A Characterization of State Spill in Modern Operating Systems Kevin Boos, Emilio Del Vecchio, and Lin Zhong Rice University fkevinaboos, edd5,
[email protected] Abstract states change and propagate throughout the system, showing that modularity is necessary but insufficient. For example, Understanding and managing the propagation of states in several process migration works have cited “residual depen- operating systems has become an intractable problem due dencies” that remain on the source system as an obstacle to to their sheer size and complexity. Despite modularization post-migration correctness on the target system [38, 55, 34]. efforts, it remains a significant barrier to many contemporary Fault isolation and fault tolerance literature has long realized computing goals: process migration, fault isolation and the undesirable effects of fate sharing among software mod- tolerance, live update, software virtualization, and more. ules as well as the difficulty of restoring a process or whole Though many previous OS research endeavors have achieved machine statefully after a failure, due to the sprawl of states these goals through ad-hoc, tedious methods, we argue that spread among different system components [28, 26, 52, 51]. they have missed the underlying reason why these goals are Live update and hot-swapping research has long sought to overcome the state maintenance issues and inter-module de- so challenging: state spill. pendencies that plague their implementations when transi- State spill occurs when a software entity’s state undergoes tioning from an old to a new version, forcing developers to lasting changes as a result of a transaction from another entity. write complex state transfer functions [7, 25, 27, 48, 5].