Geometry of Curves
Appendix A Geometry of Curves “Arc, amplitude, and curvature sustain a similar relation to each other as time, motion and velocity, or as volume, mass and density.” Carl Friedrich Gauss The rest of this lecture notes is about geometry of curves and surfaces in R2 and R3. It will not be covered during lectures in MATH 4033 and is not essential to the course. However, it is recommended for readers who want to acquire workable knowledge on Differential Geometry. A.1. Curvature and Torsion A.1.1. Regular Curves. A curve in the Euclidean space Rn is regarded as a function r(t) from an interval I to Rn. The interval I can be finite, infinite, open, closed n n or half-open. Denote the coordinates of R by (x1, x2, ... , xn), then a curve r(t) in R can be written in coordinate form as: r(t) = (x1(t), x2(t),..., xn(t)). One easy way to make sense of a curve is to regard it as the trajectory of a particle. At any time t, the functions x1(t), x2(t), ... , xn(t) give the coordinates of the particle in n R . Assuming all xi(t), where 1 ≤ i ≤ n, are at least twice differentiable, then the first derivative r0(t) represents the velocity of the particle, its magnitude jr0(t)j is the speed of the particle, and the second derivative r00(t) represents the acceleration of the particle. As a course on Differential Manifolds/Geometry, we will mostly study those curves which are infinitely differentiable (i.e.
[Show full text]