Chemical Speciation in Silver Bow and Blacktail Creeks: Implications for Bioavailability and Restoration
Total Page:16
File Type:pdf, Size:1020Kb
Montana Tech Library Digital Commons @ Montana Tech Graduate Theses & Non-Theses Student Scholarship Fall 2019 CHEMICAL SPECIATION IN SILVER BOW AND BLACKTAIL CREEKS: IMPLICATIONS FOR BIOAVAILABILITY AND RESTORATION Johnathan Feldman Follow this and additional works at: https://digitalcommons.mtech.edu/grad_rsch Part of the Chemistry Commons CHEMICAL SPECIATION IN SILVER BOW AND BLACKTAIL CREEKS: IMPLICATIONS FOR BIOAVAILABILITY AND RESTORATION by Johnathan Robert Feldman A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Geoscience: Geochemistry option Montana Tech 2019 ii Abstract Silver Bow and Blacktail Creeks, contaminated with toxic elements from mining, present a need for remediation and restoration. Trace elements are present in elevated concentrations, particularly copper. Determining element speciation will allow informed consideration of effective restoration strategies, by providing a foundation for assessing bioavailability and toxicity. The three goals are: determine how speciation varies between seasons and sites in four impacted sites from the greater Butte Area One, an impacted downstream site known as Santa, and a control site on Upper Blacktail Creek known as Blacktail; how these variations influence bioavailability and toxicity; and what causes these variations. Total concentration measurements of these elements exist for every season since November 2015, whereas speciation calculations are lacking. The complete aqueous chemistry needed for speciation calculations is considered: pH, dissolved oxygen, conductivity, temperature, major cations, major anions, dissolved organic carbon, dissolved inorganic carbon, and trace elements. The chemical speciation program EQ3 produced all speciation data for As, Cu, Fe, Ba, Zn, and Mn, all contaminants released by mining activities, for five seasonal sampling trips. Variations in pH values and contributions of tailings- contaminated waters conceivably influenced seasonal and geographical changes in bioavailability and toxicity. Photosynthetic activity acted as the primary influence on seasonal variations in bioavailability for all elements except barium and arsenic. Barium’s bioavailability and toxicity stayed relatively consistent between seasons and sites, whereas competition with phosphate plausibly created seasonal variations in arsenic toxicity. Copper carbonate complexes predominated through the year at most sites, and as a result, copper had a low bioavailability there. Inflow of tailings-contaminated groundwater drove most spatial variations in bioavailability and toxicity for zinc, copper, and iron during all months except May 2016 and August 2016. During August 2016, phosphate differences between sites acted as a major influence on geographical variations in bioavailability and toxicity for all speciated elements. Overall, this study has provided a foundation for restoration projects by discovering and explaining geographic and seasonal variations in chemical speciation. Keywords: Northside Tailings, Diggings East Tailings, Remediation, Toxicity, Barium, Arsenic, Zinc, Copper, Iron, Manganese iii Acknowledgements I would like to thank the Laboratory Exploring Geobiochemical Engineering and Natural Dynamics (LEGEND) team for collecting samples. The LEGEND team members involved in sample collection: Nathan Carpenter, Cynthia Cree, Georgia Dahlquist, McKenzie Dillard, James Foltz, Jordan Foster, Shanna Law, Kyle Nacey, Mallory Nelson, Isaiah Robertson, and Renee Schmidt. I would like to thanks my advisor Dr. Alysia Cox for providing guidance and support. Thanks to Jackie Timmer and Ashley Huft from the Montana Bureau of Mines and Geology for providing sample analysis. I would like to thank writing tutors John Della, Hiroshi O., Tori B., Julie Kim, Phillip L., Robert W., Rae K., and Kenneth A. for their assistance in editing this thesis. I would like to thank Shanna Law for aiding in using EQ3 and Sigma Plot. I would like to thank Dr. Rick Rossi for assisting me with statistical analyses. I would like to thank Nathan Carpenter for preparing GIS maps showing spatial variations in environmental chemical parameters such as pH and conductivity. I would like to thank Rika Lashley for providing helpful information on the Waste Water Treatment Plant. I would like to thank my thesis committee members: Dr. Chris Gammons, Dr. William Gleason, and Dr. Jerry Downey for supporting me and offering advice. Funding for this research mainly came from the Butte Natural Resource Damage Restoration Council and the Montana Natural Resource Damage Program. Funding from the Montana Water Center, Montana Tech Faculty Seed Grant and Faculty Development Initiatives, and the Montana Institute on Ecosystems provided additional research support. iv Table of Contents ABSTRACT ............................................................................................................................................. II ACKNOWLEDGEMENTS ........................................................................................................................ III LIST OF TABLES ................................................................................................................................... VIII LIST OF FIGURES ................................................................................................................................... IX GLOSSARY OF TERMS .......................................................................................................................... XII 1. INTRODUCTION ................................................................................................................................. 1 1.1. Historical Background ........................................................................................................ 2 1.2. Silver Bow and Blacktail Creek Geochemistry .................................................................... 3 1.3. Speciation’s Effect on Bioavailability ................................................................................. 6 1.3.1.1. Complexation ............................................................................................................................ 10 1.3.1.2. Oxidation State ......................................................................................................................... 14 2. METHODS ...................................................................................................................................... 18 2.1. Sampling Sites .................................................................................................................. 18 2.2. Geochemical Field Analysis .............................................................................................. 21 2.3. Sample Collection Procedures .......................................................................................... 23 2.4. Cleaning Procedures ......................................................................................................... 24 2.4.1. Trace Metal Bottle Cleaning .............................................................................................................. 24 2.4.2. DIC and DOC ...................................................................................................................................... 25 2.5. Sample Storage Procedures ............................................................................................. 25 2.6. Laboratory Analysis .......................................................................................................... 26 2.6.1. δD and δ18O ....................................................................................................................................... 26 2.6.2. Major Cations, Anions, and Trace Elements ...................................................................................... 26 2.6.3. DIC and DOC ...................................................................................................................................... 27 2.7. Chemical Speciation Calculations ..................................................................................... 28 v 2.8. Data Analysis Methods .................................................................................................... 33 3. RESULTS ......................................................................................................................................... 35 3.1. Aqueous Chemistry........................................................................................................... 35 3.1.1. pH ...................................................................................................................................................... 35 3.1.2. Temperature ..................................................................................................................................... 37 3.1.3. Dissolved Oxygen .............................................................................................................................. 38 3.1.4. Specific Conductivity ......................................................................................................................... 39 3.1.5. Dissolved Organic Carbon .................................................................................................................. 41 3.1.6. Dissolved Inorganic Carbon ............................................................................................................... 43 3.1.7. Major