(Rhodomelaceae, Rhodophyta) in the British Isles Reveals New Records and Species That Require Taxonomic Revision
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Newsletter 4
PHYCOLOGICAL NEWSLETTER A PUBLICATION OF THE PHYCOLOGICAL SOCIETY OF AMERICA WINTER INSIDE THIS ISSUE: 2008 PSA Meeting 1 SPRING 2008 Meetings and Symposia 2 Editor: Courses 5 Juan Lopez-Bautista VOLUME 44 Job Opportunities 11 Department of Biological Sciences Trailblazer 28: Sophie C. Ducker 12 University of Alabama Island to honor UAB scientists 18 Tuscaloosa, AL 35487 Books 19 [email protected] Deadline for contributions 23 ∗Dr. Karen Steidinger (Florida Fish and 1 2008 Meeting of Wildlife Research Institute) presenting The Phycological Society of America a plenary talk entitled “Harmful algal blooms in North America: Common risks.” New Orleand, Louisiana, USA NUMBER 27-30 July The associated mini-symposium speakers will be Dr. Leanne Flewelling (Florida Fish he Phycological Society of America (PSA) will and Wildlife Research Institute) present- hold its 2008 annual meeting on July 27-30, ing a talk entitled “Unexpected vectors of 1 T2008 in New Orleans, Louisiana, USA. The brevetoxins to marine mammals” and Dr. meeting will be held on the campus of Loyola Jonathan Deeds (US FDA Center for Food University and is being hosted by Prof. James Wee Safety and Applied Nutrition) present- (Loyola University). The meeting will kick-off with ing a talk entitled “The evolving story of an opening mixer on the evening of Sunday, 27 July Gyrodinium galatheanum = Karlodinium and the scientific program will be Monday through micrum = Karlodinium veneficum. A ten- Wednesday, 28-30 July. The PSA banquet will be year perspective.” Wednesday evening at the Louisiana Swamp Ex- hibit at the Audubon Zoo. Optional field trips are *Dr. John W. -
The Red Alga Polysiphonia (Rhodomelaceae) in the Northern Gulf of California
The Red Alga Polysiphonia (Rhodomelaceae) in the Northern Gulf of California GEORGE J. HOLLENBERG ' • ,. • •a and JAMES N. NORRIS SMITHSONIAN CONTRIBUTIONS TO THE MARINE SCIENCES SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of "diffusing knowledge" was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to the Marine Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoology Smithsonian Studies in Air and Space Smithsonian Studies in History and Technology In these series, the Institution publishes small papers and full-scale monographs that report the research and collections of its various museums and bureaux or of professional colleagues in the world cf science and scholarship. The publications are distributed by mailing lists to libraries, universities, and similar institutions throughout the world. Papers or monographs submitted for series publication are received by the Smithsonian Institution Press, subject to its own review for format and style, only through departments of the various Smithsonian museums or bureaux, where the manuscripts are given substantive review. -
Acanthophora Dendroides Harvey (Rhodomelaceae), a New Record for the Atlantic and Pacific Oceans
15 3 NOTES ON GEOGRAPHIC DISTRIBUTION Check List 15 (3): 509–514 https://doi.org/10.15560/15.3.509 Acanthophora dendroides Harvey (Rhodomelaceae), a new record for the Atlantic and Pacific oceans Gabriela C. García-Soto, Juan M. Lopez-Bautista The University of Alabama, Department of Biological Sciences, Science and Engineering Complex, 1325 Hackberry Ln, Tuscaloosa, AL 35401, USA. Corresponding author: Gabriela García-Soto, [email protected] Abstract We record Acanthophora dendroides Harvey for the first time in the Atlantic Ocean. Two specimens from the Philip- pines were resolved as conspecific to the Atlantic A. dendroides in molecular analyses extending its geographic range to the Philippines. In light of new evidence provided by field-collected specimens ofAcanthophora spicifera (M.Vahl) Børgesen (generitype) from Florida and Venezuela, the flattened species A. pacifica(Setchell) Kraft, showed no affin- ity to Acanthophora sensu stricto, suggesting that the genus should be restricted to cylindrical species only. Key words Atlantic Ocean, Philippines, taxonomy. Academic editor: Luciane Fontana da Silva | Received 8 October 2018 | Accepted 21 January 2019 | Published 21 June 2019 Citation: García-Soto GC, Lopez-Bautista JM (2019) Acanthophora dendroides Harvey (Rhodomelaceae), a new record for the Atlantic and Pacific oceans. Check List 15 (3): 509–514. https://doi.org/10.15560/15.3.509 Introduction Kraft are restricted to the Pacific Ocean (Guiry and Guiry 2018), A. dendroides Harvey to the Indian Ocean The genus Acanthophora J.V. Lamouroux 1813 is a (Silva et al. 1996) and A. ramulosa Lindenb. ex. Kutz- member of the tribe Chondrieae and it is distinguished from other genera of the tribe by the presence of spirally ing appears to be confined to the Gulf of Guinea in West arranged acute spines (Gordon-Mills and Womersley Africa (Steentoft 1967). -
A Morphological and Phylogenetic Study of the Genus Chondria (Rhodomelaceae, Rhodophyta)
Title A morphological and phylogenetic study of the genus Chondria (Rhodomelaceae, Rhodophyta) Author(s) Sutti, Suttikarn Citation 北海道大学. 博士(理学) 甲第13264号 Issue Date 2018-06-29 DOI 10.14943/doctoral.k13264 Doc URL http://hdl.handle.net/2115/71176 Type theses (doctoral) File Information Suttikarn_Sutti.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP A morphological and phylogenetic study of the genus Chondria (Rhodomelaceae, Rhodophyta) 【紅藻ヤナギノリ属(フジマツモ科)の形態学的および系統学的研究】 Suttikarn Sutti Department of Natural History Sciences, Graduate School of Science Hokkaido University June 2018 1 CONTENTS Abstract…………………………………………………………………………………….2 Acknowledgement………………………………………………………………………….5 General Introduction………………………………………………………………………..7 Chapter 1. Morphology and molecular phylogeny of the genus Chondria based on Japanese specimens……………………………………………………………………….14 Introduction Materials and Methods Results and Discussions Chapter 2. Neochondria gen. nov., a segregate of Chondria including N. ammophila sp. nov. and N. nidifica comb. nov………………………………………………………...39 Introduction Materials and Methods Results Discussions Conclusion Chapter 3. Yanagi nori—the Japanese Chondria dasyphylla including a new species and a probable new record of Chondria from Japan………………………………………51 Introduction Materials and Methods Results Discussions Conclusion References………………………………………………………………………………...66 Tables and Figures 2 ABSTRACT The red algal tribe Chondrieae F. Schmitz & Falkenberg (Rhodomelaceae, Rhodophyta) currently -
Antimicrobial Activity O Antimicrobial Activity of Marine Algal Extracts E
International Journal of Phytomedicine 9 (2017) 113-122 http://www.arjournals.org/index.php/ijpm/index Original Research Article ISSN: 0975-0185 Antimicrobial activity of marine algal extracts Ekaterina A. Chingizova1*, Anna V. Skriptsova2, Mikhail M. Anisimov1, Dmitry L. Aminin1 *Corresponding author: A b s t r a c t Total, hydrophilic and lipophilic extracts of 21 marine algae species (2 species of Chlorophyta, Ekaterina A. Chingizova 11 of Phaeophyceae and 8 of Rhodophyta) collected along the coast of Russian Far East were screened for antimicrobial activities (against Staphylococcus aureus, Escherichia coli and 1G.B. Elyakov Pacific Institute of Bioorganic Candida albicans). Among the macroalgal extracts analyzed, 95% were active against at least chemistry of the Far-Eastern Branch of one of studied microorganisms, while 80% of extracts were active against two or more test Russian Academy of Sciences , 159 pr. 100 strains. Broad-spectrum activity against three studied microorganisms was observed in the let Vladivostoku, Vladivostok, 690022, 35% of extracts from tested species of marine seaweeds. The results of our survey did not Russia. show clear taxonomic trends in the activities of the total extracts and their hydrophilic fractions 2AV Zhirmunsky Institute of Marine Biology against the studied microorganisms. Nevertheless, lipophilic red algal extracts had both the of the Far-Eastern Branch of Russian highest values and broadest spectrum of bioactivity among all survey algal extracts. More over, Academy of Sciences, 17 Palchevsky Str., lipophilic extracts from red algal exhibited the highest activity against fungus C. albicans Vladivostok, 690041, Russia. among tested algal extracts. Keywords: Antimicrobial activity, extracts, marine algae. -
Copyright© 2017 Mediterranean Marine Science
Mediterranean Marine Science Vol. 18, 2017 Introduced marine macroflora of Lebanon and its distribution on the Levantine coast BITAR G. Lebanese University, Faculty of Sciences, Hadaeth, Beirut, Lebanon RAMOS-ESPLÁ A. Centro de Investigación Marina de Santa Pola (CIMAR), Universidad de Alicante, 03080 Alicante OCAÑA O. Departamento de Oceanografía Biológica y Biodiversidad, Fundación Museo del Mar, Muelle Cañonero Dato s.n, 51001 Ceuta SGHAIER Y. Regional Activity Centre for Specially Protected Areas (RAC/SPA) FORCADA A. Departamento de Ciencias del Mar y Biología Aplicada, Universidad de Alicante, Po Box 99, Edificio Ciencias V, Campus de San Vicente del Raspeig, E-03080, Alicante VALLE C. Departamento de Ciencias del Mar y Biología Aplicada, Universidad de Alicante, Po Box 99, Edificio Ciencias V, Campus de San Vicente del Raspeig, E-03080, Alicante EL SHAER H. IUCN (International Union for Conservation of Nature), Regional Office for West Asia Sweifiyeh, Hasan Baker Al Azazi St. no 20 - Amman VERLAQUE M. Aix Marseille University, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO), UM 110, GIS Posidonie, 13288 Marseille http://dx.doi.org/10.12681/mms.1993 Copyright © 2017 Mediterranean Marine Science http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 04/08/2019 04:30:09 | To cite this article: BITAR, G., RAMOS-ESPLÁ, A., OCAÑA, O., SGHAIER, Y., FORCADA, A., VALLE, C., EL SHAER, H., & VERLAQUE, M. (2017). Introduced marine macroflora of Lebanon and its distribution on the Levantine coast. Mediterranean Marine Science, 18(1), 138-155. doi:http://dx.doi.org/10.12681/mms.1993 http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 04/08/2019 04:30:09 | Review Article Mediterranean Marine Science Indexed in WoS (Web of Science, ISI Thomson) and SCOPUS The journal is available on line at http://www.medit-mar-sc.net DOI: http://dx.doi.org/10.12681/mms.1993 The introduced marine macroflora of Lebanon and its distribution on the Levantine coast G. -
J. Phycol. 53, 32–43 (2017) © 2016 Phycological Society of America DOI: 10.1111/Jpy.12472
J. Phycol. 53, 32–43 (2017) © 2016 Phycological Society of America DOI: 10.1111/jpy.12472 ANALYSIS OF THE COMPLETE PLASTOMES OF THREE SPECIES OF MEMBRANOPTERA (CERAMIALES, RHODOPHYTA) FROM PACIFIC NORTH AMERICA1 Jeffery R. Hughey2 Division of Mathematics, Science, and Engineering, Hartnell College, 411 Central Ave., Salinas, California 93901, USA Max H. Hommersand Department of Biology, University of North Carolina at Chapel Hill, CB# 3280, Coker Hall, Chapel Hill, North Carolina 27599- 3280, USA Paul W. Gabrielson Herbarium and Department of Biology, University of North Carolina at Chapel Hill, CB# 3280, Coker Hall, Chapel Hill, North Carolina 27599-3280, USA Kathy Ann Miller Herbarium, University of California at Berkeley, 1001 Valley Life Sciences Building 2465, Berkeley, California 94720-2465, USA and Timothy Fuller Division of Mathematics, Science, and Engineering, Hartnell College, 411 Central Ave., Salinas, California 93901, USA Next generation sequence data were generated occurring south of Alaska: M. platyphylla, M. tenuis, and used to assemble the complete plastomes of the and M. weeksiae. holotype of Membranoptera weeksiae, the neotype Key index words: Ceramiales; Delesseriaceae; holo- (designated here) of M. tenuis, and a specimen type; Membranoptera; Northeast Pacific; phylogenetic examined by Kylin in making the new combination systematics; plastid genome; plastome; rbcL M. platyphylla. The three plastomes were similar in gene content and length and showed high gene synteny to Calliarthron, Grateloupia, Sporolithon, and Vertebrata. Sequence variation in the plastome Freshwater and Rueness (1994) were the first to coding regions were 0.89% between M. weeksiae and use gene sequences to address species-level taxo- M. tenuis, 5.14% between M. -
Rhodomelaceae, Rhodophyta) Based on Molecular Analyses and Morphological Observations of Specimens from the Type Locality in Western Australia
Phytotaxa 324 (1): 051–062 ISSN 1179-3155 (print edition) http://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2017 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.324.1.3 The phylogenetic position of Polysiphonia scopulorum (Rhodomelaceae, Rhodophyta) based on molecular analyses and morphological observations of specimens from the type locality in Western Australia JOHN M. HUISMAN1, BYEONGSEOK KIM2 & MYUNG SOOK KIM2* 1Western Australian Herbarium, Department of Biodiversity, Conservation and Attractions, Locked Bag 104, Bentley Delivery Centre, Western Australia 6983, Australia; and School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia 2Department of Biology, Jeju National University, Jeju 63243, Korea *Author for correspondence. Email: [email protected] Abstract Considerable uncertainty surrounds the phylogenetic position of Polysiphonia scopulorum, a species with an apparently cos- mopolitan distribution. Here we report, for the first time, molecular phylogenetic analyses using plastid rbcL gene sequences and morphological observations of P. scopulorum collected from the type locality, Rottnest Island in Western Australia. Mor- phological characteristics of the Rottnest Island specimens allowed unequivocal identification, however, the sequence analy- ses uncovered discrepancies in previous molecular studies that included specimens identified as P. scopulorum from other locations. The phylogenetic evidence clearly revealed that P. scopulorum from Rottnest Island formed a sister clade with P. caespitosa from Spain (JX828149 as P. scopulorum) with moderate support, but that it differed from specimens identified as P. scopulorum from the U.S.A. (AY396039, EU492915). In light of this, we suggest that P. scopulorum be considered an endemic species with a distribution restricted to Australia. -
Have Elevated Substitution Rates and 12 Extreme Gene Loss in the Plastid Genome 1 13 14
1 2 DR. MAREN PREUSS (Orcid ID : 0000-0002-8147-5643) 3 DR. HEROEN VERBRUGGEN (Orcid ID : 0000-0002-6305-4749) 4 DR. GIUSEPPE C. ZUCCARELLO (Orcid ID : 0000-0003-0028-7227) 5 6 7 Article type : Regular Article 8 9 10 The organelle genomes in the photosynthetic red algal parasite Pterocladiophila 11 hemisphaerica (Florideophyceae, Rhodophyta) have elevated substitution rates and 12 extreme gene loss in the plastid genome 1 13 14 15 Maren Preuss2 16 School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, 17 6140, New Zealand 18 19 Heroen Verbruggen 20 School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia 21 and 22 Giuseppe C. Zuccarello 23 School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, 24 6140, New Zealand 25 26 27 Author Manuscript 28 Running title: Pterocladiophila organelle genomes 29 This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/JPY.12996-20-002 This article is protected by copyright. All rights reserved 30 1 Received Accepted ___________ 31 2 Corresponding author: [email protected] 32 33 34 Editorial Responsibility: M. Coleman (Associate Editor) 35 36 37 ABSTRACT 38 Comparative organelle genome studies of parasites can highlight genetic changes that occur 39 during the transition from a free-living to a parasitic state. Our study focuses on a poorly 40 studied group of red algal parasites, which are often closely related to their red algal hosts and 41 from which they presumably evolved. -
758 the Ultrastructure of an Alloparasitic Red Alga Choreocolax
PHYCOLOGIA 12(3/4) 1973 The ultrastructure of an alloparasitic red alga Choreocolax polysiphoniae I PAUL KUGRENS Department of Botany and Plant Pathology, Colorado State University, Fort Collins, Colorado 80521, U.S.A. AND JOHN A. WEST Department of Botany, University of California, Berkeley, California 94720, U.S.A. Accepted June 18, 1973 An alloparasite, Choreocolax polysipiloniae, apparently represents one of the most evolved parasitic red algae. Chlo�oplasts are highly redu�ed and consist of dOl!ble membrane limited organelles lacking any inter nal thylako!� developmen!. The unInucleate cells have thick walls, an absence of starch in cortical cells and larg� quantIties of starch In meduII ary cells. Host-para�ite connections are made by typical red algal pit con . nectIOns. G.eneral effects of t�e InfectIOn on the host .Include cell hypertrophy, decrease in floridean starch granules, dispersed cytoplasmiC matrIces, and contorsJOn of chloroplasts. Phycologia, 12(3/4): 175-186, 1973 Introduction of the host, Cryptopleura. Her decision was The paraSItIc red algae constitute a unique based on the similarity in reproductive struc 1?irou of organisms about which surprisingly tures between the host and parasite, and she � suggested bacteria as causal agents for such lIttle IS known, although their distinctive nature . has been recognized since the late nineteenth proliferatIons. Chemin (1937) also indicated century. There are approximately 40 genera, that bacteria might be causal agents since bac unknown numbers of species, and all are ex teria were isolated from surface-sterilized thalli clusively florideophycean, belonging to all of Callocolax neglectus. Observations on Lobo orders except the Nemaliales. -
Identificação E Caraterização Da Flora Algal E Avaliação Do
“A língua e a escrita não chegam para descrever todas as maravilhas do mar” Cristóvão Colombo Agradecimentos Aqui agradeço a todas as pessoas que fizeram parte deste meu percurso de muita alegria, trabalho, desafios e acima de tudo aprendizagem: Ao meu orientador, Professor Doutor Leonel Pereira por me ter aceite como sua discípula, guiando-me na execução deste trabalho. Agradeço pela disponibilidade sempre prestada, pelos ensinamentos, conselhos e sobretudo pelo apoio em altura mais complicadas. Ao Professor Doutor Ignacio Bárbara por me ter auxiliado na identificação e confirmação de algumas espécies de macroalgas. E ao Professor Doutor António Xavier Coutinho por me ter cedido gentilmente, diversas vezes, o seu microscópio com câmara fotográfica incorporada, o que me permitiu tirar belas fotografias que serviram para ilustrar este trabalho. Ao meu colega Rui Gaspar pelo interesse demonstrado pelo meu trabalho, auxiliando-me sempre que necessário e também pela transmissão de conhecimentos. Ao Sr. José Brasão pela paciência e pelo auxílio técnico no tratamento das amostras. Em geral, a todos os meus amigos que me acompanharam nesta etapa de estudante de Coimbra e que me ajudaram a sê-lo na sua plenitude, e em particular a três pessoas: Andreia, Rita e Vera pelas nossas conversas e pelo apoio que em determinadas etapas foram muito importantes e revigorantes. Às minhas últimas colegas de casa, Filipa e Joana, pelo convívio e pelo bom ambiente “familiar” que se fazia sentir naquela casinha. E como os últimos são sempre os primeiros, à minha família, aos meus pais e à minha irmã pelo apoio financeiro e emocional, pela paciência de me aturarem as “neuras” e pelo acreditar sempre que este objectivo seria alcançado. -
Organellar Genome Evolution in Red Algal Parasites: Differences in Adelpho- and Alloparasites
University of Rhode Island DigitalCommons@URI Open Access Dissertations 2017 Organellar Genome Evolution in Red Algal Parasites: Differences in Adelpho- and Alloparasites Eric Salomaki University of Rhode Island, [email protected] Follow this and additional works at: https://digitalcommons.uri.edu/oa_diss Recommended Citation Salomaki, Eric, "Organellar Genome Evolution in Red Algal Parasites: Differences in Adelpho- and Alloparasites" (2017). Open Access Dissertations. Paper 614. https://digitalcommons.uri.edu/oa_diss/614 This Dissertation is brought to you for free and open access by DigitalCommons@URI. It has been accepted for inclusion in Open Access Dissertations by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. ORGANELLAR GENOME EVOLUTION IN RED ALGAL PARASITES: DIFFERENCES IN ADELPHO- AND ALLOPARASITES BY ERIC SALOMAKI A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN BIOLOGICAL SCIENCES UNIVERSITY OF RHODE ISLAND 2017 DOCTOR OF PHILOSOPHY DISSERTATION OF ERIC SALOMAKI APPROVED: Dissertation Committee: Major Professor Christopher E. Lane Jason Kolbe Tatiana Rynearson Nasser H. Zawia DEAN OF THE GRADUATE SCHOOL UNIVERSITY OF RHODE ISLAND 2017 ABSTRACT Parasitism is a common life strategy throughout the eukaryotic tree of life. Many devastating human pathogens, including the causative agents of malaria and toxoplasmosis, have evolved from a photosynthetic ancestor. However, how an organism transitions from a photosynthetic to a parasitic life history strategy remains mostly unknown. Parasites have independently evolved dozens of times throughout the Florideophyceae (Rhodophyta), and often infect close relatives. This framework enables direct comparisons between autotrophs and parasites to investigate the early stages of parasite evolution.