Pteridophyte Reproduction.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Pteridophyte Reproduction.Pdf 10/30/2011 Pteridophyte reproduction Modified 17-13 (19-9) Embryophytes Pteridophyta “Bryophytes” To be cont. To Liverworts Hornworts Mosses Rhynia (Fossil) Rhynia Lycopodiophyta microphylls megaphylls Transition to land Microphylls • One vascular trace – No branching vasculature in leaf – Forms from protostele http://28.media.tumblr.com/tumblr_lgpco8M9Ie1 qa2aauo1_500.jpg 1 10/30/2011 Megaphylls – Branching vascular traces (veins) in leaves – Typically large http://intro.bio.umb.edu/111- 112/OLLM/112s99/phyla/plants/pterophyta.jpg Are not always large. Highly reduced megaphylls in Equisetales. http://www.missouriplants.com/Ferns/E quisetum_hymenale_stems.jpg Remember the STELES Pteridophyta 2 10/30/2011 Stele modification in Pteridophyta (a few with eustele) eustele siphonostele ancestor had protostele, like Lycopodiophyta. Protosteles Lycopodiophyta Siphonosteles Most ferns, though, have siphonosteles with leaf gaps 3 10/30/2011 Eusteles Equisetales—eusteles; convergent with seed plants. Modification of life cycle and reproduction in Pteridophyta Heterosporous ferns Filicales endosporic gametophyte heterospory Eusporangiate ferns Equisetales leptosporangia above-ground photosynthetic above-ground photosynthetic gametophyte gametophyte ancestor had dominant homosporous sporophyte with underground non-photosynthetic gametophyte, like Lycopodiaceae Life cycles: above-ground photosynthetic gametophyte 4 10/30/2011 Modification of life cycle and reproduction in Pteridophyta 2. Leptosporangia Heterosporous ferns Filicales endosporic gametophyte heterospory Equisetales Eusporangiate ferns leptosporangia above-ground photosynthetic gametophyte ancestor had dominant homosporous sporophyte with underground non-photosynthetic gametophyte, like Lycopodiaceae Life cycles: eusporangia vs. leptosporangia Eusporangia: large 1 to 1000’s of spores the basal (primitive) condition walls several cells thick found in most land plants Leptosporangia: small 64 spores walls one cell thick have annulus (thickened ring) grouped into sori (sing. sorus) only in Filicales and heterosporous ferns Life cycles: eusporangia 5 10/30/2011 Life cycles: eusporangia in a eusporangiate fern (Botrychium) Life cycles: leptosporangia Life cycles: leptosporangia in Filicales http://www.google.com/imgres?q=leptosporangia+in+filicales&hl=en&clie http://t0.gstatic.com/images?q=tbn:ANd9GcQ5dCnB8I61yQSkLGFZHRNK9s nt=firefox-a&hs=HLb&sa=X&rls=org.mozilla:en- zAhC4CieR19Yvgi78YQTs01RUurg US:official&biw=748&bih=393&tbm=isch&prmd=imvns&tbnid=cDA5fNilc 4DjaM:&imgrefurl=http://www.increasemyvocabulary.com/definition/of/le ptosporangium/&docid=UL- NACsnDhf5jM&imgurl=http://farm3.static.flickr.com/2127/2263445746_6 1832fff71.jpg&w=500&h=375&ei=-2OsTtbwC62rsALHi8WADw&zoom=1 6 10/30/2011 Life cycles: leptosporangia grouped into sori in Filicales (Thelypteris) http://t2.gstatic.com/images?q=tbn:ANd9GcR67ZaOrG_IZnVCT JlKNnzNb9xRzv2WRyzTn65QY9_qNAtdmw-d Life cycles: leptosporangia grouped into sori in Filicales (Asplenium) http://t2.gstatic.com/images?q=tbn:ANd9GcRa-R- awiaCHFAk1U2wWgyE4uwVRf-2z5DuiTDyJ5trjRpP7kMP Modification of life cycle and reproduction in Pteridophyta 3. Heterospory and endosporic gametophytes Heterosporous ferns Filicales endosporic gametophyte heterospory Equisetales Eusporangiate ferns leptosporangia above-ground photosynthetic gametophyte ancestor had dominant homosporous sporophyte with underground non-photosynthetic gametophyte, like Lycopodiaceae 7 10/30/2011 Life cycles: heterospory The life cycle of Selaginella is the same as that found in the heterosporous ferns and in the seed plants. Embryophytes Pteridophytes “Bryophytes” To be cont. To Liverworts Hornworts Mosses Rhynia (Fossil) Rhynia Lycopodiophyta megaphylls Transition to land Equisetales: brief overview --highly reduced megaphylls --eusteles --homosporous --eusporangia --above-ground photosynthetic gametophyte --strobili --hollow, jointed stems embedded with silica --one genus, Equisetum, about 15 species; 8 10/30/2011 Equisetales: Equisetum Equisetales is the only fern group with strobili. Strobili are stems with modified leaves– spppyorophylls—clustered on them. These sporophylls are often called sporangiophores on Equisetum. http://www.sbs.utexas.edu/bio406d/images/pics/ equ/Equisetum%20hyemale%20strob1.jpg Equisetum: strobili 9 10/30/2011 Embryophytes Pteridophytes “Bryophytes” To be cont. To Liverworts Hornworts Mosses Rhynia (Fossil) Rhynia Lycopodiophyta megaphylls Transition to land Eusporangiate ferns: brief overview --megaphylls --protosteles --homosporous --eusporangia --underground, non-photosynthetic gametophyte --includes Psilotales and Ophioglossales --7 genera, about 70 species Eusporangiate ferns: Ophioglossales: Botrychium What you’re seeing here is one leaf http://www.rook.org/earl/bwca/nature/ferns/botrychium- multifidum-1sm.jpg 10 10/30/2011 Eusporangiate ferns: Ophioglossales: Ophioglossum http://hengduan.huh.harvard.e du/fieldnotes/photos/show_ima ge?image_id=1140 Eusporangiate ferns: Psilotales: Psilotum http://t0.gstatic.com/images?q=tbn:ANd9GcRN0J vXD52gT892P9oJD7fNeMmehdMwcUyqLf8yF_A TVFbdvvh0 Embryophytes Pteridophytes “Bryophytes” To be cont. To Liverworts Hornworts Mosses Rhynia (Fossil) Rhynia Lycopodiophyta megaphylls Transition to land 11 10/30/2011 Heterosporous ferns: brief overview --all aquatic --megaphylls --siphonosteles --heterosporous --leptosporangia --endosporic gametophyte --includes Marsileales and Salviniales --5 genera, about 70 species Heterosporous ferns: Salviniales: Azolla http://nas.er.usgs.gov/XIMAGESERVERX/2007/20071004180006.jpg Heterosporous ferns: Salviniales: Salvinia 12 10/30/2011 Heterosporous ferns: Marsileales: Marsilea Embryophytes Pteridophytes “Bryophytes” To be cont. To Liverworts Hornworts Mosses Rhynia (Fossil) Rhynia Lycopodiophyta megaphylls Transition to land Filicales: brief overview --megaphylls --siphonosteles (mostly) – few with eusteles --homosporous --leptosporangia --above-ground, photosynthetic gametophyte --about 320 genera, 10,500 species 13 10/30/2011 Filicales: Dennstaedtia Filicales: Pteridium http://t2.gstatic.com/images?q=tbn:ANd9GcQSnzinzDmcXng7WDPh3- KaypqI3JJUDSxUWSbyCjSa91eTqQOzcg 14.
Recommended publications
  • 1 5 Chapter 1 Introduction I. LIFE CYCLES and DIVERSITY of VASCULAR PLANTS the Subjects of This Thesis Are the Pteri
    Chapter 1-15 Chapter 1 Introduction I. LIFE CYCLES AND DIVERSITY OF VASCULAR PLANTS The subjects of this thesis are the pteridophytes and seed plants that are conventionally classified as the vascular plants or tracheophytes. Vascular plants were traditionally defined by the possession of specialized conducting tissues, called phloem and xylem. Mosses are now believed to have inherited their conducting tissues from a common ancestor with the tracheophytes (Mishler & Churchill 1984) but are not considered in this thesis. Vascular plants can be divided into four groups with respect to life cycle. These groups are homosporous pteridophytes, heterosporous pteridophytes, gymnosperms and angiosperms. This is not intended to be a phylogenetic classification. There are about a quarter of a million species of vascular plant alive today. The vast majority are angiosperms and most of the remainder are homosporous pteridophytes. Heterosporous pteridophytes and gymnosperms contribute only a small number of species (Table 1.1). TABLE 1.1 Estimated number of extant species in each of the major groups of vascular plants (data from Parker 1982). Homosporous pteridophytes 12,000 species Heterosporous pteridophytes <1,000 species Gymnosperms <1,000 species Angiosperms >200,000 species A. Homosporous pteridophytes Homosporous pteridophytes produce a single type of spore. Spores are dispersed and develop into photosynthetic or mycoparasitic gametophytes. A gametophyte's gender is indeterminate at the time of spore dispersal, and a single gametophyte may produce eggs and/or sperm. Sperm are motile, and require free water to fertilize eggs. The young sporophyte is nourished by the maternal gametophyte during early development but later becomes Chapter 1-16 nutritionally independent.
    [Show full text]
  • Gymnosperms the MESOZOIC: ERA of GYMNOSPERM DOMINANCE
    Chapter 24 Gymnosperms THE MESOZOIC: ERA OF GYMNOSPERM DOMINANCE THE VASCULAR SYSTEM OF GYMNOSPERMS CYCADS GINKGO CONIFERS Pinaceae Include the Pines, Firs, and Spruces Cupressaceae Include the Junipers, Cypresses, and Redwoods Taxaceae Include the Yews, but Plum Yews Belong to Cephalotaxaceae Podocarpaceae and Araucariaceae Are Largely Southern Hemisphere Conifers THE LIFE CYCLE OF PINUS, A REPRESENTATIVE GYMNOSPERM Pollen and Ovules Are Produced in Different Kinds of Structures Pollination Replaces the Need for Free Water Fertilization Leads to Seed Formation GNETOPHYTES GYMNOSPERMS: SEEDS, POLLEN, AND WOOD THE ECOLOGICAL AND ECONOMIC IMPORTANCE OF GYMNOSPERMS The Origin of Seeds, Pollen, and Wood Seeds and Pollen Are Key Reproductive SUMMARY Innovations for Life on Land Seed Plants Have Distinctive Vegetative PLANTS, PEOPLE, AND THE Features ENVIRONMENT: The California Coast Relationships among Gymnosperms Redwood Forest 1 KEY CONCEPTS 1. The evolution of seeds, pollen, and wood freed plants from the need for water during reproduction, allowed for more effective dispersal of sperm, increased parental investment in the next generation and allowed for greater size and strength. 2. Seed plants originated in the Devonian period from a group called the progymnosperms, which possessed wood and heterospory, but reproduced by releasing spores. Currently, five lineages of seed plants survive--the flowering plants plus four groups of gymnosperms: cycads, Ginkgo, conifers, and gnetophytes. Conifers are the best known and most economically important group, including pines, firs, spruces, hemlocks, redwoods, cedars, cypress, yews, and several Southern Hemisphere genera. 3. The pine life cycle is heterosporous. Pollen strobili are small and seasonal. Each sporophyll has two microsporangia, in which microspores are formed and divide into immature male gametophytes while still retained in the microsporangia.
    [Show full text]
  • General Botany Lab Review Fungi, Algae, Bryophytes, Ferns & Fern Allies
    General Botany Lab Review Fungi, Algae, Bryophytes, Ferns & Fern Allies You have looked at a lot of stuff – both live and via prepared slides. You’ve also labeled at least one Life Cycle Diagram for each of the groups. Know what your benchmarks are for a general life cycle diagram and be able to label them. I will not ask you to identify anything to species or genus; be able to identify things to “group” (i.e., ascomycete, bryophyta, etc.) Be able to identify growth form (e.g., unicell, filamentous, etc.). Recognize the differences between sexual and asexual reroductive structures. All questions will be multiple choice. Material looked at: UNIT 1: FUNGI EXERCISE 1: CHYTRIDS/ CHYTRIDOMYCOTA: Allmyces arbusculus – life and prepared slides EXERCISE 2: ZYGOMYCETES/ ZYGOMYCOTA: Rhizopus stolonifer – live and prepared slides EXERCISE 2: MYCORRHIZA and the GLOMEROMYCETES/ GLOMEROMYCOTA – prepared slides only EXERCISE 3: ASCOMYCETES/ ASCOMYCOTA Aspergillus sp., Penicillium sp., Saccharomyces cerevisiae, Peziza sp., Sordaria fimicola, and Morchella sp. – a mixture of live and prepared materials EXERCISE 4: BASIDIOMYCETES/BASIDIOMYCETES Agaricus, Coprinus, Cronartium (a rust), Ustilago (a smut) – slides, fresh, and dried EXERCISE 5: SLIME MOLDS – live and prepared Physarum EXERCISE 6: LICHENS – live and prepared slides be able to identify the various growth forms UNIT 2: ALGAE EXERCISE 1: CYANOBACTERIA Anabaena sp., Nostoc, and Oscillaroria – live and prepared material EXERCISE 2: SUPERGROUP EXCAVATA (Phylum Euglenophyta) – live and prepared material
    [Show full text]
  • XI MOBILE NO:9340839715 CHAPTER-3 Plant Kingd
    NAME OF THE TEACHER: SR. RENCY GEORGE SUBJECT: BIOLOGY TOPIC: CHAPTER -1 CLASS: XI MOBILE NO:9340839715 CHAPTER-3 Plant Kingdom Objectives :- Observe plants closely to notice features and characteristics of growth and development. Observe and identify differences in plants and animals. Observe similarities among plants (seeds, roots, stems, leaves, flowers, fruit) Learning Strategies:- • Explain Different systems of Classification. • Differentiate between Artificial and Natural System of Classification. • Explain Algae and its significance. • Differentiate between various classes of Algae. • Explain various modes of reproduction in Algae. RESOURCES: i.Text books ii.Learning Materials iii.Lab manual iv.E-Resources,video ,L.C.D etc… CLICK HERE TO PLAY CONTENT RELATED VIDEO ON YOU TUBE. https://youtu.be/SWlVX1gDd98 https://youtu.be/P_MyyxIQzm4 https://youtu.be/KmbFGIiwP4k https://youtu.be/mepU8gStVpg https://youtu.be/fnE01M0YlTc https://youtu.be/xir7xvLi8XE Contents Introduction Plant kingdom includes algae, bryophytes, pteridophytes, gymnosperms and angiosperms. ... Depending on the type of pigment possessed and the type of stored food, algae are classified into three classes, namely Chlorophyceae, Phaeophyceae and Rhodophyceae. Eukaryotic, multicellular, chlorophyll containing and having cell wall, are grouped under the kingdom Plantae. It is popularly known as plant kingdom. • Phylogenetic system of classification based on evolutionary relationship is presently used for classifying plants. • Numerical Taxonomy use computer by assigning code for each character and analyzing the features. • Cytotaxonomy is based on cytological information like chromosome number, structure and behaviour. • Chemotaxonomy uses chemical constituents of plants to resolve the confusion. Algae: These include the simplest plants which possess undifferentiated or thallus like forms, reproductive organs single celled called gametangia.
    [Show full text]
  • The Associations Between Pteridophytes and Arthropods
    FERN GAZ. 12(1) 1979 29 THE ASSOCIATIONS BETWEEN PTERIDOPHYTES AND ARTHROPODS URI GERSON The Hebrew University of Jerusalem, Faculty of Agriculture, Rehovot, Israel. ABSTRACT Insects belonging to 12 orders, as well as mites, millipedes, woodlice and tardigrades have been collected from Pterldophyta. Primitive and modern, as well as general and specialist arthropods feed on pteridophytes. Insects and mites may cause slight to severe damage, all plant parts being susceptible. Several arthropods are pests of commercial Pteridophyta, their control being difficult due to the plants' sensitivity to pesticides. Efforts are currently underway to employ insects for the biological control of bracken and water ferns. Although Pteridophyta are believed to be relatively resistant to arthropods, the evidence is inconclusive; pteridophyte phytoecdysones do not appear to inhibit insect feeders. Other secondary compounds of preridophytes, like prunasine, may have a more important role in protecting bracken from herbivores. Several chemicals capable of adversely affecting insects have been extracted from Pteridophyta. The litter of pteridophytes provides a humid habitat for various parasitic arthropods, like the sheep tick. Ants often abound on pteridophytes (especially in the tropics) and may help in protecting these plants while nesting therein. These and other associations are discussed . lt is tenatively suggested that there might be a difference in the spectrum of arthropods attacking ancient as compared to modern Pteridophyta. The Osmundales, which, in contrast to other ancient pteridophytes, contain large amounts of ·phytoecdysones, are more similar to modern Pteridophyta in regard to their arthropod associates. The need for further comparative studies is advocated, with special emphasis on the tropics.
    [Show full text]
  • The Origin of Alternation of Generations in Land Plants
    Theoriginof alternation of generations inlandplants: afocuson matrotrophy andhexose transport Linda K.E.Graham and LeeW .Wilcox Department of Botany,University of Wisconsin, 430Lincoln Drive, Madison,WI 53706, USA (lkgraham@facsta¡.wisc .edu ) Alifehistory involving alternation of two developmentally associated, multicellular generations (sporophyteand gametophyte) is anautapomorphy of embryophytes (bryophytes + vascularplants) . Microfossil dataindicate that Mid ^Late Ordovicianland plants possessed such alifecycle, and that the originof alternationof generationspreceded this date.Molecular phylogenetic data unambiguously relate charophyceangreen algae to the ancestryof monophyletic embryophytes, and identify bryophytes as early-divergentland plants. Comparison of reproduction in charophyceans and bryophytes suggests that the followingstages occurredduring evolutionary origin of embryophytic alternation of generations: (i) originof oogamy;(ii) retention ofeggsand zygotes on the parentalthallus; (iii) originof matrotrophy (regulatedtransfer ofnutritional and morphogenetic solutes fromparental cells tothe nextgeneration); (iv)origin of a multicellularsporophyte generation ;and(v) origin of non-£ agellate, walled spores. Oogamy,egg/zygoteretention andmatrotrophy characterize at least some moderncharophyceans, and arepostulated to represent pre-adaptativefeatures inherited byembryophytes from ancestral charophyceans.Matrotrophy is hypothesizedto have preceded originof the multicellularsporophytes of plants,and to represent acritical innovation.Molecular
    [Show full text]
  • Seedless Plants Key Concept Seedless Plants Do Not Produce Seeds 2 but Are Well Adapted for Reproduction and Survival
    Seedless Plants Key Concept Seedless plants do not produce seeds 2 but are well adapted for reproduction and survival. What You Will Learn When you think of plants, you probably think of plants, • Nonvascular plants do not have such as trees and flowers, that make seeds. But two groups of specialized vascular tissues. plants don’t make seeds. The two groups of seedless plants are • Seedless vascular plants have specialized vascular tissues. nonvascular plants and seedless vascular plants. • Seedless plants reproduce sexually and asexually, but they need water Nonvascular Plants to reproduce. Mosses, liverworts, and hornworts do not have vascular • Seedless plants have two stages tissue to transport water and nutrients. Each cell of the plant in their life cycle. must get water from the environment or from a nearby cell. So, Why It Matters nonvascular plants usually live in places that are damp. Also, Seedless plants play many roles in nonvascular plants are small. They grow on soil, the bark of the environment, including helping to form soil and preventing erosion. trees, and rocks. Mosses, liverworts, and hornworts don’t have true stems, roots, or leaves. They do, however, have structures Vocabulary that carry out the activities of stems, roots, and leaves. • rhizoid • rhizome Mosses Large groups of mosses cover soil or rocks with a mat of Graphic Organizer In your Science tiny green plants. Mosses have leafy stalks and rhizoids. A Journal, create a Venn Diagram that rhizoid is a rootlike structure that holds nonvascular plants in compares vascular plants and nonvas- place. Rhizoids help the plants get water and nutrients.
    [Show full text]
  • Pteridophyte Fungal Associations: Current Knowledge and Future Perspectives
    This is a repository copy of Pteridophyte fungal associations: Current knowledge and future perspectives. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/109975/ Version: Accepted Version Article: Pressel, S, Bidartondo, MI, Field, KJ orcid.org/0000-0002-5196-2360 et al. (2 more authors) (2016) Pteridophyte fungal associations: Current knowledge and future perspectives. Journal of Systematics and Evolution, 54 (6). pp. 666-678. ISSN 1674-4918 https://doi.org/10.1111/jse.12227 © 2016 Institute of Botany, Chinese Academy of Sciences. This is the peer reviewed version of the following article: Pressel, S., Bidartondo, M. I., Field, K. J., Rimington, W. R. and Duckett, J. G. (2016), Pteridophyte fungal associations: Current knowledge and future perspectives. Jnl of Sytematics Evolution, 54: 666–678., which has been published in final form at https://doi.org/10.1111/jse.12227. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website.
    [Show full text]
  • Curitiba, Southern Brazil
    data Data Descriptor Herbarium of the Pontifical Catholic University of Paraná (HUCP), Curitiba, Southern Brazil Rodrigo A. Kersten 1,*, João A. M. Salesbram 2 and Luiz A. Acra 3 1 Pontifical Catholic University of Paraná, School of Life Sciences, Curitiba 80.215-901, Brazil 2 REFLORA Project, Curitiba, Brazil; [email protected] 3 Pontifical Catholic University of Paraná, School of Life Sciences, Curitiba 80.215-901, Brazil; [email protected] * Correspondence: [email protected]; Tel.: +55-41-3721-2392 Academic Editor: Martin M. Gossner Received: 22 November 2016; Accepted: 5 February 2017; Published: 10 February 2017 Abstract: The main objective of this paper is to present the herbarium of the Pontifical Catholic University of Parana’s and its collection. The history of the HUCP had its beginning in the middle of the 1970s with the foundation of the Biology Museum that gathered both botanical and zoological specimens. In April 1979 collections were separated and the HUCP was founded with preserved specimens of algae (green, red, and brown), fungi, and embryophytes. As of October 2016, the collection encompasses nearly 25,000 specimens from 4934 species, 1609 genera, and 297 families. Most of the specimens comes from the state of Paraná but there were also specimens from many Brazilian states and other countries, mainly from South America (Chile, Argentina, Uruguay, Paraguay, and Colombia) but also from other parts of the world (Cuba, USA, Spain, Germany, China, and Australia). Our collection includes 42 fungi, 258 gymnosperms, 299 bryophytes, 2809 pteridophytes, 3158 algae, 17,832 angiosperms, and only one type of Mimosa (Mimosa tucumensis Barneby ex Ribas, M.
    [Show full text]
  • The Structure, Function, and Biosynthesis of Plant Cell Wall Pectic Polysaccharides
    Carbohydrate Research 344 (2009) 1879–1900 Contents lists available at ScienceDirect Carbohydrate Research journal homepage: www.elsevier.com/locate/carres The structure, function, and biosynthesis of plant cell wall pectic polysaccharides Kerry Hosmer Caffall a, Debra Mohnen a,b,* a University of Georgia, Department of Biochemistry and Molecular Biology and Complex Carbohydrate Research Center, 315 Riverbend Road Athens, GA 30602, United States b DOE BioEnergy Science Center (BESC), 315 Riverbend Road Athens, GA 30602, United States article info abstract Article history: Plant cell walls consist of carbohydrate, protein, and aromatic compounds and are essential to the proper Received 18 November 2008 growth and development of plants. The carbohydrate components make up 90% of the primary wall, Received in revised form 4 May 2009 and are critical to wall function. There is a diversity of polysaccharides that make up the wall and that Accepted 6 May 2009 are classified as one of three types: cellulose, hemicellulose, or pectin. The pectins, which are most abun- Available online 2 June 2009 dant in the plant primary cell walls and the middle lamellae, are a class of molecules defined by the pres- ence of galacturonic acid. The pectic polysaccharides include the galacturonans (homogalacturonan, Keywords: substituted galacturonans, and RG-II) and rhamnogalacturonan-I. Galacturonans have a backbone that Cell wall polysaccharides consists of -1,4-linked galacturonic acid. The identification of glycosyltransferases involved in pectin Galacturonan a Glycosyltransferases synthesis is essential to the study of cell wall function in plant growth and development and for maxi- Homogalacturonan mizing the value and use of plant polysaccharides in industry and human health.
    [Show full text]
  • An Illustrated Guide to the WETLAND FERNS and FERN ALLIES of FLORIDA John David Tobe, Ph.D
    INDEX TO FAMILIES OF FLORIDA WETLAND FERN AND FERN ALLIES ASPLENIACEAE 15 ATHYRIACEAE 22 AZOLLACEAE 25 BLECHNACEAE 26 DENNSTAEDITACEAE 30 DRYOPTERIDACEAE 32 EQUISETACEAE 36 GLEICHENIACEAE 37 HYMENOPHYLLACEAE 38 ISOËTACEAE 40 LYCOPODIACEAE 41 LYGODIACEAE 43 MARSILEACEAE 45 NEPHROLEPIDACEAE 47 OPHIOGLOSSACEAE 49 OSMUNDACEAE 53 PARKERIACEAE 55 POLYPODIACEAE 56 PSILOTACEAE 58 PTERIDACEAE 59 SALVINIACEAE 65 SCHIZAEACEAE 66 SELAGINELLACEAE 67 TECTARIACEAE 69 THELYPTERIACEAE 71 An Illustrated Guide to the WETLAND FERNS and FERN ALLIES of FLORIDA John David Tobe, Ph.D. First Edition Illustrated and Written by John David Tobe Copyright © 2019 John David Tobe All rights reserved under International and Pan-American Copyright Conventions. No part of this book may be reproduced in any form or by any means without permission in writing from John David Tobe. CONTENTS INTRODUCTION ............................................................................... 1 The Natural History of Ferns and Fern Allies ...................................... 3 Fern Life Cycle ..................................................................................... 4 Pteridophyte Structural Terminology ................................................... 5 Fern Leaf Types .................................................................................... 7 Illustrated Key to the Pteridophytes of Florida .................................... 8 DESCRIPTIVE PTERIDOPHYTE FLORA Illustrated Ferns and Fern Allies ..................................................... 9-78 INDEX
    [Show full text]
  • Marsileaceae (Pteridophyta)
    FLORA DE GUERRERO No. 66 Isoëtaceae (Pteridophyta) Marsileaceae (Pteridophyta) ERNESTO VELÁZQUEZ MONTES 2015 UNIVERSIDAD NACIONAL AU TÓNOMA DE MÉXICO FAC U LTAD DE CIENCIAS COMITÉ EDITORIAL Alan R. Smith Francisco Lorea Hernández University of California, Berkeley Instituto de Ecología A. C. Blanca Pérez García Leticia Pacheco Universidad Autónoma Metropolitana, Iztapalapa Universidad Autónoma Metropolitana, Iztapalapa Velázquez Montes, Ernesto, autor. Flora de Guerrero no. 66 : Isoëtaceae (pteridophyta). Marsileaceae REVISOR ESPECIAL DE LA EDICIÓN (pteridophyta) / Ernesto Velázquez Montes. –- 1ª edición. –- México, D.F. : Universidad Nacional Autónoma de México, Facultad de Ciencias, 2015. Robin C. Moran 24 páginas : ilustraciones ; 28 cm. New York Botanical Garden ISBN 978-968-36-0765-2 (Obra completa) EDITORES ISBN 978-607-02-6862-5 (Fascículo) Jaime Jiménez, Rosa María Fonseca, Martha Martínez 1. Isoetaceae – Guerrero. 2. Isoetales – Guerrero. 3. Marsileaceae Facultad de Ciencias, UNAM – Guerrero. 4. Flores – Guerrero. I. Universidad Nacional Autónoma de México. Facultad de Ciencias. II. Título. III. Título: Isoetaceae IV. Título: Marsileaceae. 580.97271-scdd21 Biblioteca Nacional de México La Flora de Guerrero es un proyecto del Laboratorio de Plantas Vasculares de la Facultad de Ciencias de la U NAM . Tiene como objetivo inventariar las especies de plantas vasculares silvestres presentes en Gue- rrero, México. El proyecto consta de dos series. La primera comprende las revisiones taxonómicas de las familias presentes en el estado y será publicada con el nombre de Flora de Guerrero. La segunda es la serie Estudios Florísticos que comprende las investigaciones florísticas realizadas en zonas particulares Flora de Guerrero de la entidad. No. 66. Isoëtaceae (Pteridophyta) - Marsileaceae (Pteridophyta) 1ª edición, 9 de junio de 2015.
    [Show full text]