Functional Characterization and Molecular Evolutionary Analyses of Rhodopsin in Fishes and Other Vertebrates

Total Page:16

File Type:pdf, Size:1020Kb

Functional Characterization and Molecular Evolutionary Analyses of Rhodopsin in Fishes and Other Vertebrates Functional Characterization and Molecular Evolutionary Analyses of Rhodopsin in Fishes and other Vertebrates by Gianni Marcello Castiglione A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Cell and Systems Biology University of Toronto © Copyright by Gianni Marcello Castiglione 2017 Functional Characterization and Molecular Evolutionary Analyses of Rhodopsin in Fishes and other Vertebrates A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Cell and Systems Biology University of Toronto © Copyright by Gianni Marcello Castiglione 2017 Abstract The visual perception of light is complex, achieved through sophisticated biological systems ranging from the molecular interactions of visual system proteins, to computational processing within retinal neuronal circuits, to the higher cortical synthesis of visual inputs. Photon absorption by the rod visual pigment rhodopsin forms the first step in the visual transduction cascade, ultimately mediating all dim-light organismal visual sensitivity. Natural selection has moulded vertebrate rhodopsin into a remarkable molecular machine, with a stunning sensitivity to single photons and an ultra-fast, femtosecond photoproduct formation. These evolutionary innovations are underpinned by the elegant structural and functional features of rhodopsin, serving as the basis for our understandings of other class A G protein-coupled receptors. Much remains to be discovered of the precise molecular mechanisms which govern rhodopsin structure and function, with mutational epistasis and other features of protein science presenting a formidable analytical barrier against progress. Comparative evolutionary approaches investigating protein adaptation are a powerful yet underexplored means by which novel features of protein science can be elucidated. In this thesis, an interdisciplinary approach involving computational models of molecular evolution combined with protein modelling and in vitro ii experimental tests of function were employed towards unravelling how natural variation in rhodopsin can reflect evolutionary adaptations that can ultimately illuminate and predict novel features of rhodopsin structure and function. Following a general introduction, Chapter II presents the first evidence for the cold-adaptation of rhodopsin, using high altitude Andean catfishes (Siluriformes) as a model system. Molecular targets under selection at high altitudes are shown to be highly similar between high altitude Tibetan Plateau and Andean catfish rhodopsins, with evidence in Chapter III suggesting possible phenotypic convergence of rhodopsin kinetics at high altitudes. In Chapter IV a new functional feature of rhodopsin was discovered, comprising a compensatory structural unit which modulates both rhodopsin spectral sensitivity and light- activated kinetics. This thesis identifies several novel features of rhodopsin structure and function while presenting case studies of protein adaptation. This multidimensional explication reflects and contributes to the emerging understanding that protein structure and function is inextricably linked to shifts in ecology, environment and the dynamics of molecular evolution. iii Acknowledgements “Of a human’s life, their time is a point, their existence a flux, their sensation clouded, their body’s entire composition corruptible, their vital spirit an eddy of breath, their fortune hard to predict, their fame uncertain. Briefly, all the things of the body, a river; all the things of the spirit, dream and delirium; their life a warfare and a sojourn in a strange land, their after-fame oblivion. What then can be their escort through life? One thing and one thing only, Philosophy” -Marcus Aurelius Antoninus, written among the Quadi on the river Gran. I c. 170 A.D. In 2016, such an utterance is regarded as scandalous and outdated, the providence of old men with no “evidence”. The common thread throughout 2500 years of western thought is the idea of nature as an infinite source of wisdom that we, strangely, can access. The research approaches taken in this thesis were motivated out of a deference to that same commanding elegance that Aurelius and countless other philosophers noticed, and often agonized over. I have certainly agonized over this thesis: it has been damn hard work with way too much of a political element for an idealist like myself. Insofar as my endurance has been tested, it remains light years away from that demonstrated by my grandparents, who from Racalmuto, Sicilia and 中國 廣東省 台山 端芬大新里 台城 那金吉昌里村, worked harder than I can ever comprehend. All so their descendants like me could waste time quoting Marcus Aurelius! I wish I could thank you all in person. Your willpower is a constant source of inspiration. Parallel to my graduate efforts was the long, extrinsic emotional distress my partner Lina and I navigated, wherein I learned the exact definition of fortitude and perseverance. The difficulty of those years makes the completion of this thesis all the more satisfying. The recognition may be subtler, but the resolution initiated by Lina is more laudable than all the work represented in this thesis. I love her more than words can describe. Our giant baby Makwa the Malamute remains the living proof that scientific reductionism is a woefully inadequate model of reality, and I couldn’t love him more for it. I am indebted to my mother and father for instilling in me a sense of curiosity for biology and complexity at a young age, and for their support in getting me to where I am today. I hope you both know that I am proud to be your son. I owe thanks to my siblings as well, for they constantly put me in my place, an absolutely invaluable contribution done with love and care. Thanks to my supervisor Dr. Belinda Chang, for the opportunity to work in her laboratory and for teaching me how to transform creative energies into concrete achievements. And of course, thanks to my labmates for their advice and support over the years, especially Frances, Nihar, and Ryan, and maybe Amir. What a strange and rewarding time it has been. iv Table of Contents Title page……………………………………………………………………………..……………i Abstract……………………………………………………………………………………………ii Acknowledgements………………………………………………………………………….……iv Table of Contents…………………………………………………………………………………v List of Figures………...…………………………………………………………………………..ix List of Tables..………….…………………………………………………………………………xi List of Abbreviations……………………………………………………………………………xiii Author Contributions…………………………………………………………………...……….xvi Chapter I General Introduction ....................................................................................................... 1 1.1. The Visual System ........................................................................................................... 2 1.1.1 Evolution of the vertebrate Visual System ............................................................... 2 1.1.2 The Retina and Photoreceptors ................................................................................. 4 1.1.3 Visual Pigments and Phototransduction ................................................................... 6 1.1.4 Rhodopsin Structure.................................................................................................. 7 1.1.5 Rhodopsin Light Activation .................................................................................... 11 1.1.6 Rhodopsin Thermal Activation ............................................................................... 12 1.1.7 Natural Variation and Adaptation in Rhodopsin .................................................... 14 1.2. Fish Systems ................................................................................................................... 16 1.2.1 Visual Ecology of Fishes ........................................................................................ 16 1.2.2 Otophysi .................................................................................................................. 18 1.2.3 Siluriformes............................................................................................................. 18 1.2.4 Andean Siluriformes ............................................................................................... 20 1.2.5 Tibetan Plateau Siluriformes................................................................................... 21 1.2.6 Siluriform Vision .................................................................................................... 22 1.3. Molecular Evolution ....................................................................................................... 24 1.3.1 Theory ..................................................................................................................... 24 1.3.2 Molecular Evolution of Proteins and Their Coding Sequences .............................. 25 1.3.3 Computational Estimates of dN/dS .......................................................................... 26 1.3.4 Using dN /dS to Identify Instances of Adaptive Evolution ...................................... 27 1.4. Thesis Objectives ........................................................................................................... 29 v 1.5. Thesis Overview ............................................................................................................. 31 1.6. Figures ...........................................................................................................................
Recommended publications
  • Wild Patagonia & Central Chile
    WILD PATAGONIA & CENTRAL CHILE: PUMAS, PENGUINS, CONDORS & MORE! NOVEMBER 1–18, 2019 Pumas simply rock! This year we enjoyed 9 different cats! Observing the antics of lovely Amber here and her impressive family of four cubs was certainly the highlight in Torres del Paine National Park — Photo: Andrew Whittaker LEADERS: ANDREW WHITTAKER & FERNANDO DIAZ LIST COMPILED BY: ANDREW WHITTAKER VICTOR EMANUEL NATURE TOURS, INC. 2525 WALLINGWOOD DRIVE, SUITE 1003 AUSTIN, TEXAS 78746 WWW.VENTBIRD.COM Sensational, phenomenal, outstanding Chile—no superlatives can ever adequately describe the amazing wildlife spectacles we enjoyed on this year’s tour to this breathtaking and friendly country! Stupendous world-class scenery abounded with a non-stop array of exciting and easy birding, fantastic endemics, and super mega Patagonian specialties. Also, as I promised from day one, everyone fell in love with Chile’s incredible array of large and colorful tapaculos; we enjoyed stellar views of all of the country’s 8 known species. Always enigmatic and confiding, the cute Chucao Tapaculo is in the Top 5 — Photo: Andrew Whittaker However, the icing on the cake of our tour was not birds but our simply amazing Puma encounters. Yet again we had another series of truly fabulous moments, even beating our previous record of 8 Pumas on the last day when I encountered a further 2 young Pumas on our way out of the park, making it an incredible 9 different Pumas! Our Puma sightings take some beating, as they have stood for the last three years at 6, 7, and 8. For sure none of us will ever forget the magical 45 minutes spent observing Amber meeting up with her four 1- year-old cubs as they joyfully greeted her return.
    [Show full text]
  • Disaggregation of Bird Families Listed on Cms Appendix Ii
    Convention on the Conservation of Migratory Species of Wild Animals 2nd Meeting of the Sessional Committee of the CMS Scientific Council (ScC-SC2) Bonn, Germany, 10 – 14 July 2017 UNEP/CMS/ScC-SC2/Inf.3 DISAGGREGATION OF BIRD FAMILIES LISTED ON CMS APPENDIX II (Prepared by the Appointed Councillors for Birds) Summary: The first meeting of the Sessional Committee of the Scientific Council identified the adoption of a new standard reference for avian taxonomy as an opportunity to disaggregate the higher-level taxa listed on Appendix II and to identify those that are considered to be migratory species and that have an unfavourable conservation status. The current paper presents an initial analysis of the higher-level disaggregation using the Handbook of the Birds of the World/BirdLife International Illustrated Checklist of the Birds of the World Volumes 1 and 2 taxonomy, and identifies the challenges in completing the analysis to identify all of the migratory species and the corresponding Range States. The document has been prepared by the COP Appointed Scientific Councilors for Birds. This is a supplementary paper to COP document UNEP/CMS/COP12/Doc.25.3 on Taxonomy and Nomenclature UNEP/CMS/ScC-Sc2/Inf.3 DISAGGREGATION OF BIRD FAMILIES LISTED ON CMS APPENDIX II 1. Through Resolution 11.19, the Conference of Parties adopted as the standard reference for bird taxonomy and nomenclature for Non-Passerine species the Handbook of the Birds of the World/BirdLife International Illustrated Checklist of the Birds of the World, Volume 1: Non-Passerines, by Josep del Hoyo and Nigel J. Collar (2014); 2.
    [Show full text]
  • De Novo Assembly of Schizothorax Waltoni Transcriptome to Identify Immune-Related Genes Cite This: RSC Adv.,2018,8, 13945 and Microsatellite Markers†
    RSC Advances View Article Online PAPER View Journal | View Issue De novo assembly of Schizothorax waltoni transcriptome to identify immune-related genes Cite this: RSC Adv.,2018,8, 13945 and microsatellite markers† Hua Ye,ab Zhengshi Zhang,ab Chaowei Zhou,ab Chengke Zhu,ab Yuejing Yang,ab Mengbin Xiang,ab Xinghua Zhou,ab Jian Zhou*c and Hui Luo *ab Schizothorax waltoni (S. waltoni) is one kind of the subfamily Schizothoracinae and an indigenous economic tetraploid fish to Tibet in China. It is rated as a vulnerable species in the Red List of China's Vertebrates, owing to overexploitation and biological invasion. S. waltoni plays an important role in ecology and local fishery economy, but little information is known about genetic diversity, local adaptation, immune system and so on. Functional gene identification and molecular marker development are the first and essential step for the following biological function and genetics studies. For this purpose, the transcriptome from pooled tissues of three adult S. waltoni was sequenced and Creative Commons Attribution-NonCommercial 3.0 Unported Licence. analyzed. Using paired-end reads from the Illumina Hiseq4000 platform, 83 103 transcripts with an N50 length of 2337 bp were assembled, which could be further clustered into 66 975 unigenes with an N50 length of 2087 bp. The majority of the unigenes (58 934, 87.99%) were successfully annotated by 7 public databases, and 15 KEGG pathways of immune-related genes were identified for the following functional research. Furthermore, 19 497 putative simple sequence repeats (SSRs) of 1–6 bp unit length were detected from 14 690 unigenes (21.93%) with an average distribution density of 1 : 3.28 kb.
    [Show full text]
  • Parallel Evolution in the Major Haemoglobin Genes of Eight Species of Andean Waterfowl
    Molecular Ecology (2009) doi: 10.1111/j.1365-294X.2009.04352.x Parallel evolution in the major haemoglobin genes of eight species of Andean waterfowl K. G. M C CRACKEN,* C. P. BARGER,* M. BULGARELLA,* K. P. JOHNSON,† S. A. SONSTHAGEN,* J. TRUCCO,‡ T. H. VALQUI,§– R. E. WILSON,* K. WINKER* and M. D. SORENSON** *Institute of Arctic Biology, Department of Biology and Wildlife, and University of Alaska Museum, University of Alaska Fairbanks, Fairbanks, AK 99775, USA, †Illinois Natural History Survey, Champaign, IL 61820, USA, ‡Patagonia Outfitters, Perez 662, San Martin de los Andes, Neuque´n 8370, Argentina, §Centro de Ornitologı´a y Biodiversidad (CORBIDI), Sta. Rita 117, Urbana Huertos de San Antonio, Surco, Lima 33, Peru´, –Museum of Natural Science, Louisiana State University, Baton Rouge, LA 70803, USA, **Department of Biology, Boston University, Boston, MA 02215, USA Abstract Theory predicts that parallel evolution should be common when the number of beneficial mutations is limited by selective constraints on protein structure. However, confirmation is scarce in natural populations. Here we studied the major haemoglobin genes of eight Andean duck lineages and compared them to 115 other waterfowl species, including the bar-headed goose (Anser indicus) and Abyssinian blue-winged goose (Cyanochen cyanopterus), two additional species living at high altitude. One to five amino acid replacements were significantly overrepresented or derived in each highland population, and parallel substitutions were more common than in simulated sequences evolved under a neutral model. Two substitutions evolved in parallel in the aA subunit of two (Ala-a8) and five (Thr-a77) taxa, and five identical bA subunit substitutions were observed in two (Ser-b4, Glu-b94, Met-b133) or three (Ser-b13, Ser-b116) taxa.
    [Show full text]
  • Resolving Cypriniformes Relationships Using an Anchored Enrichment Approach Carla C
    Stout et al. BMC Evolutionary Biology (2016) 16:244 DOI 10.1186/s12862-016-0819-5 RESEARCH ARTICLE Open Access Resolving Cypriniformes relationships using an anchored enrichment approach Carla C. Stout1*†, Milton Tan1†, Alan R. Lemmon2, Emily Moriarty Lemmon3 and Jonathan W. Armbruster1 Abstract Background: Cypriniformes (minnows, carps, loaches, and suckers) is the largest group of freshwater fishes in the world (~4300 described species). Despite much attention, previous attempts to elucidate relationships using molecular and morphological characters have been incongruent. In this study we present the first phylogenomic analysis using anchored hybrid enrichment for 172 taxa to represent the order (plus three out-group taxa), which is the largest dataset for the order to date (219 loci, 315,288 bp, average locus length of 1011 bp). Results: Concatenation analysis establishes a robust tree with 97 % of nodes at 100 % bootstrap support. Species tree analysis was highly congruent with the concatenation analysis with only two major differences: monophyly of Cobitoidei and placement of Danionidae. Conclusions: Most major clades obtained in prior molecular studies were validated as monophyletic, and we provide robust resolution for the relationships among these clades for the first time. These relationships can be used as a framework for addressing a variety of evolutionary questions (e.g. phylogeography, polyploidization, diversification, trait evolution, comparative genomics) for which Cypriniformes is ideally suited. Keywords: Fish, High-throughput
    [Show full text]
  • Universidade Estadual Paulista, Campus De Botucatu, São Paulo
    UNIVERSIDADE ESTADUAL DE CAMPINAS Maria Angélica Spadella ESTUDO FILOGENÉTICO NA SUPERFAMÍLIA LORICARIOIDEA (TELEOSTEI: SILURIFORMES) COM BASE NA ULTRAESTRUTURA DOS ESPERMATOZÓIDES Tese apresentada ao Instituto de Biologia para obtenção do Título de Mestre em Biologia Celular e Estrutural na área de Biologia Celular. Orientadora: Profa. Dra. Irani Quagio-Grassiotto Co-orientador: Prof. Dr. Claudio de Oliveira i FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECA DO INSTITUTO DE BIOLOGIA - UNICAMP Spadella, Maria Angélica Sp11e Estudo filogenético na superfamília Loricarioidea (Teleostei: Siluriformes) com base na ultraestrutura dos espermatozóides / Maria Angélica Spadella. - - Campinas, SP:[s.n.], 2004. Orientadora: Irani Quagio-Grassiotto Co-Orientador: Claudio de Oliveira Dissertação (mestrado) – Universidade Estadual de Campinas. Instituto de Biologia. Morfologia. 2. Evolução. 3. Peixe. I. Quagio-Grassiotto, Irani. II. Universidade Estadual de Campinas. Instituto de Biologia. III. Título. ii Campinas, 18 de fevereiro de 2004. BANCA EXAMINADORA Profa. Dra. Irani Quagio-Grassiotto (Orientadora) _____________________ (Assinatura) Prof. Dr. José Lino Neto _____________________ (Assinatura) Prof. Dr. Mário César Cardoso de Pinna _____________________ (Assinatura) Prof. Dr. Odair Aguiar Junior _____________________ (Assinatura) iii ... à minha vontade de continuar iv Quando não houver saída, Quando não houver mais solução Ainda há de haver saída, Nenhuma idéia vale uma vida. Quando não houver esperança, Quando não restar nem ilusão, Ainda há de haver esperança Em cada um de nós, algo de uma criança. Enquanto houver sol, enquanto houver sol, Ainda haverá... Enquanto houver sol, enquanto houver sol. Quando não houver caminho, Mesmo sem amor, sem direção, A sós ninguém está sozinho, É caminhando que se faz o caminho. Quando não houver desejo, Quando não restar nem mesmo dor, Ainda há de haver desejo Em cada um de nós, aonde Deus colocou.
    [Show full text]
  • IGUAZU FALLS Extension 1-15 December 2016
    Tropical Birding Trip Report NW Argentina & Iguazu Falls: December 2016 A Tropical Birding SET DEPARTURE tour NW ARGENTINA: High Andes, Yungas and Monte Desert and IGUAZU FALLS Extension 1-15 December 2016 TOUR LEADER: ANDRES VASQUEZ (All Photos by Andres Vasquez) A combination of breathtaking landscapes and stunning birds are what define this tour. Clockwise from bottom left: Cerro de los 7 Colores in the Humahuaca Valley, a World Heritage Site; Wedge-tailed Hillstar at Yavi; Ochre-collared Piculet on the Iguazu Falls Extension; and one of the innumerable angles of one of the World’s-must-visit destinations, Iguazu Falls. www.tropicalbirding.com +1-409-515-9110 [email protected] p.1 Tropical Birding Trip Report NW Argentina & Iguazu Falls: December 2016 Introduction: This is the only tour that I guide where I feel that the scenery is as impressive (or even surpasses) the birds themselves. This is not to say that the birds are dull on this tour, far from it. Some of the avian highlights included wonderfully jeweled hummingbirds like Wedge-tailed Hillstar and Red-tailed Comet; getting EXCELLENT views of 4 Tinamou species of, (a rare thing on all South American tours except this one); nearly 20 species of ducks, geese and swans, with highlights being repeated views of Torrent Ducks, the rare and oddly, parasitic Black-headed Duck, the beautiful Rosy-billed Pochard, and the mountain-dwelling Andean Goose. And we should not forget other popular bird features like 3 species of Flamingos on one lake, 11 species of Woodpeckers, including the hulking Cream-backed, colorful Yellow-fronted and minuscule Ochre-collared Piculet on the extension to Iguazu Falls.
    [Show full text]
  • Teleostei: Cypriniformes: Cyprinidae) Inferred from Complete Mitochondrial Genomes
    Biochemical Systematics and Ecology 64 (2016) 6e13 Contents lists available at ScienceDirect Biochemical Systematics and Ecology journal homepage: www.elsevier.com/locate/biochemsyseco Molecular phylogeny of the subfamily Schizothoracinae (Teleostei: Cypriniformes: Cyprinidae) inferred from complete mitochondrial genomes * Jie Zhang a, b, Zhuo Chen a, Chuanjiang Zhou b, Xianghui Kong b, a College of Life Science, Henan Normal University, Xinxiang 453007, PR China b College of Fisheries, Henan Normal University, Xinxiang 453007, PR China article info abstract Article history: The schizothoracine fishes, members of the Teleost order Cypriniformes, are one of the Received 16 June 2015 most diverse group of cyprinids in the QinghaieTibetan Plateau and surrounding regions. Received in revised form 19 October 2015 However, taxonomy and phylogeny of these species remain unclear. In this study, we Accepted 14 November 2015 determined the complete mitochondrial genome of Schizopygopsis malacanthus. We also Available online xxx used the newly obtained sequence, together with 31 published schizothoracine mito- chondrial genomes that represent eight schizothoracine genera and six outgroup taxa to Keywords: reconstruct the phylogenetic relationships of the subfamily Schizothoracinae by different Mitochondrial genome Phylogeny partitioned maximum likelihood and partitioned Bayesian inference at nucleotide and fi Schizothoracinae amino acid levels. The schizothoracine shes sampled form a strongly supported mono- Schizopygopsis malacanthus phyletic group that is the sister taxon to Barbus barbus. A sister group relationship between the primitive schizothoracine group and the specialized schizothoracine group þ the highly specialized schizothoracine group was supported. Moreover, members of the specialized schizothoracine group and the genera Schizothorax, Schizopygopsis, and Gym- nocypris were found to be paraphyletic. © 2015 Published by Elsevier Ltd.
    [Show full text]
  • Lake Baikal Bibliography, 1989- 1999
    UC San Diego Bibliography Title Lake Baikal Bibliography, 1989- 1999 Permalink https://escholarship.org/uc/item/7dc9945d Author Limnological Institute of RAS SB Publication Date 1999-12-31 eScholarship.org Powered by the California Digital Library University of California Lake Baikal Bibliography, 1989- 1999 This is a bibliography of 839 papers published in English in 1989- 1999 by members of Limnological Institute of RAS SB and by their partners within the framework of the Baikal International Center for Ecological Research. Some of the titles are accompanied by abstracts. Coverage is on different aspects of Lake Baikal. Adov F., Takhteev V., Ropstorf P. Mollusks of Baikal-Lena nature reserve (northern Baikal). // World Congress of Malacology: Abstracts; Washington, D.C.: Unitas Malacologica; 1998: 6. Afanasyeva E.L. Life cycle of Epischura baicalensis Sars (Copepoda, Calanoida) in Lake Baikal. // VI International Conference on Copepoda: Abstracts; July 29-August 3, 1996; Oldenburg/Bremerhaven, Germany. Konstanz; 1996: 33. Afanasyeva E.L. Life cycle of Epischura baicalensis Sars (Copepoda, Calanoida) in Lake Baikal. // J. Mar. Syst.; 1998; 15: 351-357. Epischura baicalensis Sars is a dominant pelagic species of Lake Baikal zooplankton. This is endemic to Lake Baikal and inhabits the entire water column. It produces two generations per year: the winter - spring and the summer. These copepods develop under different ecological conditions and vary in the duration of life stages, reproduction time, maturation of sex products and adult males and females lifespan. The total life period of the animals from each generation is one year. One female can produce 10 egg sacks every 10 - 20 days during its life time.
    [Show full text]
  • 2010 Board of Governors Report
    American Society of Ichthyologists and Herpetologists Board of Governors Meeting Westin – Narragansett Ballroom B Providence, Rhode Island 7 July 2010 Maureen A. Donnelly Secretary Florida International University College of Arts & Sciences 11200 SW 8th St. - ECS 450 Miami, FL 33199 [email protected] 305.348.1235 13 June 2010 The ASIH Board of Governor's is scheduled to meet on Wednesday, 7 July 2010 from 5:00 – 7:00 pm in the Westin Hotel in Narragansett Ballroom B. President Hanken plans to move blanket acceptance of all reports included in this book that cover society business for 2009 and 2010 (in part). The book includes the ballot information for the 2010 elections (Board of Governors and Annual Business Meeting). Governors can ask to have items exempted from blanket approval. These exempted items will be acted upon individually. We will also act individually on items exempted by the Executive Committee. Please remember to bring this booklet with you to the meeting. I will bring a few extra copies to Providence. Please contact me directly (email is best - [email protected]) with any questions you may have. Please notify me if you will not be able to attend the meeting so I can share your regrets with the Governors. I will leave for Providence (via Boston on 4 July 2010) so try to contact me before that date if possible. I will arrive in Providence on the afternoon of 6 July 2010 The Annual Business Meeting will be held on Sunday 11 July 2010 from 6:00 to 8:00 pm in The Rhode Island Convention Center (RICC) in Room 556 AB.
    [Show full text]
  • Comparative Cytogenetics of Neotropical Cichlid Fishes
    COMPARATIVE A peer-reviewed open-access journal CompCytogen 8(3): 169–183 (2014)Comparative cytogenetics of Neotropical cichlid fishes... 169 doi: 10.3897/CompCytogen.v8i3.7279 RESEARCH ARTICLE Cytogenetics www.pensoft.net/journals/compcytogen International Journal of Plant & Animal Cytogenetics, Karyosystematics, and Molecular Systematics Comparative cytogenetics of Neotropical cichlid fishes (Nannacara, Ivanacara and Cleithracara) indicates evolutionary reduction of diploid chromosome numbers Lucie Hodaňová1, Lukáš Kalous1, Zuzana Musilová1,2,3 1 Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic 2 Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics AV CR, Libechov, Czech Republic 3 Zoological Institute, University of Basel, Switzerland Corresponding author: Zuzana Musilová ([email protected]) Academic editor: Petr Rab | Received 17 February 2014 | Accepted 29 July 2014 | Published 8 August 2014 http://zoobank.org/E973BC3C-DBEA-4915-9E63-6BBEE9E0940D Citation: Hodaňová L, Kalous L, Musilová Z (2014) Comparative cytogenetics of Neotropical cichlid fishes Nannacara( , Ivanacara and Cleithracara) indicates evolutionary reduction of diploid chromosome numbers. Comparative Cytogenetics 8(3): 169–183. doi: 10.3897/CompCytogen.v8i3.7279 Abstract A comparative cytogenetic analysis was carried out in five species of a monophyletic clade of neotropical Cichlasomatine cichlids, namely Cleithracara maronii Steindachner, 1881, Ivanacara adoketa (Kullander & Prada-Pedreros, 1993), Nannacara anomala Regan, 1905, N. aureocephalus Allgayer, 1983 and N. tae- nia Regan, 1912. Karyotypes and other chromosomal characteristics were revealed by CDD banding and mapped onto the phylogenetic hypothesis based on molecular analyses of four genes, namely cyt b, 16S rRNA, S7 and RAG1. The diploid numbers of chromosomes ranged from 44 to 50, karyotypes were com- posed predominantly of monoarmed chromosomes and one to three pairs of CMA3 signal were observed.
    [Show full text]
  • Freshwater Aquatic Biomes GREENWOOD GUIDES to BIOMES of the WORLD
    Freshwater Aquatic Biomes GREENWOOD GUIDES TO BIOMES OF THE WORLD Introduction to Biomes Susan L. Woodward Tropical Forest Biomes Barbara A. Holzman Temperate Forest Biomes Bernd H. Kuennecke Grassland Biomes Susan L. Woodward Desert Biomes Joyce A. Quinn Arctic and Alpine Biomes Joyce A. Quinn Freshwater Aquatic Biomes Richard A. Roth Marine Biomes Susan L. Woodward Freshwater Aquatic BIOMES Richard A. Roth Greenwood Guides to Biomes of the World Susan L. Woodward, General Editor GREENWOOD PRESS Westport, Connecticut • London Library of Congress Cataloging-in-Publication Data Roth, Richard A., 1950– Freshwater aquatic biomes / Richard A. Roth. p. cm.—(Greenwood guides to biomes of the world) Includes bibliographical references and index. ISBN 978-0-313-33840-3 (set : alk. paper)—ISBN 978-0-313-34000-0 (vol. : alk. paper) 1. Freshwater ecology. I. Title. QH541.5.F7R68 2009 577.6—dc22 2008027511 British Library Cataloguing in Publication Data is available. Copyright C 2009 by Richard A. Roth All rights reserved. No portion of this book may be reproduced, by any process or technique, without the express written consent of the publisher. Library of Congress Catalog Card Number: 2008027511 ISBN: 978-0-313-34000-0 (vol.) 978-0-313-33840-3 (set) First published in 2009 Greenwood Press, 88 Post Road West, Westport, CT 06881 An imprint of Greenwood Publishing Group, Inc. www.greenwood.com Printed in the United States of America The paper used in this book complies with the Permanent Paper Standard issued by the National Information Standards Organization (Z39.48–1984). 10987654321 Contents Preface vii How to Use This Book ix The Use of Scientific Names xi Chapter 1.
    [Show full text]