Wild Patagonia & Central Chile
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chapter14.Pdf
PART I • Omora Park Long-Term Ornithological Research Program THE OMORA PARK LONG-TERM ORNITHOLOGICAL RESEARCH PROGRAM: 1 STUDY SITES AND METHODS RICARDO ROZZI, JAIME E. JIMÉNEZ, FRANCISCA MASSARDO, JUAN CARLOS TORRES-MURA, AND RAJAN RIJAL In January 2000, we initiated a Long-term Ornithological Research Program at Omora Ethnobotanical Park in the world's southernmost forests: the sub-Antarctic forests of the Cape Horn Biosphere Reserve. In this chapter, we first present some key climatic, geographical, and ecological attributes of the Magellanic sub-Antarctic ecoregion compared to subpolar regions of the Northern Hemisphere. We then describe the study sites at Omora Park and other locations on Navarino Island and in the Cape Horn Biosphere Reserve. Finally, we describe the methods, including censuses, and present data for each of the bird species caught in mist nets during the first eleven years (January 2000 to December 2010) of the Omora Park Long-Term Ornithological Research Program. THE MAGELLANIC SUB-ANTARCTIC ECOREGION The contrast between the southwestern end of South America and the subpolar zone of the Northern Hemisphere allows us to more clearly distinguish and appreciate the peculiarities of an ecoregion that until recently remained invisible to the world of science and also for the political administration of Chile. So much so, that this austral region lacked a proper name, and it was generally subsumed under the generic name of Patagonia. For this reason, to distinguish it from Patagonia and from sub-Arctic regions, in the early 2000s we coined the name “Magellanic sub-Antarctic ecoregion” (Rozzi 2002). The Magellanic sub-Antarctic ecoregion extends along the southwestern margin of South America between the Gulf of Penas (47ºS) and Horn Island (56ºS) (Figure 1). -
Auditory-Vocal Coupling in the Naked Mole-Rat, a Mammal with Poor Auditory Thresholds
Journal of Comparative Physiology A https://doi.org/10.1007/s00359-018-1287-8 ORIGINAL PAPER Auditory-vocal coupling in the naked mole-rat, a mammal with poor auditory thresholds Kazuo Okanoya1,2 · Shigeto Yosida2 · Catherine M. Barone3 · Daniel T. Applegate3 · Elizabeth F. Brittan‑Powell4 · Robert J. Dooling4 · Thomas J. Park3 Received: 7 May 2018 / Revised: 4 September 2018 / Accepted: 7 September 2018 © The Author(s) 2018 Abstract Naked mole-rats are extremely social and extremely vocal rodents, displaying a wide range of functionally distinct call types and vocalizing almost continuously. Their vocalizations are low frequency, and a behavioral audiogram has shown that naked mole-rats, like other subterranean mammals, hear only low frequencies. Hence, the frequency range of their hearing and vocalizations appears to be well matched. However, even at low frequencies, naked mole-rats show very poor auditory thresholds, suggesting vocal communication may be effective only over short distances. However, in a tunnel environment where low frequency sounds propagate well and background noise is low, it may be that vocalizations travel considerable distances at suprathreshold intensities. Here, we confirmed hearing sensitivity using the auditory brainstem response; we characterized signature and alarm calls in intensity and frequency domains and we measured the effects of propagation through tubes with the diameter of naked mole-rat tunnels. Signature calls—used for intimate communication—could travel 3–8 m at suprathreshold intensities, and alarm calls (lower frequency and higher intensity), could travel up to 15 m. Despite this species’ poor hearing sensitivity, the naked mole-rat displays a functional, coupled auditory-vocal communication system—a hallmark principle of acoustic communication systems across taxa. -
An Ecological Comparison of Small Mammal Communities in California
An Ecological Comparison of Small Mammal Abstract: Our studies in similar scrub habitats Communities in California and Chile1 in California and Chile reveal some interesting differences between these two regions in the structure of their small mammal communities. The Chilean fauna is less diverse, with fewer species 2 William E. Glanz and Peter L. Meserve per site, and possibly more extreme density fluc- tuations. Chilean rodents are more strongly associated with areas of high shrub and rock cover, while California species show a greater variety of habitat preferences. Chile has more insectivorous species, and California has more seed-eating specialists. Some of these differ- ences may be related to biogeographic and climatic factors, while others may reflect a longer history of human disturbance in Chile. Similar climates often seem to favor the evo- FIELD SITES AND METHODS lution of similar organisms, and the Mediterranean -climate regions of the world have provided numer- We have ecological data from a variety of ous examples of such evolutionary convergence. communities in each region, but will restrict our Of the five regions with this climate, California discussion here to results from three vegetational and Chile have been compared very extensively types which we have studied intensively: dry (Mooney 1977), particularly in terms of the mor- coastal scrub, moist coastal scrub, and evergreen phological, physiological, and ecological attri- chaparral. For each of these, the vegetation butes of their dominant organisms. Striking structure and life forms at our sites were closely similarities between these two regions have been matched between continents. found in their vegetation structure and community patterns (Mooney and Dunn 1970; Parsons and The dry coastal scrub localities were studied Moldenke 1975; Parsons 1976), their birds (Cody by Meserve near Irvine, Orange County, California 1973 and 1974), and their lizards (Fuentes 1976). -
Disaggregation of Bird Families Listed on Cms Appendix Ii
Convention on the Conservation of Migratory Species of Wild Animals 2nd Meeting of the Sessional Committee of the CMS Scientific Council (ScC-SC2) Bonn, Germany, 10 – 14 July 2017 UNEP/CMS/ScC-SC2/Inf.3 DISAGGREGATION OF BIRD FAMILIES LISTED ON CMS APPENDIX II (Prepared by the Appointed Councillors for Birds) Summary: The first meeting of the Sessional Committee of the Scientific Council identified the adoption of a new standard reference for avian taxonomy as an opportunity to disaggregate the higher-level taxa listed on Appendix II and to identify those that are considered to be migratory species and that have an unfavourable conservation status. The current paper presents an initial analysis of the higher-level disaggregation using the Handbook of the Birds of the World/BirdLife International Illustrated Checklist of the Birds of the World Volumes 1 and 2 taxonomy, and identifies the challenges in completing the analysis to identify all of the migratory species and the corresponding Range States. The document has been prepared by the COP Appointed Scientific Councilors for Birds. This is a supplementary paper to COP document UNEP/CMS/COP12/Doc.25.3 on Taxonomy and Nomenclature UNEP/CMS/ScC-Sc2/Inf.3 DISAGGREGATION OF BIRD FAMILIES LISTED ON CMS APPENDIX II 1. Through Resolution 11.19, the Conference of Parties adopted as the standard reference for bird taxonomy and nomenclature for Non-Passerine species the Handbook of the Birds of the World/BirdLife International Illustrated Checklist of the Birds of the World, Volume 1: Non-Passerines, by Josep del Hoyo and Nigel J. Collar (2014); 2. -
Birds of Chile a Photo Guide
© Copyright, Princeton University Press. No part of this book may be 88 distributed, posted, or reproduced in any form by digital or mechanical 89 means without prior written permission of the publisher. WALKING WATERBIRDS unmistakable, elegant wader; no similar species in Chile SHOREBIRDS For ID purposes there are 3 basic types of shorebirds: 6 ‘unmistakable’ species (avocet, stilt, oystercatchers, sheathbill; pp. 89–91); 13 plovers (mainly visual feeders with stop- start feeding actions; pp. 92–98); and 22 sandpipers (mainly tactile feeders, probing and pick- ing as they walk along; pp. 99–109). Most favor open habitats, typically near water. Different species readily associate together, which can help with ID—compare size, shape, and behavior of an unfamiliar species with other species you know (see below); voice can also be useful. 2 1 5 3 3 3 4 4 7 6 6 Andean Avocet Recurvirostra andina 45–48cm N Andes. Fairly common s. to Atacama (3700–4600m); rarely wanders to coast. Shallow saline lakes, At first glance, these shorebirds might seem impossible to ID, but it helps when different species as- adjacent bogs. Feeds by wading, sweeping its bill side to side in shallow water. Calls: ringing, slightly sociate together. The unmistakable White-backed Stilt left of center (1) is one reference point, and nasal wiek wiek…, and wehk. Ages/sexes similar, but female bill more strongly recurved. the large brown sandpiper with a decurved bill at far left is a Hudsonian Whimbrel (2), another reference for size. Thus, the 4 stocky, short-billed, standing shorebirds = Black-bellied Plovers (3). -
A 2010 Supplement to Ducks, Geese, and Swans of the World
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Ducks, Geese, and Swans of the World by Paul A. Johnsgard Papers in the Biological Sciences 2010 The World’s Waterfowl in the 21st Century: A 2010 Supplement to Ducks, Geese, and Swans of the World Paul A. Johnsgard University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/biosciducksgeeseswans Part of the Ornithology Commons Johnsgard, Paul A., "The World’s Waterfowl in the 21st Century: A 2010 Supplement to Ducks, Geese, and Swans of the World" (2010). Ducks, Geese, and Swans of the World by Paul A. Johnsgard. 20. https://digitalcommons.unl.edu/biosciducksgeeseswans/20 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Ducks, Geese, and Swans of the World by Paul A. Johnsgard by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. The World’s Waterfowl in the 21st Century: A 200 Supplement to Ducks, Geese, and Swans of the World Paul A. Johnsgard Pages xvii–xxiii: recent taxonomic changes, I have revised sev- Introduction to the Family Anatidae eral of the range maps to conform with more current information. For these updates I have Since the 978 publication of my Ducks, Geese relied largely on Kear (2005). and Swans of the World hundreds if not thou- Other important waterfowl books published sands of publications on the Anatidae have since 978 and covering the entire waterfowl appeared, making a comprehensive literature family include an identification guide to the supplement and text updating impossible. -
Wildlife Travel Chile 2018
Chile, species list and trip report, 18 November to 5 December 2018 WILDLIFE TRAVEL v Chile 2018 Chile, species list and trip report, 18 November to 5 December 2018 # DATE LOCATIONS AND NOTES 1 18 November Departure from the UK. 2 19 November Arrival in Santiago and visit to El Yeso Valley. 3 20 November Departure for Robinson Crusoe (Más a Tierra). Explore San Juan Bautista. 4 21 November Juan Fernández National Park - Plazoleta del Yunque. 5 22 November Boat trip to Morro Juanango. Santuario de la Naturaleza Farolela Blanca. 6 23 November San Juan Bautista. Boat to Bahía del Padre. Return to Santiago. 7 24 November Departure for Chiloé. Dalcahue. Parque Tepuhueico. 8 25 November Parque Tepuhueico. 9 26 November Parque Tepuhueico. 10 27 November Dalcahue. Quinchao Island - Achao, Quinchao. 11 28 November Puñihuil - boat trip to Isla Metalqui. Caulin Bay. Ancud. 12 29 November Ferry across Canal de Chacao. Return to Santiago. Farellones. 13 30 November Departure for Easter Island (Rapa Nui). Ahu Tahai. Puna Pau. Ahu Akivi. 14 1 December Anakena. Te Pito Kura. Anu Tongariki. Rano Raraku. Boat trip to Motu Nui. 15 2 December Hanga Roa. Ranu Kau and Orongo. Boat trip to Motu Nui. 16 3 December Hanga Roa. Return to Santiago. 17 4 December Cerro San Cristóbal and Cerro Santa Lucía. Return to UK. Chile, species list and trip report, 18 November to 5 December 2018 LIST OF TRAVELLERS Leader Laurie Jackson West Sussex Guides Claudio Vidal Far South Expeditions Josie Nahoe Haumaka Tours Front - view of the Andes from Quinchao. Chile, species list and trip report, 18 November to 5 December 2018 Days One and Two: 18 - 19 November. -
Parallel Evolution in the Major Haemoglobin Genes of Eight Species of Andean Waterfowl
Molecular Ecology (2009) doi: 10.1111/j.1365-294X.2009.04352.x Parallel evolution in the major haemoglobin genes of eight species of Andean waterfowl K. G. M C CRACKEN,* C. P. BARGER,* M. BULGARELLA,* K. P. JOHNSON,† S. A. SONSTHAGEN,* J. TRUCCO,‡ T. H. VALQUI,§– R. E. WILSON,* K. WINKER* and M. D. SORENSON** *Institute of Arctic Biology, Department of Biology and Wildlife, and University of Alaska Museum, University of Alaska Fairbanks, Fairbanks, AK 99775, USA, †Illinois Natural History Survey, Champaign, IL 61820, USA, ‡Patagonia Outfitters, Perez 662, San Martin de los Andes, Neuque´n 8370, Argentina, §Centro de Ornitologı´a y Biodiversidad (CORBIDI), Sta. Rita 117, Urbana Huertos de San Antonio, Surco, Lima 33, Peru´, –Museum of Natural Science, Louisiana State University, Baton Rouge, LA 70803, USA, **Department of Biology, Boston University, Boston, MA 02215, USA Abstract Theory predicts that parallel evolution should be common when the number of beneficial mutations is limited by selective constraints on protein structure. However, confirmation is scarce in natural populations. Here we studied the major haemoglobin genes of eight Andean duck lineages and compared them to 115 other waterfowl species, including the bar-headed goose (Anser indicus) and Abyssinian blue-winged goose (Cyanochen cyanopterus), two additional species living at high altitude. One to five amino acid replacements were significantly overrepresented or derived in each highland population, and parallel substitutions were more common than in simulated sequences evolved under a neutral model. Two substitutions evolved in parallel in the aA subunit of two (Ala-a8) and five (Thr-a77) taxa, and five identical bA subunit substitutions were observed in two (Ser-b4, Glu-b94, Met-b133) or three (Ser-b13, Ser-b116) taxa. -
Movement Behavior, Patch Occupancy, Sustainable Patch Networks and Conservation Planning for an Endemic Understory Bird
MOVEMENT BEHAVIOR, PATCH OCCUPANCY, SUSTAINABLE PATCH NETWORKS AND CONSERVATION PLANNING FOR AN ENDEMIC UNDERSTORY BIRD By TRACI DARNELL CASTELLÓN A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2006 Copyright 2006 by Traci Darnell Castellón ACKNOWLEDGMENTS I sincerely thank my advisor, Kathryn Sieving, for her unwavering support and assistance, and my graduate committee, Lyn Branch, Michael Binford, Graeme Cumming, Doug Levey, and Emelio Bruna. I am also extremely grateful to my field assistants Hector Jañez, John Davis, Alvaro Wurstten, Emma Elgueta, Juan Carlos Correra, computer assistant Nia Haynes, and the many land owners in Chiloé and Osorno who graciously provided access to their farms. This work would not have been possible without their contributions. In addition, I have appreciated and benefited from the support of my friends and colleagues Daniel Smith, Mike Milleson, Matt Reetz, Tom Contreras, Nat Seavy, Marcella Machicote, Greg Jones, and Ivan Díaz. I gratefully acknowledge Mary Willson, Juan Armesto, and Cecilia Smith. Finally, and above all, I thank my parents; Carolyn Blethen and Charles Darnell, my husband Charles Castellón, and my friends, for helping me remember what is important. Partial funding was provided by the Disney Conservation Fund. In-kind support was provided by Fundación Senda Darwin, the University of Florida Map and Image Library, Geoplan Center, the Geography Department, the Land Use and Environmental Change Institute, and the Department of Wildlife Ecology and Conservation. iii TABLE OF CONTENTS page ACKNOWLEDGMENTS ................................................................................................. iii LIST OF TABLES............................................................................................................. vi LIST OF FIGURES ......................................................................................................... -
La Brea and Beyond: the Paleontology of Asphalt-Preserved Biotas
La Brea and Beyond: The Paleontology of Asphalt-Preserved Biotas Edited by John M. Harris Natural History Museum of Los Angeles County Science Series 42 September 15, 2015 Cover Illustration: Pit 91 in 1915 An asphaltic bone mass in Pit 91 was discovered and exposed by the Los Angeles County Museum of History, Science and Art in the summer of 1915. The Los Angeles County Museum of Natural History resumed excavation at this site in 1969. Retrieval of the “microfossils” from the asphaltic matrix has yielded a wealth of insect, mollusk, and plant remains, more than doubling the number of species recovered by earlier excavations. Today, the current excavation site is 900 square feet in extent, yielding fossils that range in age from about 15,000 to about 42,000 radiocarbon years. Natural History Museum of Los Angeles County Archives, RLB 347. LA BREA AND BEYOND: THE PALEONTOLOGY OF ASPHALT-PRESERVED BIOTAS Edited By John M. Harris NO. 42 SCIENCE SERIES NATURAL HISTORY MUSEUM OF LOS ANGELES COUNTY SCIENTIFIC PUBLICATIONS COMMITTEE Luis M. Chiappe, Vice President for Research and Collections John M. Harris, Committee Chairman Joel W. Martin Gregory Pauly Christine Thacker Xiaoming Wang K. Victoria Brown, Managing Editor Go Online to www.nhm.org/scholarlypublications for open access to volumes of Science Series and Contributions in Science. Natural History Museum of Los Angeles County Los Angeles, California 90007 ISSN 1-891276-27-1 Published on September 15, 2015 Printed at Allen Press, Inc., Lawrence, Kansas PREFACE Rancho La Brea was a Mexican land grant Basin during the Late Pleistocene—sagebrush located to the west of El Pueblo de Nuestra scrub dotted with groves of oak and juniper with Sen˜ora la Reina de los A´ ngeles del Rı´ode riparian woodland along the major stream courses Porciu´ncula, now better known as downtown and with chaparral vegetation on the surrounding Los Angeles. -
CARMONA Et Al. (2010) Revista Chilena De Historia Natural 83: 113-142
© Sociedad de Biología de Chile SUPPLEMENTARY MATERIAL CARMONA et al. (2010) Revista Chilena de Historia Natural 83: 113-142. Senda Darwin Biological Station: Long-term ecological research at the interface between science and society Estación Biológica Senda Darwin: Investigación ecológica de largo plazo en la interfase ciencia-sociedad MARTÍN R. CARMONA 1, 2, 5 , J. C. ARAVENA 6, MARCELA A. BUSTAMANTE-SANCHEZ 1, 2 , JUAN L. CELIS-DIEZ 1, 2 , ANDRÉS CHARRIER 2, IVÁN A. DÍAZ 8, JAVIERA DÍAZ-FORESTIER 1, MARÍA F. DÍAZ 1, 10 , AURORA GAXIOLA 1, 2, 5 , ALVARO G. GUTIÉRREZ 7, CLAUDIA HERNANDEZ-PELLICER 1, 3 , SILVINA IPPI 1, 4 , ROCÍO JAÑA-PRADO 1, 2, 9 , PAOLA JARA-ARANCIO 1, 4 , JAIME JIMENEZ 13 , DANIELA MANUSCHEVICH 1, 2 , PABLO NECOCHEA 11 , MARIELA NUÑEZ-AVILA 1, 2, 8 , CLAUDIA PAPIC 11 , CECILIA PÉREZ 2, FERNANDA PÉREZ 1, 2, 5 , SHARON REID 1, 2 , LEONORA ROJAS 1, BEATRIZ SALGADO 1, 2 , CECILIA SMITH- RAMÍREZ 1, 2 , ANDREA TRONCOSO 12 , RODRIGO A. VÁSQUEZ 1, 4 , MARY F. WILLSON 1, RICARDO ROZZI 1 & JUAN J. ARMESTO 1, 2, 5, * 1 Instituto de Ecología y Biodiversidad (IEB), Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Casilla 653, Santiago, Chile 2 Centro de Estudios Avanzados en Ecología y Biodiversidad (CASEB), Departamento de Ecología Pontificia Universidad Católica de Chile, Alameda 340, Casilla 114-D, Santiago, Chile, 833-1150 3 Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Casilla 599 – Raúl Bitrán s/n, Colina El Pino, La Serena, Chile 4 Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Casilla 653, Santiago, Chile 5 Laboratorio Internacional de Cambio Global (LINCGlobal), UC-CSIC, Departamento de Ecología Pontificia Universidad Católica de Chile, Alameda 340, Casilla 114-D, Santiago, Chile, 833-1150 6 Centro de Estudios del Quaternario (CEQUA), Avenida Bulnes 01890, Casilla 737, Punta Arenas, Chile 7 Department of Ecological Modelling, Helmholtz Centre for Environmental Research (UFZ), Permoserstr. -
RELEVANCE of KIN SELECTION on the EVOLUTION of COOPERATION in HYSTRICOGNATH RODENTS, Octodon Degus (Molina, 1782) AS a STUDY CASE
1 RELEVANCE OF KIN SELECTION ON THE EVOLUTION OF COOPERATION IN HYSTRICOGNATH RODENTS, Octodon degus (Molina, 1782) AS A STUDY CASE. IMPORTANCIA DE LA SELECCIÓN DE PARENTESCO EN LA EVOLUCIÓN DE LA COOPERACIÓN EN ROEDORES HISTRICOGNATOS Y EN Octodon degus (Molina, 1782) COMO CASO DE ESTUDIO. Tesis entregada a la Pontificia Universidad Católica de Chile en cumplimiento parcial de los requisitos para optar al Grado de Doctor en Ciencias con mención en Ecología por ÁLVARO LY PRIETO Director de Tesis: Luis A. Ebensperger Pesce Diciembre 2020 2 A la memoria de mi padre. 3 AGRADECIMIENTOS Quiero agradecer, en primer lugar, a Luis Ebensperger, por ser un excelente director de tesis y un verdadero tutor, siempre generoso a la hora de compartir sus conocimientos, y por su infinita paciencia y buena disposición para revisar, corregir y dar consejos. A los miembros de la comisión de tesis, por sus consejos. A Cristian Hernández y su equipo por abrirme las puertas de su laboratorio en la UdeC para aprender nuevas metodologías. También agradecer a todos los amigos, familia y a mi pareja, que han sido un soporte fundamental en este largo camino, y a todos quienes contribuyeron de alguna u otra forma en la concepción de esta tesis doctoral y en su proceso. Especialmente agradecer a quienes fueron importantes en la obtención y procesamiento de mis datos, y en los debates de ideas: a mis compañeros y amigos Raúl Sobrero, Loreto Correa, Daniela Rivera, Cecilia León, Juan C. Ramírez, Gioconda Peralta y Loreto Carrasco. Agradecer al Departamento de Ecología de la Pontificia Universidad Católica y su staff, por tener siempre buena disposición para solucionar requerimientos y vicisitudes.