Cnr of Cordelia and Russell Street South Brisbane QLD 4101 Australia PO Box 3848 South Brisbane QLD 4101 Australia Tel: +61 7 3026 7100 Fax: +61 7 3026 7300 Web: www.globalskm.com COPYRIGHT: This work is copyright. Apart from any use permitted under the Australian Copyright Act 1968, no part of this report may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the Department of Environment and Resource Management, 2012. LIMITATION: This report has been prepared on behalf of and for the exclusive use of Sinclair Knight Merz Pty Ltd’s Client, and is subject to and issued in connection with the provisions of the agreement between Sinclair Knight Merz and its Client. Sinclair Knight Merz accepts no liability or responsibility whatsoever for or in respect of any use of or reliance upon this report by any third party. The SKM logo trade mark is a registered trade mark of Sinclair Knight Merz Pty Ltd.
    [Show full text]
  • A) Marine Status
    Status of marine and coastal natural assets in the Fitzroy Basin September 2015 Prepared by Johanna Johnson, Jon Brodie and Nicole Flint for the Fitzroy Basin Association Incorporated Version 6: 01 November 2015 Contents Executive Summary ................................................................................................................................. 1 1. Introduction .................................................................................................................................... 3 2. Coastal natural assets: status and trends ....................................................................................... 5 2.1. Estuaries .................................................................................................................................. 5 2.2. Coastal wetlands ..................................................................................................................... 6 2.3. Islands and cays .................................................................................................................... 12 3. Marine assets: status and trends .................................................................................................. 14 3.1. Coral reefs ............................................................................................................................. 16 3.2. Seagrass meadows ................................................................................................................ 21 3.3. Species of conservation interest ..........................................................................................
    [Show full text]
  • 313 Brief History of the Coal Mining Industry
    313 BRIEF HISTORY OF THE COAL MINING INDUSTRY IN QUEENSLAND [By E. F. DUNNE, Chairman, the Queensland Coal Board] (Read at a meeting of The Historical Society of Queensland, Inc., on 23rd November 1950). Ladies and Gentlemen— When I undertook to prepare a paper on the his­ tory of the Coal Mining Industry in Queensland I did so hoping that I would be able to find many accessible early records that would afford me an opportunity of presenting to you a co-ordinated chronological history of the discovery and development of the various fields throughout the State that have been responsible for the production of the main tonnages which appear in the records. I regret to say, however, that my re­ searches which have been mainly confined to the records of the Mines Department and the Public Lib­ rary have not yielded very much detailed information regarding the interesting factors which might form an historical narrative for such a paper. Geology and Geography Before presenting the story of the development of the coal resources of the various districts in the State it is, I think, essential to refer to the coal deposits in relation to the geology governing them, their location and their extent. Coal-bearing formations occur in Queensland, belonging to the Tertiary, Cretaceous, Jurassic, Trias- sic and Permian ages. Of these, the Mesozoic measures of the Southern and Central districts have, because of their geographical advantage, supplied the bulk of the output in the past, but it is in the Permian formations of the Central district that Queensland's potential wealth in coal mainly lies.
    [Show full text]
  • List of Rivers of Australia
    Sl. No Name State / Territory 1 Abba Western Australia 2 Abercrombie New South Wales 3 Aberfeldy Victoria 4 Aberfoyle New South Wales 5 Abington Creek New South Wales 6 Acheron Victoria 7 Ada (Baw Baw) Victoria 8 Ada (East Gippsland) Victoria 9 Adams Tasmania 10 Adcock Western Australia 11 Adelaide River Northern Territory 12 Adelong Creek New South Wales 13 Adjungbilly Creek New South Wales 14 Agnes Victoria 15 Aire Victoria 16 Albert Queensland 17 Albert Victoria 18 Alexander Western Australia 19 Alice Queensland 20 Alligator Rivers Northern Territory 21 Allyn New South Wales 22 Anacotilla South Australia 23 Andrew Tasmania 24 Angas South Australia 25 Angelo Western Australia 26 Anglesea Victoria 27 Angove Western Australia 28 Annan Queensland 29 Anne Tasmania 30 Anthony Tasmania 31 Apsley New South Wales 32 Apsley Tasmania 33 Araluen Creek New South Wales 34 Archer Queensland 35 Arm Tasmania 36 Armanda Western Australia 37 Arrowsmith Western Australia 38 Arte Victoria 39 Arthur Tasmania 40 Arthur Western Australia 41 Arve Tasmania 42 Ashburton Western Australia 43 Avoca Victoria 44 Avon Western Australia 45 Avon (Gippsland) Victoria 46 Avon (Grampians) Victoria 47 Avon (source in Mid-Coast Council LGA) New South Wales 48 Avon (source in Wollongong LGA) New South Wales 49 Back (source in Cooma-Monaro LGA) New South Wales 50 Back (source in Tamworth Regional LGA) New South Wales 51 Back Creek (source in Richmond Valley LGA) New South Wales 52 Badger Tasmania 53 Baerami Creek New South Wales 54 Baffle Creek Queensland 55 Bakers Creek New
    [Show full text]
  • Stream Gauging Station Network
    Stream Gauging Station Network 2019–20 October 2019 This publication has been compiled by Natural Resources Divisional Support – Water, Department of Natural Resources Mines and Energy. © State of Queensland, 2019 The Queensland Government supports and encourages the dissemination and exchange of its information. The copyright in this publication is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. Under this licence you are free, without having to seek our permission, to use this publication in accordance with the licence terms. You must keep intact the copyright notice and attribute the State of Queensland as the source of the publication. Note: Some content in this publication may have different licence terms as indicated. For more information on this licence, visit https://creativecommons.org/licenses/by/4.0/. The information contained herein is subject to change without notice. The Queensland Government shall not be liable for technical or other errors or omissions contained herein. The reader/user accepts all risks and responsibility for losses, damages, costs and other consequences resulting directly or indirectly from using this information. Interpreter statement: The Queensland Government is committed to providing accessible services to Queenslanders from all culturally and linguistically diverse backgrounds. If you have difficulty in understanding this document, you can contact us within Australia on 13QGOV (13 74 68) and we will arrange an interpreter to effectively communicate the report to you. Summary This document lists the stream gauging station sites which make up the Department of Natural Resources, Mines and Energy’s stream height and stream flow monitoring network (the Stream Gauging Station Network).
    [Show full text]