Generate Metabolic Map Poster

Total Page:16

File Type:pdf, Size:1020Kb

Generate Metabolic Map Poster Authors: Bo Xue Taner Z Sen Pascal Schlapfer Seung Yon Rhee An online versi on the right, a Mary L Schaeffer Peifen Zhang Periplasmic (wh CornCyc: Zea mays mays Cellular Overview Connections bet Jack M Gardiner an an an electron- electron- electron- UQ UQ UQ UQ UQ UQ UQ UQ UQ UQ UQ UQ UQ UQ UQ UQ UQ UQ UQ UQ UQ UQ UQ UQ UQ UQ a plastoquinol a plastoquinol transfer transfer transfer + 2+ quinone quinone quinone cys cys (indol- + 2+ 2+ 2+ 2+ 2+ 2+ 2+ + + L-citrulline 2+ 2+ + + 2+ Cu 2+ 2+ 2+ Cd 2+ 2+ 2+ 2+ β 2+ 2+ 2+ 2+ 2+ glutathione glutathione 3-yl) 2+ K heme b a ferric a ferric heme b a ferric Cu Cu 2+ 2+ Zn Zn Zn a -D Ca Cu heme b heme b Cu2+ Cu2+ a ferric a ferric Cu2+ a ferric a ferric Cu a xenobiotic 2+ L-ornithine 2+ an Fe(III)- sn- selenate 3+ 3+ β-D-galactofuranose a phospholipid acetate Cu2+ Cu Cu2+ Cu2+ Cu2+ Zn an (aminoalkyl)phosphonate Cu2+ Ca2+ Cu2+ Cu2+ glucan a quaternary Cu2+ Cu2+ Ca2+ Cu2+ Ca 2+ an (aminoalkyl)phosphonate an Fe(III)- an Fe(III)- an Fe(III)- an Fe(III)- an Fe(III)- an Fe(III)- an Fe(III)- an Fe(III)- glycerol Ca hydroxamate hydroxamate hydroxamate Mg Zn aldehydo-L- a monosaccharide a monosaccharide aldehydo-L- Cu2+ Cu2+ hydroxamate a monosaccharide hydroxamate Cu2+ hydroxamate hydroxamate Cd Fe siderophore selenite Fe Fe α-D-galactofuranose Cu Cu Cu Cu complex complex complex an alkylphosphonate Cu Ca Cu Cu galactonate galactonate amine Cu Cu Ca Cu Cu Mn Cu complex complex an alkylphosphonate Cu complex complex siderophore siderophore siderophore siderophore siderophore siderophore siderophore siderophore 3-phosphate thiosulfate D-galactopyranose Fe(III)-PS Zm00001d046260 Zm00001d040819 Zm00001d034244 Zm00001d025423 GRMZM5G800980 Zm00001d033530 Zm00001d038441 Zm00001d011732 Zm00001d043619 Zm00001d047441 Zm00001d021958 Zm00001d038658 Zm00001d033531 GRMZM5G866223 GRMZM5G876913 Zm00001d006714 Zm00001d042061 Zm00001d011845 GRMZM5G839924 Zm00001d013156 Zm00001d043620 GRMZM5G856027 Zm00001d033753 Zm00001d013424 Zm00001d012438 Zm00001d042953 Zm00001d022341 Zm00001d007048 PIN1 Zm00001d026253 Zm00001d003861 Zm00001d041824 Zm00001d002204 Zm00001d023701 Zm00001d015829 Zm00001d027884 Zm00001d023851 Zm00001d048946 Zm00001d014669 Zm00001d034940 Zm00001d003354 Zm00001d002224 Zm00001d046277 Zm00001d010426 Zm00001d018283 Zm00001d031340 Zm00001d043553 Zm00001d018974 Zm00001d002708 Zm00001d002705 Zm00001d010324 Zm00001d040966 Zm00001d028266 Zm00001d018500 Zm00001d005189 Zm00001d005190 Zm00001d019226 Zm00001d053603 Zm00001d021153 Zm00001d020279 Zm00001d031341 Zm00001d016395 Zm00001d038493 Zm00001d048015 Zm00001d002216 Zm00001d019403 Zm00001d023258 Zm00001d026352 Zm00001d033257 Zm00001d047207 Zm00001d033886 Zm00001d022188 Zm00001d025012 Zm00001d004505 Zm00001d009037 Zm00001d032601 Zm00001d052801 Zm00001d044442 Zm00001d011315 Zm00001d016134 Zm00001d053783 Zm00001d046662 Zm00001d004008 Zm00001d008974 Zm00001d013570 Zm00001d017429 Zm00001d003354 Zm00001d025012 Zm00001d044442 Zm00001d011315 Zm00001d009037 Zm00001d034940 Zm00001d046277 transporter Zm00001d026156 Zm00001d046068 Zm00001d019398 Zm00001d024497 Zm00001d047583 Zm00001d011845 Zm00001d042061 Zm00001d047441 Zm00001d025156 + 2+ + 2+ 2+ 2+ 2+ 2+ β 2+ 2+ + (indol- 2+ 2+ a -D + + + 2+ Cu 2+ 2+ 2+ Cd 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ cys cys 3-yl) 2+ K heme b heme b Cu Cu 2+ 2+ Zn Zn Zn glucan Ca Cu heme b heme b 2+ 2+ 2+ Cu a xenobiotic 2+ L-citrulline 2+ 3+ 3+ β a phospholipid 2+ Cu 2+ 2+ 2+ Zn a ferric a ferric a ferric 2+ 2+ 2+ 2+ aldehydo-L- aldehydo-L- 2+ 2+ 2+ 2+ Cu 2+ Cu a ferric a ferric Cu a ferric a ferric sn- selenate -D-galactofuranose glutathione glutathione acetate 2 Cu Cu Cu Cu an (aminoalkyl)phosphonate Cu Ca Cu Cu a monosaccharide a monosaccharide a quaternary Cu Cu Ca Cu Ca a monosaccharide an (aminoalkyl)phosphonate L-ornithine an Fe(III)- an Fe(III)- an Fe(III)- an Fe(III)- an Fe(III)- an Fe(III)- an Fe(III)- an Fe(III)- α NADH NADH NADH NADH NADH NADH NADH NADH NADH NADH NADH NADH NADH NADH NADH NADH NADH NADH NADH NADH NADH NADH NADH NADH NADH NADH Ca O Cu Cu Cu Cu hydroxamate hydroxamate hydroxamate an alkylphosphonate Cu Ca Cu Cu Mg Zn galactonate galactonate amine Cu Cu Ca Cu Cu2+ Mn Cu2+ hydroxamate hydroxamate an alkylphosphonate Cu2+ hydroxamate hydroxamate an oxidized Cd Fe siderophore siderophore siderophore siderophore siderophore siderophore siderophore siderophore an Fe(III)- glycerol selenite Fe Fe -D-galactofuranose + + + + + + + + + + + + + + + + + + + + + + + + + + complex complex complex Cu Cu complex complex Cu complex complex plastocyanin siderophore thiosulfate D-galactopyranose NAD UQH2 NAD UQH2 NAD UQH2 NAD UQH2 NAD UQH2 NAD UQH2 NAD UQH2 NAD UQH2 NAD UQH2 NAD UQH2 NAD UQH2 NAD UQH2 NAD UQH2 NAD UQH2 NAD UQH2 NAD UQH2 NAD UQH2 NAD UQH2 NAD UQH2 NAD UQH2 NAD UQH2 NAD UQH2 NAD UQH2 NAD UQH2 NAD UQH2 NAD UQH2 hν hν a reduced 3-phosphate a plastoquinoneplastocyanin + + + NAD(P) NAD(P) NAD(P) DEGRADATION/ COFACTORS, PROSTHETIC GROUPS, ELECTRON CARRIERS BIOSYNTHESIS oxygenic photosynthesis eumelanin biosynthesis PHOTOSYNTHESIS Rubisco shunt UTILIZATION/ OTHER BIOSYNTHESIS ASSIMILATION - OTHER α α UDP-4-dehydro-6- α UDP-β-L- 3 9 α 2+ L-ascorbate CARBOXYLATES DEGRADATION a 1,4- - a sugar -D- dCMP dCTP α D-gluconate a 1-6- - α-D-Kdo-(2->4)-α-D- (-)-methyl UMP Glc Man a 1-6- - λ N-acetyl-9-O- hydrogenobyrinate dTDP-β-L-rhamnose UDP-α-D- a ganglioside L-dopa and degradation V glucose 6- hyaluronan xylitol starch acetylxylan deoxy- -D-glucose cyanate GSSH arabinofuranose benzylbenzoate GlcNAc2- sucrose -carrageenan Co a glycogen a pectate 4-sulfomuconolactone α-linolenate α-linolenate phospholipases D-glucan alcohol 6-phosphate D-glucan Kdo-(2->6)-lipid A jasmonate D-glucan acetylneuraminate a,c-diamide galactose GM2 superpathway of phylloquinol biosynthesis L-dopachrome FATTY ACID AND LIPIDS DEGRADATION cyanide phosphate [protein] flavin biosynthesis I phytochromobilin pyridoxal 5'-phosphate salvage II (plants) thiamine salvage IV (yeast) chlorophyll cycle 4-aminobenzoate plant sterol biosynthesis H2O unsaturated, even numbered fatty acid α-oxidation I β 3,8-divinyl-chlorophyllide superpathway of geranylgeranyl superpathway of ubiquinol-10 6-hydroxymethyl- vitamin E biosynthesis (tocotrienols) thiamine salvage II phosphopantothenate heme a sanguinarine and macarpine biosynthesis SECONDARY METABOLITES BIOSYNTHESIS L-dopachrome biosynthesis F6P fatty acid beta- triacylglycerol β degradation nucleoside UDP- -L- Zm00001d018277_T002.1: λ α β a biosynthesis I diphosphate biosynthesis II (via MEP) (bacteria and plants) biosynthesis dihydropterin vitamin E biosynthesis (tocopherols) biosynthesis NUCLEOSIDES AND NUCLEOTIDES BIOSYNTHESIS plant sterol dhurrin biosynthesis superpathway of lipid-dependent phytate biosynthesis scopolin spermidine hydroxycinnamic acid conjugates biosynthesis salvigenin biosynthesis sesamin biosynthesis traumatin and (Z)-3-hexen-1-yl acetate biosynthesis salidroside pinobanksin biosynthesis (3R)-linalool lactucaxanthin 9-lipoxygenase and 9- sakuranetin degradation fatty acid -oxidation α Aldehyde dCMP deaminase: triphosphate Aldehyde starch acetylxylan UDP-L-rhamnose cyanate 6-phosphogluconate Isoamylase: Persulfide arabinose mutase: 3-deoxy-D-manno- carboxylesterase: Carboxylesterase: Dextransucrase: -carrageenase: Sialate O- Glucan 1,4-alpha- exo-poly- -D- 4-sulfomuconolactone Zm00001d017601_T001.1: ganglioside GM2 -1,3- Zm00001d030674_T001.1: geranylgeranyldiphosphate biosynthesis biosynthesis I biosynthesis phosphatidylinositol oxidation V L-ascorbate -amylase: reductase: phosphoglucose reductase: synthase: Zm00001d038121 Zm00001d018277 mannosyl- Zm00001d034701 cobaltochelatase: glucosidase: galacturonosidase: galactosyltransferase: (aerobic, light-dependent) (eukaryotic) diphosphate biosynthesis I biosynthesis II biosynthesis biosynthesis biosynthesis biosynthesis hydroperoxide lyase pathway biosynthesis 4,5-bisphosphate (unsaturated, a 2,3,4- Zm00001d005890 isomerase: hyaluronidase: Zm00001d012671 phosphatase: glucanohydrolase: esterase: hydratase: phosphatase: dioxygenase: Zm00001d014000 octulosonate Zm00001d020732 Zm00001d043235 oligosaccharide Zm00001d034477 acetylesterase: Zm00001d038475 hydrolase: Zm00001d017601 Zm00001d030674 chorismate biosynthesis I (2E,6E)- a 2-trans hydrogen Zm00001d010054 Zm00001d021726 Zm00001d042869 Zm00001d024890 Zm00001d017601 Zm00001d032736 [+ 11 isozymes] Zm00001d043941 hydrolase: [+ 2 isozymes] Zm00001d034901 Zm00001d038304 Zm00001d020931 Zm00001d025249 Zm00001d037233 (via mevalonate) pyridoxal thiamine 4-amino-2-methyl-5- chlorophyllide a tyr photosystem II: lipase C: Zm00001d014906 odd number, saturated Zm00001d020771 Zm00001d022425 Zm00001d005890 Zm00001d043291 [+ 95 isozymes] [+ 2 isozymes] glucosidase: [+ 3 isozymes] D-glyceraldehyde ferroheme b homogentisate GGPP 3-methyl-2- a 5,10-methylene- chorismate farnesyl (S)-reticuline D-myo-inositol flavonoid biosynthesis (in equisetum) 4-coumaroyl- (2S)- coniferyl α L-dopachrome a 1- -4-cis- L-ascorbate cyanide [+ 6 isozymes] [+ 10 isozymes] Zm00001d006481 Zm00001d042335 α λ λ pyruvate superpathay of folate transformations II 4-hydroxyphenylpyruvate pyrimidinemethanol ferroheme b superpathway of purine (1,3,4)- Ins(1,4,5)P3 linoleate -linolenate (E)-cinnamoyl-CoA Zm00001d010715 di-isomerase- a triglyceride fatty acid [+ 5 isozymes] [+ 5 isozymes] [+ 6 isozymes] [+ 2 isozymes] a 1-6- - neo- - neo- - cob(II) isochorismate uroporphyrinogen-III 3-phosphate GTP (2E,6E)-farnesyl oxobutanoate tetrahydrofolate chlorophyllide-a nucleotides de novo biosynthesis I superpathway of pyrimidine deoxyribonucleotides superpathway of pyrimidine
Recommended publications
  • Bacteria Belonging to Pseudomonas Typographi Sp. Nov. from the Bark Beetle Ips Typographus Have Genomic Potential to Aid in the Host Ecology
    insects Article Bacteria Belonging to Pseudomonas typographi sp. nov. from the Bark Beetle Ips typographus Have Genomic Potential to Aid in the Host Ecology Ezequiel Peral-Aranega 1,2 , Zaki Saati-Santamaría 1,2 , Miroslav Kolaˇrik 3,4, Raúl Rivas 1,2,5 and Paula García-Fraile 1,2,4,5,* 1 Microbiology and Genetics Department, University of Salamanca, 37007 Salamanca, Spain; [email protected] (E.P.-A.); [email protected] (Z.S.-S.); [email protected] (R.R.) 2 Spanish-Portuguese Institute for Agricultural Research (CIALE), 37185 Salamanca, Spain 3 Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01 Prague, Czech Republic; [email protected] 4 Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Academy of Sciences of the Czech Republic, 142 20 Prague, Czech Republic 5 Associated Research Unit of Plant-Microorganism Interaction, University of Salamanca-IRNASA-CSIC, 37008 Salamanca, Spain * Correspondence: [email protected] Received: 4 July 2020; Accepted: 1 September 2020; Published: 3 September 2020 Simple Summary: European Bark Beetle (Ips typographus) is a pest that affects dead and weakened spruce trees. Under certain environmental conditions, it has massive outbreaks, resulting in attacks of healthy trees, becoming a forest pest. It has been proposed that the bark beetle’s microbiome plays a key role in the insect’s ecology, providing nutrients, inhibiting pathogens, and degrading tree defense compounds, among other probable traits. During a study of bacterial associates from I. typographus, we isolated three strains identified as Pseudomonas from different beetle life stages. In this work, we aimed to reveal the taxonomic status of these bacterial strains and to sequence and annotate their genomes to mine possible traits related to a role within the bark beetle holobiont.
    [Show full text]
  • ATP-Citrate Lyase Has an Essential Role in Cytosolic Acetyl-Coa Production in Arabidopsis Beth Leann Fatland Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2002 ATP-citrate lyase has an essential role in cytosolic acetyl-CoA production in Arabidopsis Beth LeAnn Fatland Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Molecular Biology Commons, and the Plant Sciences Commons Recommended Citation Fatland, Beth LeAnn, "ATP-citrate lyase has an essential role in cytosolic acetyl-CoA production in Arabidopsis " (2002). Retrospective Theses and Dissertations. 1218. https://lib.dr.iastate.edu/rtd/1218 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. ATP-citrate lyase has an essential role in cytosolic acetyl-CoA production in Arabidopsis by Beth LeAnn Fatland A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Plant Physiology Program of Study Committee: Eve Syrkin Wurtele (Major Professor) James Colbert Harry Homer Basil Nikolau Martin Spalding Iowa State University Ames, Iowa 2002 UMI Number: 3158393 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted.
    [Show full text]
  • Characterization of Α-L-Fucosidase and Other Digestive Hydrolases From
    Acta Tropica 141 (2015) 118–127 Contents lists available at ScienceDirect Acta Tropica journal homepage: www.elsevier.com/locate/actatropica Characterization of ␣-L-fucosidase and other digestive hydrolases from Biomphalaria glabrata Natalia N. Perrella a,b, Rebeca S. Cantinha c,d, Eliana Nakano c, Adriana R. Lopes a,∗ a Laboratory of Biochemistry and Biophysics—Instituto Butantan, São Paulo, Brazil b Programa de Pós Graduac¸ ão Interunidades em Biotecnologia PPIB, Universidade de São Paulo, São Paulo, SP, Brazil c Laboratory of Parasitology—Instituto Butantan, São Paulo, Brazil d Instituto de Pesquisas Energéticas e Nucleares, Universidade de São Paulo, São Paulo, SP, Brazil article info abstract Article history: Schistosoma mansoni is one of the major agents of the disease Schistosomiasis, which is one of the Received 10 February 2014 major global public health concerns. Biomphalaria glabrata is an obligate intermediate mollusc host of Received in revised form 3 July 2014 S. mansoni. Although the development of S. mansoni occurs in the snail hepatopancreas, studies that Accepted 12 August 2014 focus on this organ remain limited. In this study, we biochemically identified five distinct carbohy- Available online 16 September 2014 drases (amylase, maltase, ␣-glucosidase, trehalase, and ␣-L-fucosidase), lipases, and peptidases in the B. glabrata hepatopancreas and focused on the isolation and characterization of the activity of ␣-L- Keywords: fucosidase. The isolated ␣-L-fucosidase has a molecular mass of 141 kDa, an optimum pH of 5.8, and Hepatopancreas ␣ Enzymes is inhibited by Tris, fucose, and 1-deoxyfuconojirimycin. B. glabrata -L-fucosidase is an exoglycosidase ␮ ␣-L-Fucosidase that can hydrolyze the natural substrate fucoidan to fucose residues.
    [Show full text]
  • Caractérisation De La Polarisation Des Macrophages Pulmonaires Humains Et Voies De Régulation Charlotte Abrial
    Caractérisation de la polarisation des macrophages pulmonaires humains et voies de régulation Charlotte Abrial To cite this version: Charlotte Abrial. Caractérisation de la polarisation des macrophages pulmonaires humains et voies de régulation. Biologie cellulaire. Université de Versailles-Saint Quentin en Yvelines, 2014. Français. NNT : 2014VERS0033. tel-01326578 HAL Id: tel-01326578 https://tel.archives-ouvertes.fr/tel-01326578 Submitted on 8 Dec 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Université de Versailles Saint Quentin en Yvelines UFR DES SCIENCES DE LA SANTÉ École doctorale GAO "Des génomes aux organismes" Année universitaire 2014 – 2015 N° le 03 novembre 2014 THESE DE DOCTORAT Présentée pour l’obtention du grade de DOCTEUR DE L’UNIVERSITÉ VERSAILLES – SAINT QUENTIN EN YVELINES Spécialité : Biologie cellulaire Par Charlotte ABRIAL Caractérisation de la polarisation des macrophages pulmonaires humains et voies de régulation Composition du jury: Directeur de thèse Pr. DEVILLIER Philippe Rapporteur Dr. FROSSARD Nelly Rapporteur Pr. LAGENTE Vincent Examinateur Dr. TOUQUI Lhousseine Université de Versailles Saint Quentin en Yvelines UFR DES SCIENCES DE LA SANTÉ École doctorale GAO "Des génomes aux organismes" Année universitaire 2014 – 2015 N° THESE DE DOCTORAT Présentée pour l’obtention du grade de DOCTEUR DE L’UNIVERSITÉ VERSAILLES – SAINT QUENTIN EN YVELINES Spécialité : Biologie cellulaire Par Charlotte ABRIAL Caractérisation de la polarisation des macrophages pulmonaires humains et voies de régulation Composition du jury: Directeur de thèse Pr.
    [Show full text]
  • WO 2017/210163 Al 07 December 2017 (07.12.2017) W !P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/210163 Al 07 December 2017 (07.12.2017) W !P O PCT (51) International Patent Classification: (72) Inventor: DOUGHAN, Ben; 5400 Corporate Circle, A01N 63/00 (2006.01) C12N 1/14 (2006.01) Salem, Virginia 24153 (US). CI2N 1/04 (2006.01) (74) Agent: RUCKER, Adam L et al; Novozymes North (21) International Application Number: America, Inc., 77 Perry Chapel Church Rd., P.O. Box 576, PCT/US20 17/03495 1 Franklinton, North Carolina 27525 (US). (22) International Filing Date: (81) Designated States (unless otherwise indicated, for every 30 May 2017 (30.05.2017) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, (25) Filing Language: English CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, (26) Publication Language: English DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN, KP, KR, (30) Priority Data: KW,KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, 31 May 2016 (3 1.05.2016) 62/343,217 US MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, 62/347,773 09 June 2016 (09.06.2016) US PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, 62/5 11,408 26 May 2017 (26.05.2017) us SD, SE, SG, SK, SL, SM, ST, SV, SY,TH, TJ, TM, TN, TR, (71) Applicant: NOVOZYMES BIOAG A S [DK/DK]; TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • Glycoproteomics-Based Signatures for Tumor Subtyping and Clinical Outcome Prediction of High-Grade Serous Ovarian Cancer
    ARTICLE https://doi.org/10.1038/s41467-020-19976-3 OPEN Glycoproteomics-based signatures for tumor subtyping and clinical outcome prediction of high-grade serous ovarian cancer Jianbo Pan 1,2,3, Yingwei Hu1,3, Shisheng Sun 1,3, Lijun Chen1, Michael Schnaubelt1, David Clark1, ✉ Minghui Ao1, Zhen Zhang1, Daniel Chan1, Jiang Qian2 & Hui Zhang 1 1234567890():,; Inter-tumor heterogeneity is a result of genomic, transcriptional, translational, and post- translational molecular features. To investigate the roles of protein glycosylation in the heterogeneity of high-grade serous ovarian carcinoma (HGSC), we perform mass spectrometry-based glycoproteomic characterization of 119 TCGA HGSC tissues. Cluster analysis of intact glycoproteomic profiles delineates 3 major tumor clusters and 5 groups of intact glycopeptides. It also shows a strong relationship between N-glycan structures and tumor molecular subtypes, one example of which being the association of fucosylation with mesenchymal subtype. Further survival analysis reveals that intact glycopeptide signatures of mesenchymal subtype are associated with a poor clinical outcome of HGSC. In addition, we study the expression of mRNAs, proteins, glycosites, and intact glycopeptides, as well as the expression levels of glycosylation enzymes involved in glycoprotein biosynthesis pathways in each tumor. The results show that glycoprotein levels are mainly controlled by the expression of their individual proteins, and, furthermore, that the glycoprotein-modifying glycans cor- respond to the protein levels of glycosylation enzymes. The variation in glycan types further shows coordination to the tumor heterogeneity. Deeper understanding of the glycosylation process and glycosylation production in different subtypes of HGSC may provide important clues for precision medicine and tumor-targeted therapy.
    [Show full text]
  • Specialty Sorghums for Gluten Free Foods
    SPECIALTY SORGHUMS FOR HEALTHY FOODS Dr. LLOYD W. ROONEY, Professor and Faculty Fellow Dr. JOSEPH M. AWIKA, Research Associate Cereal Quality Lab, Soil & Crop Sciences Dept. Texas A&M University 2474 TAMUS College Station, Texas 77843-2474 1 I. INTRODUCTION Sorghum is a major crop used for food, feed and industrial purposes worldwide. In the Western Hemisphere it is mainly used as a livestock feed and has not been considered a significant ingredient in foods. With over 40,000 accessions in the world collection, tremendous diversity exists in sorghum in both composition and processing properties. The kernel varies in size, shape, color, density, hardness, composition, processing properties, taste and texture and nutritional value. This chapter reviews information on new food sorghums and other special sorghums with unique properties that could be used in producing a wide variety of food products for specialty markets and health foods. The paper will emphasize white food sorghum hybrids and special tannin and black sorghums with high levels of phytochemicals. These special sorghum varieties are an excellent source of nutraceuticals that can compete effectively with fruits and vegetable sources. In addition, we will indicate other opportunities for producing healthy foods from sorghum. A. Sorghum production Sorghum is the fifth most important cereal crop grown in the world. It is a major food grain in Africa and parts of India and China. In 2003, 42.1 million hectares of sorghum were harvested worldwide, with a total production of 54.7 million metric tons. United States, India, and Nigeria are the largest producers of sorghum representing approximately 19.2%, 14.5%, and 14.5% of the total world production, respectively, in 2003.
    [Show full text]
  • Kramers' Theory and the Dependence of Enzyme Dynamics on Trehalose
    catalysts Review Kramers’ Theory and the Dependence of Enzyme Dynamics on Trehalose-Mediated Viscosity José G. Sampedro 1,* , Miguel A. Rivera-Moran 1 and Salvador Uribe-Carvajal 2 1 Instituto de Física, Universidad Autónoma de San Luis Potosí, Manuel Nava 6, Zona Universitaria, San Luis Potosí C.P. 78290, Mexico; [email protected] 2 Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México C.P. 04510, Mexico; [email protected] * Correspondence: [email protected]fisica.uaslp.mx; Tel.: +52-(444)-8262-3200 (ext. 5715) Received: 29 April 2020; Accepted: 29 May 2020; Published: 11 June 2020 Abstract: The disaccharide trehalose is accumulated in the cytoplasm of some organisms in response to harsh environmental conditions. Trehalose biosynthesis and accumulation are important for the survival of such organisms by protecting the structure and function of proteins and membranes. Trehalose affects the dynamics of proteins and water molecules in the bulk and the protein hydration shell. Enzyme catalysis and other processes dependent on protein dynamics are affected by the viscosity generated by trehalose, as described by the Kramers’ theory of rate reactions. Enzyme/protein stabilization by trehalose against thermal inactivation/unfolding is also explained by the viscosity mediated hindering of the thermally generated structural dynamics, as described by Kramers’ theory. The analysis of the relationship of viscosity–protein dynamics, and its effects on enzyme/protein function and other processes (thermal inactivation and unfolding/folding), is the focus of the present work regarding the disaccharide trehalose as the viscosity generating solute. Finally, trehalose is widely used (alone or in combination with other compounds) in the stabilization of enzymes in the laboratory and in biotechnological applications; hence, considering the effect of viscosity on catalysis and stability of enzymes may help to improve the results of trehalose in its diverse uses/applications.
    [Show full text]
  • United States Patent (19) 11 Patent Number: 5,981,835 Austin-Phillips Et Al
    USOO598.1835A United States Patent (19) 11 Patent Number: 5,981,835 Austin-Phillips et al. (45) Date of Patent: Nov. 9, 1999 54) TRANSGENIC PLANTS AS AN Brown and Atanassov (1985), Role of genetic background in ALTERNATIVE SOURCE OF Somatic embryogenesis in Medicago. Plant Cell Tissue LIGNOCELLULOSC-DEGRADING Organ Culture 4:107-114. ENZYMES Carrer et al. (1993), Kanamycin resistance as a Selectable marker for plastid transformation in tobacco. Mol. Gen. 75 Inventors: Sandra Austin-Phillips; Richard R. Genet. 241:49-56. Burgess, both of Madison; Thomas L. Castillo et al. (1994), Rapid production of fertile transgenic German, Hollandale; Thomas plants of Rye. Bio/Technology 12:1366–1371. Ziegelhoffer, Madison, all of Wis. Comai et al. (1990), Novel and useful properties of a chimeric plant promoter combining CaMV 35S and MAS 73 Assignee: Wisconsin Alumni Research elements. Plant Mol. Biol. 15:373-381. Foundation, Madison, Wis. Coughlan, M.P. (1988), Staining Techniques for the Detec tion of the Individual Components of Cellulolytic Enzyme 21 Appl. No.: 08/883,495 Systems. Methods in Enzymology 160:135-144. de Castro Silva Filho et al. (1996), Mitochondrial and 22 Filed: Jun. 26, 1997 chloroplast targeting Sequences in tandem modify protein import specificity in plant organelles. Plant Mol. Biol. Related U.S. Application Data 30:769-78O. 60 Provisional application No. 60/028,718, Oct. 17, 1996. Divne et al. (1994), The three-dimensional crystal structure 51 Int. Cl. ............................. C12N 15/82; C12N 5/04; of the catalytic core of cellobiohydrolase I from Tricho AO1H 5/00 derma reesei. Science 265:524-528.
    [Show full text]
  • Deutsche Gesellschaft Für Experimentelle Und Klinische Pharmakologie Und Toxikologie E.V
    Naunyn-Schmiedeberg´s Arch Pharmacol (2013 ) 386 (Suppl 1):S1–S104 D OI 10.1007/s00210-013-0832-9 Deutsche Gesellschaft für Experimentelle und Klinische Pharmakologie und Toxikologie e.V. Abstracts of the 79 th Annual Meeting March 5 – 7, 2013 Halle/Saale, Germany This supplement was not sponsored by outside commercial interests. It was funded entirely by the publisher. 123 S2 S3 001 003 Multitarget approach in the treatment of gastroesophagel reflux disease – Nucleoside Diphosphate Kinase B is a Novel Receptor-independent Activator of comparison of a proton-pump inhibitor with STW 5 G-protein Signaling in Clinical and Experimental Atrial Fibrillation Abdel-Aziz H.1,2, Khayyal M. T.3, Kelber O.2, Weiser D.2, Ulrich-Merzenich G.4 Abu-Taha I.1, Voigt N.1, Nattel S.2, Wieland T.3, Dobrev D.1 1Inst. of Pharmaceutical & Medicinal Chemistry, University of Münster Pharmacology, 1Universität Duisburg-Essen Institut für Pharmakologie, Hufelandstr. 55, 45122 Essen, Hittorfstr 58-62, 48149 Münster, Germany Germany 2Steigerwald Arzneimittelwerk Wissenschaft, Havelstr 5, 64295 Darmstadt, Germany 2McGill University Montreal Heart Institute, 3655 Promenade Sir-William-Osler, Montréal 3Faculty of Pharmacy, Cairo University Pharmacology, Cairo Egypt Québec H3G 1Y6, Canada 4Medizinische Poliklinik, University of Bonn, Wilhelmstr. 35-37, 53111 Bonn, Germany 3Medizinische Fakultät Mannheim der Universität Heidelberg Institutes für Experimentelle und Klinische Pharmakologie und Toxikologie, Maybachstr. 14, 68169 Gastroesophageal reflux disease (GERD) was the most common GI-diagnosis (8.9 Mannheim, Germany million visits) in the US in 2012 (1). Proton pump inhibitors (PPI) are presently the mainstay of therapy, but in up to 40% of the patients complete symptom control fails.
    [Show full text]
  • Role of Amylase in Ovarian Cancer Mai Mohamed University of South Florida, [email protected]
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School July 2017 Role of Amylase in Ovarian Cancer Mai Mohamed University of South Florida, [email protected] Follow this and additional works at: http://scholarcommons.usf.edu/etd Part of the Pathology Commons Scholar Commons Citation Mohamed, Mai, "Role of Amylase in Ovarian Cancer" (2017). Graduate Theses and Dissertations. http://scholarcommons.usf.edu/etd/6907 This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Role of Amylase in Ovarian Cancer by Mai Mohamed A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Pathology and Cell Biology Morsani College of Medicine University of South Florida Major Professor: Patricia Kruk, Ph.D. Paula C. Bickford, Ph.D. Meera Nanjundan, Ph.D. Marzenna Wiranowska, Ph.D. Lauri Wright, Ph.D. Date of Approval: June 29, 2017 Keywords: ovarian cancer, amylase, computational analyses, glycocalyx, cellular invasion Copyright © 2017, Mai Mohamed Dedication This dissertation is dedicated to my parents, Ahmed and Fatma, who have always stressed the importance of education, and, throughout my education, have been my strongest source of encouragement and support. They always believed in me and I am eternally grateful to them. I would also like to thank my brothers, Mohamed and Hussien, and my sister, Mariam. I would also like to thank my husband, Ahmed.
    [Show full text]
  • Cutinase Structure, Function and Biocatalytic Applications
    EJB Electronic Journal of Biotechnology ISSN: 0717-345 Vol.1 No.3, Issue of August 15, 1998. © 1998 by Universidad Católica de Valparaíso –- Chile Invited review paper/ Received 20 October, 1998. REVIEW ARTICLE Cutinase structure, function and biocatalytic applications Cristina M. L. Carvalho Centro de Engenharia Biológica e Química Instituto Superior Técnico 1000 Lisboa – Portugal Maria Raquel Aires-Barros Centro de Engenharia Biológica e Química Instituto Superior Técnico 1000 Lisboa – Portugal 1 Joaquim M. S. Cabral Centro de Engenharia Biológica e Química Instituto Superior Técnico 1000 Lisboa – Portugal Tel: + 351.1.8419065 Fax: + 351.1.8419062 E-mail: [email protected] http://www.ist.utl.pt/ This review analyses the role of cutinases in nature and Some microorganisms, including plant pathogens, have their potential biotechnological applications. The been shown to live on cutin as their sole carbon source cloning and expression of a fungal cutinase from (Purdy and Kolattukudy, 1975) and the production of Fusarium solani f. pisi, in Escherichia coli and extracellular cutinolytic enzymes has been presented (Purdy Saccharomyces cerevisiae hosts are described. The three and Kolattukudy, 1975; Lin and Kolattukudy, 1980). dimensional structure of this cutinase is also analysed Cutinases have been purified and characterized from and its function as a lipase discussed and compared with several different sources, mainly fungi (Purdy and other lipases. The biocatalytic applications of cutinase Kolattukudy, 1975 ; Lin and Kolattukudy, 1980; Petersen et are described taking into account the preparation of al., 1997; Dantzig et al., 1986; Murphy et al., 1996) and different cutinase forms and the media where the pollen (Petersen et al., 1997; Sebastian et al., 1987).
    [Show full text]