8. the Fary-Milnor Theorem
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Section 1.7B the Four-Vertex Theorem
Section 1.7B The Four-Vertex Theorem Matthew Hendrix Matthew Hendrix Section 1.7B The Four-Vertex Theorem Definition The integer I is called the rotation index of the curve α where I is an integer multiple of 2π; that is, Z 1 k(s) dt = θ(`) − θ(0) = 2πI 0 Definition 2 Let α : [0; `] ! R be a plane closed curve given by α(s) = (x(s); y(s)). Since s is the arc length, the tangent vector t(s) = (x0(s); y 0(s)) has unit length. The tangent indicatrix is 2 0 0 t : [0; `] ! R , which is given by t(s) = (x (s); y (s)); this is a differentiable curve, the trace of which is contained in the circle of radius 1. Matthew Hendrix Section 1.7B The Four-Vertex Theorem Definition 2 Let α : [0; `] ! R be a plane closed curve given by α(s) = (x(s); y(s)). Since s is the arc length, the tangent vector t(s) = (x0(s); y 0(s)) has unit length. The tangent indicatrix is 2 0 0 t : [0; `] ! R , which is given by t(s) = (x (s); y (s)); this is a differentiable curve, the trace of which is contained in the circle of radius 1. Definition The integer I is called the rotation index of the curve α where I is an integer multiple of 2π; that is, Z 1 k(s) dt = θ(`) − θ(0) = 2πI 0 Matthew Hendrix Section 1.7B The Four-Vertex Theorem Definition 2 A vertex of a regular plane curve α :[a; b] ! R is a point t 2 [a; b] where k0(t) = 0. -
Geometry of Curves
Appendix A Geometry of Curves “Arc, amplitude, and curvature sustain a similar relation to each other as time, motion and velocity, or as volume, mass and density.” Carl Friedrich Gauss The rest of this lecture notes is about geometry of curves and surfaces in R2 and R3. It will not be covered during lectures in MATH 4033 and is not essential to the course. However, it is recommended for readers who want to acquire workable knowledge on Differential Geometry. A.1. Curvature and Torsion A.1.1. Regular Curves. A curve in the Euclidean space Rn is regarded as a function r(t) from an interval I to Rn. The interval I can be finite, infinite, open, closed n n or half-open. Denote the coordinates of R by (x1, x2, ... , xn), then a curve r(t) in R can be written in coordinate form as: r(t) = (x1(t), x2(t),..., xn(t)). One easy way to make sense of a curve is to regard it as the trajectory of a particle. At any time t, the functions x1(t), x2(t), ... , xn(t) give the coordinates of the particle in n R . Assuming all xi(t), where 1 ≤ i ≤ n, are at least twice differentiable, then the first derivative r0(t) represents the velocity of the particle, its magnitude jr0(t)j is the speed of the particle, and the second derivative r00(t) represents the acceleration of the particle. As a course on Differential Manifolds/Geometry, we will mostly study those curves which are infinitely differentiable (i.e. -
Symmetrization of Convex Plane Curves
Symmetrization of convex plane curves P. Giblin and S. Janeczko Abstract Several point symmetrizations of a convex curve Γ are introduced and one, the affinely invariant ‘cen- tral symmetric transform’ (CST) with respect to a given basepoint inside Γ, is investigated in detail. Examples for Γ include triangles, rounded triangles, ellipses, curves defined by support functions and piecewise smooth curves. Of particular interest is the region of basepoints for which the CST is convex (this region can be empty but its complement in the interior of Γ is never empty). The (local) boundary of this region can have cusps and in principle it can be determined from a geometrical construction for the tangent direction to the CST. MR Classification 52A10, 53A04 1 Introduction There are several ways in which a convex plane curve Γ can be transformed into one which is, in some sense, symmetric. Here are three possible constructions. PT Assume that Γ is at least C1. For each pair of parallel tangents of Γ construct two parallel lines with the same separation and the origin (or any other fixed point) equidistant from them. The resulting envelope, the parallel tangent transform, will be symmetric about the chosen fixed point. All choices of fixed point give the same transform up to translation. This construction is affinely invariant. A curve of constant width, where the separation of parallel tangent pairs is constant, will always transform to a circle. Another example is given in Figure 1(a). This construction can also be interpreted in the following way: Reflect Γ in the chosen fixed point 1 to give Γ∗ say. -
One-Dimensional Projective Structures, Convex Curves and the Ovals of Benguria & Loss
published version: Comm. Math. Phys. 336 (2015), 933-952 One-dimensional Projective Structures, Convex Curves and the Ovals of Benguria & Loss JACOB BERNSTEIN AND THOMAS METTLER ABSTRACT. Benguria and Loss have conjectured that, amongst all smooth closed curves in R2 of length 2, the lowest possible eigenvalue of the op- erator L 2 is 1. They observed that this value was achieved on a D C two-parameter family, O, of geometrically distinct ovals containing the round circle and collapsing to a multiplicity-two line segment. We characterize the curves in O as absolute minima of two related geometric functionals. We also discuss a connection with projective differential geometry and use it to explain the natural symmetries of all three problems. 1. Introduction In[ 1], Benguria and Loss conjectured that for any, , a smooth closed curve in R2 2 of length 2, the lowest eigenvalue, , of the operator L satisfied D C 1 1. That is, they conjectured that for all such and all functions f H ./, 2 Z Z 2 2 2 2 (1.1) f f ds f ds; jr j C where f is the intrinsic gradient of f , is the geodesic curvature and ds is the lengthr element. This conjecture was motivated by their observation that it was equivalent to a certain one-dimensional Lieb-Thirring inequality with conjectured sharp constant. They further observed that the above inequality is saturated on a two-parameter family of strictly convex curves which contains the round circle and degenerates into a multiplicity-two line segment. The curves in this family look like ovals and so we call them the ovals of Benguria and Loss and denote the family by 1 O. -
Asymptotic Approximation of Convex Curves
Asymptotic Approximation of Convex Curves Monika Ludwig Abstract. L. Fejes T´othgave asymptotic formulae as n → ∞ for the distance between a smooth convex disc and its best approximating inscribed or circumscribed polygons with at most n vertices, where the distance is in the sense of the symmetric difference metric. In this paper these formulae are extended by specifying the second terms of the asymptotic expansions. Tools are from affine differential geometry. 1 Introduction 2 i Let C be a closed convex curve in the Euclidean plane IE and let Pn(C) be the set of all convex polygons with at most n vertices that are inscribed in C. We i measure the distance of C and Pn ∈ Pn(C) by the symmetric difference metric δS and study the asymptotic behaviour of S i S i δ (C, Pn) = inf{δ (C, Pn): Pn ∈ Pn(C)} S c as n → ∞. In case of circumscribed polygons the analogous notion is δ (C, Pn). For a C ∈ C2 with positive curvature function κ(t), the following asymptotic formulae were given by L. Fejes T´oth [2], [3] Z l !3 S i 1 1/3 1 δ (C, Pn) ∼ κ (t)dt as n → ∞ (1) 12 0 n2 and Z l !3 S c 1 1/3 1 δ (C, Pn) ∼ κ (t)dt as n → ∞, (2) 24 0 n2 where t is the arc length and l the length of C. Complete proofs of these results are due to D. E. McClure and R. A. Vitale [9]. In this article we extend these asymptotic formulae by deriving the second terms in the asymptotic expansions. -
Riemannian Submanifolds: a Survey
RIEMANNIAN SUBMANIFOLDS: A SURVEY BANG-YEN CHEN Contents Chapter 1. Introduction .............................. ...................6 Chapter 2. Nash’s embedding theorem and some related results .........9 2.1. Cartan-Janet’s theorem .......................... ...............10 2.2. Nash’s embedding theorem ......................... .............11 2.3. Isometric immersions with the smallest possible codimension . 8 2.4. Isometric immersions with prescribed Gaussian or Gauss-Kronecker curvature .......................................... ..................12 2.5. Isometric immersions with prescribed mean curvature. ...........13 Chapter 3. Fundamental theorems, basic notions and results ...........14 3.1. Fundamental equations ........................... ..............14 3.2. Fundamental theorems ............................ ..............15 3.3. Basic notions ................................... ................16 3.4. A general inequality ............................. ...............17 3.5. Product immersions .............................. .............. 19 3.6. A relationship between k-Ricci tensor and shape operator . 20 3.7. Completeness of curvature surfaces . ..............22 Chapter 4. Rigidity and reduction theorems . ..............24 4.1. Rigidity ....................................... .................24 4.2. A reduction theorem .............................. ..............25 Chapter 5. Minimal submanifolds ....................... ...............26 arXiv:1307.1875v1 [math.DG] 7 Jul 2013 5.1. First and second variational formulas -
Some Examples of Critical Points for the Total Mean Curvature Functional
Proceedings of the Edinburgh Mathematical Society (2000) 43, 587-603 © SOME EXAMPLES OF CRITICAL POINTS FOR THE TOTAL MEAN CURVATURE FUNCTIONAL JOSU ARROYO1, MANUEL BARROS2 AND OSCAR J. GARAY1 1 Departamento de Matemdticas, Universidad del Pais Vasco/Euskal Herriko Unibertsitatea, Aptdo 644 > 48080 Bilbao, Spain ([email protected]; [email protected]) 2 Departamento de Geometria y Topologia, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain ([email protected]) (Received 31 March 1999) Abstract We study the following problem: existence and classification of closed curves which are critical points for the total curvature functional, defined on spaces of curves in a Riemannian manifold. This problem is completely solved in a real space form. Next, we give examples of critical points for this functional in a class of metrics with constant scalar curvature on the three sphere. Also, we obtain a rational one-parameter family of closed helices which are critical points for that functional in CP2(4) when it is endowed with its usual Kaehlerian structure. Finally, we use the principle of symmetric criticality to get equivariant submanifolds, constructed on the above curves, which are critical points for the total mean curvature functional. Keywords: total curvature; critical points; total tension AMS 1991 Mathematics subject classification: Primary 53C40; 53A05 1. Introduction The tension field of a submanifold is the Euler-Lagrange operator associated with the energy of the submanifold [9] and it is precisely the mean curvature vector field. Thus, the amount of tension that a submanifold receives at one point is measured by the mean curvature function at that point, a. -
Arxiv:1709.02078V1 [Math.DG]
DENSITY OF A MINIMAL SUBMANIFOLD AND TOTAL CURVATURE OF ITS BOUNDARY Jaigyoung Choe∗ and Robert Gulliver Abstract Given a piecewise smooth submanifold Γn−1 ⊂ Rm and p ∈ Rm, we define the vision angle Πp(Γ) to be the (n − 1)-dimensional volume of the radial projection of Γ to the unit sphere centered at p. If p is a point on a stationary n-rectifiable set Σ ⊂ Rm with boundary Γ, then we show the density of Σ at p is ≤ the density at its vertex p of the n−1 cone over Γ. It follows that if Πp(Γ) is less than twice the volume of S , for all p ∈ Γ, then Σ is an embedded submanifold. As a consequence, we prove that given two n-planes n n Rm n R1 , R2 in and two compact convex hypersurfaces Γi of Ri ,i =1, 2, a nonflat minimal submanifold spanned by Γ := Γ1 ∪ Γ2 is embedded. 1 Introduction Fenchel [F1] showed that the total curvature of a closed space curve γ ⊂ Rm is at least 2π, and it equals 2π if and only if γ is a plane convex curve. F´ary [Fa] and Milnor [M] independently proved that a simple knotted regular curve has total curvature larger than 4π. These two results indicate that a Jordan curve which is curved at most double the minimum is isotopically simple. But in fact minimal surfaces spanning such Jordan curves must be simple as well. Indeed, Nitsche [N] showed that an analytic Jordan curve in R3 with total curvature at most 4π bounds exactly one minimal disk. -
Classification of Convex Ancient Solutions to Curve Shortening Flow on the Sphere
UC San Diego UC San Diego Electronic Theses and Dissertations Title Classification of Convex Ancient Solutions to Curve Shortening Flow on the Sphere Permalink https://escholarship.org/uc/item/7gt6c9nw Author Louie, Janelle Publication Date 2014 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO Classification of Convex Ancient Solutions to Curve Shortening Flow on the Sphere A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Mathematics by Janelle Louie Committee in charge: Professor Bennett Chow, Chair Professor Kenneth Intriligator Professor Elizabeth Jenkins Professor Lei Ni Professor Jeffrey Rabin 2014 Copyright Janelle Louie, 2014 All rights reserved. The dissertation of Janelle Louie is approved, and it is ac- ceptable in quality and form for publication on microfilm and electronically: Chair University of California, San Diego 2014 iii TABLE OF CONTENTS Signature Page.................................. iii Table of Contents................................. iv List of Figures..................................v Acknowledgements................................ vi Vita........................................ vii Abstract of the Dissertation........................... viii Chapter 1 Introduction............................1 1.1 Previous work and background...............2 1.2 Results and outline of the thesis..............4 Chapter 2 Preliminaries...........................6 2.1 -
Curvatures of Smooth and Discrete Surfaces
Curvatures of Smooth and Discrete Surfaces John M. Sullivan Abstract. We discuss notions of Gauss curvature and mean curvature for polyhedral surfaces. The discretizations are guided by the principle of preserving integral relations for curvatures, like the Gauss/Bonnet theorem and the mean-curvature force balance equation. Keywords. Discrete Gauss curvature, discrete mean curvature, integral curvature rela- tions. The curvatures of a smooth surface are local measures of its shape. Here we con- sider analogous quantities for discrete surfaces, meaning triangulated polyhedral surfaces. Often the most useful analogs are those which preserve integral relations for curvature, like the Gauss/Bonnet theorem or the force balance equation for mean curvature. For sim- plicity, we usually restrict our attention to surfaces in euclidean three-space E3, although some of the results generalize to other ambient manifolds of arbitrary dimension. This article is intended as background for some of the related contributions to this volume. Much of the material here is not new; some is even quite old. Although some references are given, no attempt has been made to give a comprehensive bibliography or a full picture of the historical development of the ideas. 1. Smooth curves, framings and integral curvature relations A companion article [Sul08] in this volume investigates curves of finite total curvature. This class includes both smooth and polygonal curves, and allows a unified treatment of curvature. Here we briefly review the theory of smooth curves from the point of view we arXiv:0710.4497v1 [math.DG] 24 Oct 2007 will later adopt for surfaces. The curvatures of a smooth curve γ (which we usually assume is parametrized by its arclength s) are the local properties of its shape, invariant under euclidean motions. -
Isoptics of a Closed Strictly Convex Curve. - II Rendiconti Del Seminario Matematico Della Università Di Padova, Tome 96 (1996), P
RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA W. CIESLAK´ A. MIERNOWSKI W. MOZGAWA Isoptics of a closed strictly convex curve. - II Rendiconti del Seminario Matematico della Università di Padova, tome 96 (1996), p. 37-49 <http://www.numdam.org/item?id=RSMUP_1996__96__37_0> © Rendiconti del Seminario Matematico della Università di Padova, 1996, tous droits réservés. L’accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit conte- nir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Isoptics of a Closed Strictly Convex Curve. - II. W. CIE015BLAK (*) - A. MIERNOWSKI (**) - W. MOZGAWA(**) 1. - Introduction. ’ This article is concerned with some geometric properties of isoptics which complete and deepen the results obtained in our earlier paper [3]. We therefore begin by recalling the basic notions and necessary results concerning isoptics. An a-isoptic Ca of a plane, closed, convex curve C consists of those points in the plane from which the curve is seen under the fixed angle .7r - a. We shall denote by C the set of all plane, closed, strictly convex curves. Choose an element C and a coordinate system with the ori- gin 0 in the interior of C. Let p(t), t E [ 0, 2~c], denote the support func- tion of the curve C. -
Combinatorial, Bakry-Émery, Ollivier's Ricci Curvature Notions and Their
Combinatorial, Bakry-Émery, Ollivier’s Ricci curvature notions and their motivation from Riemannian geometry Supanat Kamtue arXiv:1803.08898v1 [math.CO] 23 Mar 2018 Department of Mathematical Sciences Durham University, UK Abstract In this survey, we study three different notions of curvature that are defined on graphs, namely, combinatorial curvature, Bakry-Émery curvature, and Ollivier’s Ricci curvature. For each curvature notion, the definition and its motivation from Riemannian geometry will be explained. Moreover, we bring together some global results and geometric concepts in Riemannian geometry that are related to curvature (e.g. Bonnet-Myers theorem, Laplacian opera- tor, Lichnerowicz theorem, Cheeger constant), and then compare them to the discrete analogues in some (if not all) of the discrete curvature notions. The structure of this survey is as follows: the first chapter is dedicated to relevant background in Riemannian geometry. Each following chapter is focussing on one of the discrete curvature notions. This survay is an MSc dissertation in Mathematical Sciences at Durham University. Contents 1 Background in Riemannian Geometry3 1.1 Gauss-Bonnet, Cartan-Hadamard, and Cheeger constant . .3 1.2 Laplacian operator and Bochner’s formula . .8 1.3 Eigenvalues of Laplacian and Lichnerowicz theorem . 14 1.4 Bonnet-Myers theorem . 15 1.5 Average distance between two balls . 17 1.6 Examples of graphs and manifolds . 21 2 Combinatorial Curvature 24 2.1 Planar tessellations . 24 2.2 Combinatorial Gauss-Bonnet and Cartan-Hadamard . 27 2.3 Cheeger constant and isoperimetric inequality on graphs . 29 2.4 Combinatorial Bonnet-Myers . 32 3 Bakry-Émery Curvature 35 3.1 CD inequality and Γ-calculus .