Genetic Differentiation and Species Status of the Large-Bodied Leaf-Tailed Geckos Uroplatus Fimbriatus and U
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Blumgart Et Al 2017- Herpetological Survey Nosy Komba
Journal of Natural History ISSN: 0022-2933 (Print) 1464-5262 (Online) Journal homepage: http://www.tandfonline.com/loi/tnah20 Herpetological diversity across intact and modified habitats of Nosy Komba Island, Madagascar Dan Blumgart, Julia Dolhem & Christopher J. Raxworthy To cite this article: Dan Blumgart, Julia Dolhem & Christopher J. Raxworthy (2017): Herpetological diversity across intact and modified habitats of Nosy Komba Island, Madagascar, Journal of Natural History, DOI: 10.1080/00222933.2017.1287312 To link to this article: http://dx.doi.org/10.1080/00222933.2017.1287312 Published online: 28 Feb 2017. Submit your article to this journal Article views: 23 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tnah20 Download by: [BBSRC] Date: 21 March 2017, At: 02:56 JOURNAL OF NATURAL HISTORY, 2017 http://dx.doi.org/10.1080/00222933.2017.1287312 Herpetological diversity across intact and modified habitats of Nosy Komba Island, Madagascar Dan Blumgart a, Julia Dolhema and Christopher J. Raxworthyb aMadagascar Research and Conservation Institute, BP 270, Hellville, Nosy Be, Madagascar; bDivision of Vertebrate Zoology, American, Museum of Natural History, New York, NY, USA ABSTRACT ARTICLE HISTORY A six month herpetological survey was undertaken between March Received 16 August 2016 and September 2015 on Nosy Komba, an island off of the north- Accepted 17 January 2017 west coast of mainland Madagascar which has undergone con- KEYWORDS fi siderable anthropogenic modi cation. A total of 14 species were Herpetofauna; conservation; found that have not been previously recorded on Nosy Komba, Madagascar; Nosy Komba; bringing the total island diversity to 52 (41 reptiles and 11 frogs). -
No 811/2008 of 13 August 2008 Suspending the Introduction Into the Community of Specimens of Certain Species of Wild Fauna and Flora
14.8.2008EN Official Journal of the European Union L 219/17 COMMISSION REGULATION (EC) No 811/2008 of 13 August 2008 suspending the introduction into the Community of specimens of certain species of wild fauna and flora THE COMMISSION OF THE EUROPEAN COMMUNITIES, — Accipiter erythropus, Aquila rapax, Gyps africanus, Lophaetus occipitalis and Poicephalus gulielmi from Guinea, Having regard to the Treaty establishing the European Community, — Hieraaetus ayresii, Hieraaetus spilogaster, Polemaetus bellicosus, Falco chicquera, Varanus ornatus (wild and Having regard to Council Regulation (EC) No 338/97 of ranched specimens) and Calabaria reinhardtii (wild 9 December 1996 on the protection of species of wild fauna specimens) from Togo, and flora by regulating trade therein (1), and in particular Article 19(2) thereof, — Agapornis pullarius and Poicephalus robustus from Côte d’Ivoire, After consulting the Scientific Review Group, — Stephanoaetus coronatus from Côte d’Ivoire and Togo, Whereas: — Pyrrhura caeruleiceps from Colombia; Pyrrhura pfrimeri (1) Article 4(6) of Regulation (EC) No 338/97 provides that from Brazil, the Commission may establish restrictions to the intro duction of certain species into the Community in accordance with the conditions laid down in points (a) — Brookesia decaryi, Uroplatus ebenaui, Uroplatus fimbriatus, to (d) thereof. Furthermore, implementing measures for Uroplatus guentheri, Uroplatus henkeli, Uroplatus lineatus, such restrictions have been laid down in Commission Uroplatus malama, Uroplatus phantasticus, Uroplatus Regulation (EC) No 865/2006 of 4 May 2006 laying pietschmanni, Uroplatus sikorae, Euphorbia ankarensis, down detailed rules concerning the implementation of Euphorbia berorohae, Euphorbia bongolavensis, Euphorbia Council Regulation (EC) No 338/97 of the protection duranii, Euphorbia fiananantsoae, Euphorbia iharanae, of species of wild fauna and flora by regulating trade Euphorbia labatii, Euphorbia lophogona, Euphorbia 2 therein ( ). -
Literature Cited in Lizards Natural History Database
Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica. -
Gross Trade in Appendix II FAUNA (Direct Trade Only), 1999-2010 (For
AC25 Inf. 5 (1) Gross trade in Appendix II FAUNA (direct trade only), 1999‐2010 (for selection process) N.B. Data from 2009 and 2010 are incomplete. Data extracted 1 April 2011 Phylum Class TaxOrder Family Taxon Term Unit 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 Total CHORDATA MAMMALIA ARTIODACTYLA Bovidae Ammotragus lervia BOD 0 00001000102 CHORDATA MAMMALIA ARTIODACTYLA Bovidae Ammotragus lervia BON 0 00080000008 CHORDATA MAMMALIA ARTIODACTYLA Bovidae Ammotragus lervia HOR 0 00000110406 CHORDATA MAMMALIA ARTIODACTYLA Bovidae Ammotragus lervia LIV 0 00060000006 CHORDATA MAMMALIA ARTIODACTYLA Bovidae Ammotragus lervia SKI 1 11311000008 CHORDATA MAMMALIA ARTIODACTYLA Bovidae Ammotragus lervia SKP 0 00000010001 CHORDATA MAMMALIA ARTIODACTYLA Bovidae Ammotragus lervia SKU 2 052101000011 CHORDATA MAMMALIA ARTIODACTYLA Bovidae Ammotragus lervia TRO 15 42 49 43 46 46 27 27 14 37 26 372 CHORDATA MAMMALIA ARTIODACTYLA Bovidae Antilope cervicapra TRO 0 00000020002 CHORDATA MAMMALIA ARTIODACTYLA Bovidae Bison bison athabascae BOD 0 00100001002 CHORDATA MAMMALIA ARTIODACTYLA Bovidae Bison bison athabascae HOP 0 00200000002 CHORDATA MAMMALIA ARTIODACTYLA Bovidae Bison bison athabascae HOR 0 0010100120216 CHORDATA MAMMALIA ARTIODACTYLA Bovidae Bison bison athabascae LIV 0 0 5 14 0 0 0 30 0 0 0 49 CHORDATA MAMMALIA ARTIODACTYLA Bovidae Bison bison athabascae MEA KIL 0 5 27.22 0 0 272.16 1000 00001304.38 CHORDATA MAMMALIA ARTIODACTYLA Bovidae Bison bison athabascae MEA 0 00000000101 CHORDATA MAMMALIA ARTIODACTYLA Bovidae Bison bison athabascae -
COMMISSION IMPLEMENTING REGULATION (EU) 2017/1915 Of
20.10.2017 EN Official Journal of the European Union L 271/7 COMMISSION IMPLEMENTING REGULATION (EU) 2017/1915 of 19 October 2017 prohibiting the introduction into the Union of specimens of certain species of wild fauna and flora THE EUROPEAN COMMISSION, Having regard to the Treaty on the Functioning of the European Union, Having regard to Council Regulation (EC) No 338/97 of 9 December 1996 on the protection of species of wild fauna and flora by regulating trade therein (1), and in particular Article 4(6) thereof, Whereas: (1) The purpose of Regulation (EC) No 338/97 is to protect species of wild fauna and flora and to guarantee their conservation by regulating trade in animal and plant species listed in its Annexes. The species listed in the Annexes include the species set out in the Appendices to the Convention on International Trade in Endangered Species of Wild Fauna and Flora signed in 1973 (2) (the Convention) as well as species whose conservation status requires that trade from, into and within the Union be regulated or monitored. (2) Article 4(6) of Regulation (EC) No 338/97 provides that the Commission may establish restrictions to the introduction of specimens of certain species into the Union in accordance with the conditions laid down in points (a) to (d) thereof. (3) On the basis of recent information, the Scientific Review Group established pursuant to Article 17 of Regulation (EC) No 338/97 has concluded that the conservation status of certain species listed in Annex B to Regulation (EC) No 338/97 would be seriously jeopardised if their introduction into the Union from certain countries of origin is not prohibited. -
Lizards & Snakes: Alive!
LIZARDSLIZARDS && SNAKES:SNAKES: ALIVE!ALIVE! EDUCATOR’SEDUCATOR’S GUIDEGUIDE www.sdnhm.org/exhibits/lizardsandsnakeswww.sdnhm.org/exhibits/lizardsandsnakes Inside: • Suggestions to Help You Come Prepared • Must-Read Key Concepts and Background Information • Strategies for Teaching in the Exhibition • Activities to Extend Learning Back in the Classroom • Map of the Exhibition to Guide Your Visit • Correlations to California State Standards Special thanks to the Ellen Browning Scripps Foundation and the Nordson Corporation Foundation for providing underwriting support of the Teacher’s Guide KEYKEY CONCEPTSCONCEPTS Squamates—legged and legless lizards, including snakes—are among the most successful vertebrates on Earth. Found everywhere but the coldest and highest places on the planet, 8,000 species make squamates more diverse than mammals. Remarkable adaptations in behavior, shape, movement, and feeding contribute to the success of this huge and ancient group. BEHAVIOR Over 45O species of snakes (yet only two species of lizards) An animal’s ability to sense and respond to its environment is are considered to be dangerously venomous. Snake venom is a crucial for survival. Some squamates, like iguanas, rely heavily poisonous “soup” of enzymes with harmful effects—including on vision to locate food, and use their pliable tongues to grab nervous system failure and tissue damage—that subdue prey. it. Other squamates, like snakes, evolved effective chemore- The venom also begins to break down the prey from the inside ception and use their smooth hard tongues to transfer before the snake starts to eat it. Venom is delivered through a molecular clues from the environment to sensory organs in wide array of teeth. -
Characterization of Five Complete Cyrtodactylus Mitogenome Structures Reveals Low Structural Diversity and Conservation of Repeated Sequences in the Lineage
Characterization of five complete Cyrtodactylus mitogenome structures reveals low structural diversity and conservation of repeated sequences in the lineage Prapatsorn Areesirisuk1,2,3, Narongrit Muangmai3,4, Kirati Kunya5, Worapong Singchat1,3, Siwapech Sillapaprayoon1,3, Sorravis Lapbenjakul1,3, Watcharaporn Thapana1,3,6, Attachai Kantachumpoo1,3,6, Sudarath Baicharoen7, Budsaba Rerkamnuaychoke2, Surin Peyachoknagul1,8, Kyudong Han9 and Kornsorn Srikulnath1,3,6,10 1 Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand 2 Human Genetic Laboratory, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand 3 Animal Breeding and Genetics Consortium of Kasetsart University (ABG-KU), Kasetsart University, Bangkok, Thailand 4 Department of Fishery Biology, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand 5 Nakhon Ratchasima Zoo, Nakhon Ratchasima, Thailand 6 Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University (CASTNAR, NRU-KU, Thailand), Kasetsart University, Bangkok, Thailand 7 Bureau of Conservation and Research, Zoological Park Organization under the Royal Patronage of His Majesty the King, Bangkok, Thailand 8 Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand 9 Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea 10 Center of Excellence on Agricultural Biotechnology: (AG-BIO/PERDO-CHE), Bangkok, Thailand ABSTRACT Submitted 30 July 2018 Accepted 15 November 2018 Mitochondrial genomes (mitogenomes) of five Cyrtodactylus were determined. Their Published 13 December 2018 compositions and structures were similar to most of the available gecko lizard Corresponding author mitogenomes as 13 protein-coding, two rRNA and 22 tRNA genes. -
Genetic Differentiation and Species Status of the Large-Bodied Leaf-Tailed Geckos Uroplatus Fimbriatus and U
SALAMANDRA 54(2) 132–146 15 May 2018Philip-SebastianISSN 0036–3375 Gehring et al. Genetic differentiation and species status of the large-bodied leaf-tailed geckos Uroplatus fimbriatus and U. giganteus Philip-Sebastian Gehring1, Souzanna Siarabi2, Mark D. Scherz3,4, Fanomezana M. Ratsoavina5, Andolalao Rakotoarison4,5, Frank Glaw3 & Miguel Vences4 1) Faculty of Biology / Biologiedidaktik, University Bielefeld, Universitätsstr. 25, 33615 Bielefeld, Germany 2) Molecular Ecology and Conservation Genetics Lab, Department of Biological Application and Technology, University of Ioannina, 45110 Ioannina, Greece 3) Zoologische Staatssammlung München (ZSM-SNSB), Münchhausenstr. 21, 81247 München, Germany 4) Technical University of Braunschweig, Division of Evolutionary Biology, Zoological Institute, Mendelssohnstr. 4, 38106 Braunschweig, Germany 5) Zoologie et Biodiversité Animale, Université d’Antananarivo, BP 906, Antananarivo, 101 Madagascar Corresponding author: Miguel Vences, e-mail: [email protected] Manuscript received: 27 December 2017 Accepted: 14 February 2018 by Jörn Köhler Abstract. The taxonomy of the Malagasy leaf-tailed geckos Uroplatus fimbriatus and U. giganteus is in need of revision since a molecular study casted doubt on the species status of U. giganteus from northern Madagascar. In this study we sepa- rately analyse DNA sequences of a mitochondrial gene (12S rRNA) and of four nuclear genes (CMOS, KIAA1239, RAG1, SACS), to test for concordant differentiation in these independent markers. In addition to the molecular data we provide a comprehensive review of colour variation of U. fimbriatusand U. giganteus populations from the entire distribution area based on photographs. The molecular evidence clearly supports a two-species taxonomy, with U. fimbriatus correspond- ing to a southern clade and U. -
Cop13 Prop. 27
CoP13 Prop. 27 CONSIDERATION OF PROPOSALS FOR AMENDMENT OF APPENDICES I AND II A. Proposal Inclusion of Uroplatus spp. in Appendix II. The most recent update of the species list applicable to the genus Uroplatus (Duméril, 1805) is Raxworthy’s from 2003, published in The natural history of Madagascar by Goodman and Benstead, University of Chicago Press. This update recognized 10 species within the genus Uroplatus, commonly known by its vernacular name of leaf-tailed gecko. These are: U. alluaudi Mocquard, 1894; U. ebenaui Boettger, 1879; U. fimbriatus Schneider, 1797; U. guentheri Mocquard, 1908; U. henkeli Böhme and Ibish, 1990; U. lineatus Duméril and Bibron, 1836; U. malama Nussbaum and Raxworthy, 1995; U. malahelo Nussbaum and Raxworthy, 1994; U. phantasticus Boulenger, 1888 and U. sikorae Boettger, 1913. However, a new species was described in the same year in an issue of Salamandra. This is Uroplatus pietschmanni, identified by Böhle and Schönecker (2003). This species, which closely resembles U. sikorae, was for a long time confused with it and indeed continues to be so. Since this confusion could lead to problems relating not only to population and range limits, but also to how the quantity traded is divided up, and in the absence of proper verification and review on the ground, we take the view that it is preferable to leave it out of consideration for the present. Furthermore, several other forms are under study, and these may constitute new species. Leaf-tailed geckos are among the reptiles which are traded internationally to differing extents, depending on the species concerned. The export data for 2001, 2002 and 2003 supplied by the Ministry of Water and Forests (MEF) make this point very clearly (see the analytical details in the section covering each individual species). -
A List of the Herpetological Type Specimens in the Zoologisches Forschungsmuseum Alexander Koenig, Bonn
Bonn zoological Bulletin Volume 59 pp. 79–108 Bonn, December 2010 A list of the herpetological type specimens in the Zoologisches Forschungsmuseum Alexander Koenig, Bonn Wolfgang Böhme Zoologisches Forschungsmuseum Alexander Koenig, Herpetology Section, Adenauerallee 160, D-53113 Bonn, Germany; E-mail: [email protected]. Abstract. In the herpetological collection of ZFMK 528 scientific species group names are represented by type materi- al. Of these, 304 names are documented by primary type specimens (onomatophores) while for 224 further names sec- ondary type specimens (typoids) are available, ranging chronologically from 1801 to 2010. The list is a shortened pred- ecessor of a comprehensive type catalogue in progress. It lists name bearing types with their catalogue numbers includ- ing information on further type series members also in other institutions, while secondary types are listed only by pres- ence, both in ZFMK and other collections including holotype repositories. Geographic origin and currently valid names are also provided. Key words. Amphibians and reptiles, type list, ZFMK Bonn. INTRODUCTION A first ZFMK herpetological type catalogue was published (currently section) in 1951, for many decades. Nonethe- (Böhme 1974) three years after I had entered Museum less, the present list does comprise some historical “pre- Koenig as a herpetological curator. It contained only 34 ZFMK” material which has been obtained after 1971 from reptilian names documented by type material, 22 of which smaller university museums, first of all from the Zoolog- were name-bearing type specimens (onomatophores), and ical Museum of the University of Göttingen (1977). Sin- 12 further names were documented by paratypes only. -
Captive Wildlife Exclusion List
Manual: Title: Appendix: Page: OPERATIONS CAPTIVE WILDLIFE II - 6 - 2 1. CAPTIVE WILDLIFE PERMIT AND IMPORT PERMIT EXCLUSION LIST Pursuant to Section 113(at) of the Wildlife Act, R.S.N.S. 1989, c504 and Section 6 of the General Wildlife Regulations, the Director of Wildlife has determined that: The following list of wildlife species may be: a. Imported into the province without an Import Permit issued under the Wildlife Act; or b. Kept in captivity without a Captive Wildlife Permit. Subject to the following conditions: 1. The species has originated from a reputable captive breeding program, or can legally and sustainably be taken from the wild in the originating jurisdiction. 2. The species are disease free. 3. The species will not be released to the wild without a Wildlife Release Permit. 4. The species will be properly housed, and if transported off the premises of the owner, shall be in an escape-proof container, except where permission is received from the property owner. Mammals ** Family: Petauridae Gliders Petuarus breviceps Sugar Glider Family: Erinaceidae Hedgehogs Atelerix albiventis African Pygmy Hedgehog Family: Mustelidae Weasels and Allies Mustela putorius furo Ferret (Domestic) Family: Muridae Old World Rats and Mice Rattus norvegicus Norway Rat (Common Brown) Rattus rattus Black Rat (Roof White Laboratory strain only) Family: Cricetidae New World Rats and Mice Meriones unquiculatus Gerbil (Mongolian) Mesocricetus auratus Hamster (Golden) Issued: October 11, 2007 Manual: Title: Appendix: Page: OPERATIONS CAPTIVE WILDLIFE II - 6 - 2 2. Family: Caviidae Guinea Pigs and Allies Cavia porcellus Guinea Pig Family: Chinchillidae Chinchillas Chincilla laniger Chinchilla Family: Leporidae Hares and Rabbits Oryctolagus cuniculus European Rabbit (domestic strain only) Birds Family: Psittacidae Parrots Psittaciformes spp.* All parrots, parakeets, lories, lorikeets, cockatoos and macaws. -
1 §4-71-6.5 List of Restricted Animals [ ] Part A: For
§4-71-6.5 LIST OF RESTRICTED ANIMALS [ ] PART A: FOR RESEARCH AND EXHIBITION SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Hirudinea ORDER Gnathobdellida FAMILY Hirudinidae Hirudo medicinalis leech, medicinal ORDER Rhynchobdellae FAMILY Glossiphoniidae Helobdella triserialis leech, small snail CLASS Oligochaeta ORDER Haplotaxida FAMILY Euchytraeidae Enchytraeidae (all species in worm, white family) FAMILY Eudrilidae Helodrilus foetidus earthworm FAMILY Lumbricidae Lumbricus terrestris earthworm Allophora (all species in genus) earthworm CLASS Polychaeta ORDER Phyllodocida FAMILY Nereidae Nereis japonica lugworm PHYLUM Arthropoda CLASS Arachnida ORDER Acari FAMILY Phytoseiidae 1 RESTRICTED ANIMAL LIST (Part A) §4-71-6.5 SCIENTIFIC NAME COMMON NAME Iphiseius degenerans predator, spider mite Mesoseiulus longipes predator, spider mite Mesoseiulus macropilis predator, spider mite Neoseiulus californicus predator, spider mite Neoseiulus longispinosus predator, spider mite Typhlodromus occidentalis mite, western predatory FAMILY Tetranychidae Tetranychus lintearius biocontrol agent, gorse CLASS Crustacea ORDER Amphipoda FAMILY Hyalidae Parhyale hawaiensis amphipod, marine ORDER Anomura FAMILY Porcellanidae Petrolisthes cabrolloi crab, porcelain Petrolisthes cinctipes crab, porcelain Petrolisthes elongatus crab, porcelain Petrolisthes eriomerus crab, porcelain Petrolisthes gracilis crab, porcelain Petrolisthes granulosus crab, porcelain Petrolisthes japonicus crab, porcelain Petrolisthes laevigatus crab, porcelain Petrolisthes