Low-noise Design Issues for Analog Front-end Electronics in 130 nm and 90 nm CMOS Technologies M. Manghisoni a, c , L. Ratti b, c , V. Re a, c , V. Speziali b, c , G. Traversi a, c a Università di Bergamo, Dipartimento di Ingegneria Industriale, Viale Marconi, 5, 24044 Dalmine, Italy b Università di Pavia, Dipartimento di Elettronica, Via Ferrata, 1, 27100 Pavia, Italy c INFN, Sezione di Pavia, Via Bassi, 6, 27100 Pavia, Italy
[email protected] Abstract belonging to two commercial CMOS processes with minimum feature size of 130 nm and 90 nm manufactured by Deep sub-micron CMOS technologies provide well- STMicroelectronics. The devices were characterized at drain established solutions to the implementation of low-noise currents from several tens of µA to 1 mA, that is, the usual front-end electronics in various detector applications. The IC operating currents of input devices in integrated charge- designers’ effort is presently shifting to 130 nm CMOS sensitive amplifiers. In these conditions, deep sub-micron technologies, or even to the next technology node, to devices are biased in weak or moderate inversion. The implement readout integrated circuits for silicon strip and behavior of the main noise parameters modelling the 1/f and pixel detectors, in view of future HEP applications. In this white noise terms is studied as a function of the device work the results of noise measurements carried out on CMOS polarity and of the gate length and width to account for devices in 130 nm and 90 nm commercial processes are different detector requirements. The wide set of presented.