Inequalities for the Curvature of Curves and Surfaces ∗

Total Page:16

File Type:pdf, Size:1020Kb

Inequalities for the Curvature of Curves and Surfaces ∗ Inequalities for the Curvature of Curves and Surfaces ∗ David Cohen-Steiner Herbert Edelsbrunner Departent of Computer Science Department of Computer Science Duke University, Durham Duke University, Durham North Carolina, USA Raindrop Geomagic, RTP [email protected] North Carolina, USA [email protected] ABSTRACT While curvature is a priori defined only for smooth objects, total In this paper, we bound the difference between the total mean cur- mean curvature can be defined consistently for a large class of non- vatures of two closed surfaces in R3 in terms of their total absolute smooth, including piecewise-linear objects [15]. This is of practi- curvatures and the Frechet´ distance between the volumes they en- cal interest since smooth surfaces are often represented by approx- close. The proof relies on a combination of methods from algebraic imating meshes. From this perspective, an important question is topology and integral geometry. We also bound the difference be- whether the total mean curvature of a piecewise-linear surface is tween the lengths of two curves using the same methods. close to the one of approximated the smooth surface. More gen- erally, understanding the behavior of Lipschitz-Killing curvatures under approximations is an important unsolved theoretical ques- Categories and Subject Descriptors tion [12]. In this direction, a convergence result for the Lipschitz- F.2.2 [Analysis of Algorithms and Problem Complexity]: Non- Killing curvatures of increasingly fine triangulations inscribed in a numerical Algorithms and Problems—Geometrical problems and smooth submanifold was obtained in [11]. For surfaces, this result computations, Computations on discrete structures; G.2.1 [Discrete was strengthened in [5, 7] by extending it to curvature tensors and Mathematics]: Combinatorics—Counting problems by giving an explicit error bound. An essential requirement in the latter approximation result is that the normals to the mesh are close to the normals to the smooth surface. General Terms In this paper, we give an approximation result for the total mean Algorithms, Theory curvature of surfaces under weaker conditions, using a stability re- sult on topological persistence proved in [6]. We show that control- Keywords ling the Frechet´ distance between the smooth object and its approx- imation is sufficient to guarantee that their total mean curvatures are Integral geometry, curvature, Frechet´ distance, persistence diagrams, close, provided the approximation has bounded total absolute cur- bottleneck distance, approximation, stability. vature. Surprisingly, the closeness between the normals to the two surfaces is not explicitly required. We prove this using the integral- 1. INTRODUCTION geometric interpretations of the total absolute and the total mean Given an oriented hypersurface S smoothly embedded in Rd, curvatures [14]. Our method also yields a simple and apparently new geometric inequality for curves. More precisely, we obtain the mean curvature of S at p S is the average of the d 1 principal curvatures at p. The total∈ mean curvature is the integral− a bound on the difference between the lengths of two curves as a of the mean curvature over S. It is the second in a sequence of function of their Frechet´ distance and of their total curvature. This d quantities associated with a hypersurface, called Quermassinte- result can be viewed as a generalization of Fary’s´ theorem [10]. grale, Minkowski functionals,orLipschitz-Killing curvatures in the literature [3]. The total mean curvature and its relatives have many Outline. Section 2 recalls the necessary background on topological interesting properties and have been extensively studied by mathe- persistence and integral geometry. Section 3 states and proves our maticians during the last 150 years. results on surfaces and curves. Section 4 concludes the paper. ∗Both authors were partially supported by NSF under grant CCR- 2. BACKGROUND 00-86013 and by DARPA under grant HR0011-05-1-0007. Before we state and prove our results, we review the necessary background. We need to understand topological persistence, a topic in algebraic topology [13], and we need integral-geometric inter- Permission to make digital or hard copies of all or part of this work for pretations of curvature and length, concepts studied in differential personal or classroom use is granted without fee provided that copies are geometry [8]. not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to Topological persistence. Given a generic smooth function f on a republish, to post on servers or to redistribute to lists, requires prior specific manifold M, Morse theory shows that the changes in the topology permission and/or a fee. 1 of the sublevel sets f − ( ,x]are related to the critical points of SCG’05, June 6–8, 2005, Pisa, Italy. −∞ Copyright 2005 ACM 1-58113-991-8/05/0006 ...$5.00. f. More precisely, when the level x increases and passes a critical value, a handle is attached to the current sublevel set. This opera- k-TRIANGLE LEMMA [9]. The persistent Betti number βk(x, y) tion can have two kinds of consequences: either a new homology is the total number of points in Dk(f) contained in the quadrant class is created or some homology class is destroyed. Topological [ ,x] (y, + ]. persistence is a canonical way to pair up critical values that create −∞ × ∞ homology classes with critical values that destroy them [9]. Each Another important property of topological persistence is its stabil- such pair forms a half-open persistence interval [a1,a2) that can ity under perturbation. We measure the distance between points in ¯ 2 2 be interpreted as the life-span of a topological feature in the fil- the extended plane, R =[ , ] ,as a a0 = max a1 −∞ ∞ k − k∞ R¯{|2 − tration of M by sublevel sets. An example is shown in Figure 1. a10 , a2 a20 . Given two multisets of points A and A0 in ,we | | − |} Sweeping the curve from bottom to top, we encounter five critical define their bottleneck distance as dB(A, A0) = inf sup a γ(a) , γ a k − k∞ ∞ where a ranges over all points of A and γ ranges over all bijections from A to A0. STABILITY THEOREM [6]. If f and g are sufficiently regular real-valued functions defined over the same space, then dB(Dk(f), Dk(g)) sup f(p) g(p) , ≤ p | − | for all k 0. Figure 1: A one-dimensional real-valued function, its per- ≥ sistence intervals, and its persistence diagram. The dark, In other words, persistence diagrams are stable under possibly ir- medium, light regions corresponds to persistent Betti numbers regular perturbations of small amplitude, as illustrated in Figure 2. 3, 2, 1. values in sequence. The first three create a new component each. The fourth critical value merges the component created last with the component created just before. The life-span of the third com- ponent is thus the interval between the third critical value and the fourth, as indicated in the middle of the figure. Similarly, the fifth critical value merges the component created by the second critical value with the one created by the first, and is therefore paired with the second value. The component created first is never destroyed and its life-span is the half-infinite interval starting at the first crit- ical value. Because the function in Figure 1 is one-dimensional, the only interesting features in the sublevel sets are their connected Figure 2: Left: two close functions, one with many and the components, which correspond to classes in the 0-th homology other with just four critical values. Right: the persistence dia- group, but persistence intervals can be defined similarly for k-th grams of the two functions, and the bijection between them. homology groups, for arbitrary k. Also, they can be defined for a large class of functions, including height functions on simplicial complexes in addition to Morse functions on smooth manifolds [6]. Integral geometry for surfaces. Given a smoothly embedded sur- In this more general setting, critical values are replaced by homo- face S in R3, we recall that the two principal curvatures at a point logical critical values that correspond to levels at which the homol- p S are the maximum and minimum normal curvatures, denoted ∈ ogy groups of the sublevel sets change. as κ1(p) κ2(p). The total mean curvature is the integral of the mean curvature≥ and the total absolute curvature is the integral of Persistence diagrams. As shown in [4], the (multi-) set of all the absolute Gaussian curvature: persistence intervals of a function provides a rather complete de- Z 1 scription of the topological relationships between different sublevel H(S)= (κ1(p)+κ2(p)) dp, 1 2S sets. For example, the image of the map from Hk(f − ( ,x]) to Z 1 −∞ Hk(f − ( ,y]) induced by inclusion on k-th homology groups −∞ G(S)= κ1(p)κ2(p)dp. has dimension equal to the number of persistence intervals that S| | contain both x and y. These numbers are called persistent Betti The latter is also the total area swept by the normal vector and numbers and we denote them by βk(x, y). To visualize them, we measures the intuitive notion of bumpiness. For example, surfaces represent each persistence interval [a1,a2) by the point (a1,a2) with zero total absolute curvature are developable, that is, they are in the plane, allowing infinite coordinates for unbounded intervals. everywhere locally isometric to the plane. To prove our results, The (multi-) set of all such points, together with the diagonal, ∆= we will use the integral-geometric interpretation of total absolute (x, x) x R , is the persistence diagram of the function, which { | ∈ } and total mean curvature, which we now recall.
Recommended publications
  • Geometry of Curves
    Appendix A Geometry of Curves “Arc, amplitude, and curvature sustain a similar relation to each other as time, motion and velocity, or as volume, mass and density.” Carl Friedrich Gauss The rest of this lecture notes is about geometry of curves and surfaces in R2 and R3. It will not be covered during lectures in MATH 4033 and is not essential to the course. However, it is recommended for readers who want to acquire workable knowledge on Differential Geometry. A.1. Curvature and Torsion A.1.1. Regular Curves. A curve in the Euclidean space Rn is regarded as a function r(t) from an interval I to Rn. The interval I can be finite, infinite, open, closed n n or half-open. Denote the coordinates of R by (x1, x2, ... , xn), then a curve r(t) in R can be written in coordinate form as: r(t) = (x1(t), x2(t),..., xn(t)). One easy way to make sense of a curve is to regard it as the trajectory of a particle. At any time t, the functions x1(t), x2(t), ... , xn(t) give the coordinates of the particle in n R . Assuming all xi(t), where 1 ≤ i ≤ n, are at least twice differentiable, then the first derivative r0(t) represents the velocity of the particle, its magnitude jr0(t)j is the speed of the particle, and the second derivative r00(t) represents the acceleration of the particle. As a course on Differential Manifolds/Geometry, we will mostly study those curves which are infinitely differentiable (i.e.
    [Show full text]
  • J.M. Sullivan, TU Berlin A: Curves Diff Geom I, SS 2019 This Course Is an Introduction to the Geometry of Smooth Curves and Surf
    J.M. Sullivan, TU Berlin A: Curves Diff Geom I, SS 2019 This course is an introduction to the geometry of smooth if the velocity never vanishes). Then the speed is a (smooth) curves and surfaces in Euclidean space Rn (in particular for positive function of t. (The cusped curve β above is not regular n = 2; 3). The local shape of a curve or surface is described at t = 0; the other examples given are regular.) in terms of its curvatures. Many of the big theorems in the DE The lengthR [ : Länge] of a smooth curve α is defined as subject – such as the Gauss–Bonnet theorem, a highlight at the j j len(α) = I α˙(t) dt. (For a closed curve, of course, we should end of the semester – deal with integrals of curvature. Some integrate from 0 to T instead of over the whole real line.) For of these integrals are topological constants, unchanged under any subinterval [a; b] ⊂ I, we see that deformation of the original curve or surface. Z b Z b We will usually describe particular curves and surfaces jα˙(t)j dt ≥ α˙(t) dt = α(b) − α(a) : locally via parametrizations, rather than, say, as level sets. a a Whereas in algebraic geometry, the unit circle is typically be described as the level set x2 + y2 = 1, we might instead This simply means that the length of any curve is at least the parametrize it as (cos t; sin t). straight-line distance between its endpoints. Of course, by Euclidean space [DE: euklidischer Raum] The length of an arbitrary curve can be defined (following n we mean the vector space R 3 x = (x1;:::; xn), equipped Jordan) as its total variation: with with the standard inner product or scalar product [DE: P Xn Skalarproduktp ] ha; bi = a · b := aibi and its associated norm len(α):= TV(α):= sup α(ti) − α(ti−1) : jaj := ha; ai.
    [Show full text]
  • Riemannian Submanifolds: a Survey
    RIEMANNIAN SUBMANIFOLDS: A SURVEY BANG-YEN CHEN Contents Chapter 1. Introduction .............................. ...................6 Chapter 2. Nash’s embedding theorem and some related results .........9 2.1. Cartan-Janet’s theorem .......................... ...............10 2.2. Nash’s embedding theorem ......................... .............11 2.3. Isometric immersions with the smallest possible codimension . 8 2.4. Isometric immersions with prescribed Gaussian or Gauss-Kronecker curvature .......................................... ..................12 2.5. Isometric immersions with prescribed mean curvature. ...........13 Chapter 3. Fundamental theorems, basic notions and results ...........14 3.1. Fundamental equations ........................... ..............14 3.2. Fundamental theorems ............................ ..............15 3.3. Basic notions ................................... ................16 3.4. A general inequality ............................. ...............17 3.5. Product immersions .............................. .............. 19 3.6. A relationship between k-Ricci tensor and shape operator . 20 3.7. Completeness of curvature surfaces . ..............22 Chapter 4. Rigidity and reduction theorems . ..............24 4.1. Rigidity ....................................... .................24 4.2. A reduction theorem .............................. ..............25 Chapter 5. Minimal submanifolds ....................... ...............26 arXiv:1307.1875v1 [math.DG] 7 Jul 2013 5.1. First and second variational formulas
    [Show full text]
  • Some Examples of Critical Points for the Total Mean Curvature Functional
    Proceedings of the Edinburgh Mathematical Society (2000) 43, 587-603 © SOME EXAMPLES OF CRITICAL POINTS FOR THE TOTAL MEAN CURVATURE FUNCTIONAL JOSU ARROYO1, MANUEL BARROS2 AND OSCAR J. GARAY1 1 Departamento de Matemdticas, Universidad del Pais Vasco/Euskal Herriko Unibertsitatea, Aptdo 644 > 48080 Bilbao, Spain ([email protected]; [email protected]) 2 Departamento de Geometria y Topologia, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain ([email protected]) (Received 31 March 1999) Abstract We study the following problem: existence and classification of closed curves which are critical points for the total curvature functional, defined on spaces of curves in a Riemannian manifold. This problem is completely solved in a real space form. Next, we give examples of critical points for this functional in a class of metrics with constant scalar curvature on the three sphere. Also, we obtain a rational one-parameter family of closed helices which are critical points for that functional in CP2(4) when it is endowed with its usual Kaehlerian structure. Finally, we use the principle of symmetric criticality to get equivariant submanifolds, constructed on the above curves, which are critical points for the total mean curvature functional. Keywords: total curvature; critical points; total tension AMS 1991 Mathematics subject classification: Primary 53C40; 53A05 1. Introduction The tension field of a submanifold is the Euler-Lagrange operator associated with the energy of the submanifold [9] and it is precisely the mean curvature vector field. Thus, the amount of tension that a submanifold receives at one point is measured by the mean curvature function at that point, a.
    [Show full text]
  • Arxiv:1709.02078V1 [Math.DG]
    DENSITY OF A MINIMAL SUBMANIFOLD AND TOTAL CURVATURE OF ITS BOUNDARY Jaigyoung Choe∗ and Robert Gulliver Abstract Given a piecewise smooth submanifold Γn−1 ⊂ Rm and p ∈ Rm, we define the vision angle Πp(Γ) to be the (n − 1)-dimensional volume of the radial projection of Γ to the unit sphere centered at p. If p is a point on a stationary n-rectifiable set Σ ⊂ Rm with boundary Γ, then we show the density of Σ at p is ≤ the density at its vertex p of the n−1 cone over Γ. It follows that if Πp(Γ) is less than twice the volume of S , for all p ∈ Γ, then Σ is an embedded submanifold. As a consequence, we prove that given two n-planes n n Rm n R1 , R2 in and two compact convex hypersurfaces Γi of Ri ,i =1, 2, a nonflat minimal submanifold spanned by Γ := Γ1 ∪ Γ2 is embedded. 1 Introduction Fenchel [F1] showed that the total curvature of a closed space curve γ ⊂ Rm is at least 2π, and it equals 2π if and only if γ is a plane convex curve. F´ary [Fa] and Milnor [M] independently proved that a simple knotted regular curve has total curvature larger than 4π. These two results indicate that a Jordan curve which is curved at most double the minimum is isotopically simple. But in fact minimal surfaces spanning such Jordan curves must be simple as well. Indeed, Nitsche [N] showed that an analytic Jordan curve in R3 with total curvature at most 4π bounds exactly one minimal disk.
    [Show full text]
  • Curvatures of Smooth and Discrete Surfaces
    Curvatures of Smooth and Discrete Surfaces John M. Sullivan Abstract. We discuss notions of Gauss curvature and mean curvature for polyhedral surfaces. The discretizations are guided by the principle of preserving integral relations for curvatures, like the Gauss/Bonnet theorem and the mean-curvature force balance equation. Keywords. Discrete Gauss curvature, discrete mean curvature, integral curvature rela- tions. The curvatures of a smooth surface are local measures of its shape. Here we con- sider analogous quantities for discrete surfaces, meaning triangulated polyhedral surfaces. Often the most useful analogs are those which preserve integral relations for curvature, like the Gauss/Bonnet theorem or the force balance equation for mean curvature. For sim- plicity, we usually restrict our attention to surfaces in euclidean three-space E3, although some of the results generalize to other ambient manifolds of arbitrary dimension. This article is intended as background for some of the related contributions to this volume. Much of the material here is not new; some is even quite old. Although some references are given, no attempt has been made to give a comprehensive bibliography or a full picture of the historical development of the ideas. 1. Smooth curves, framings and integral curvature relations A companion article [Sul08] in this volume investigates curves of finite total curvature. This class includes both smooth and polygonal curves, and allows a unified treatment of curvature. Here we briefly review the theory of smooth curves from the point of view we arXiv:0710.4497v1 [math.DG] 24 Oct 2007 will later adopt for surfaces. The curvatures of a smooth curve γ (which we usually assume is parametrized by its arclength s) are the local properties of its shape, invariant under euclidean motions.
    [Show full text]
  • Combinatorial, Bakry-Émery, Ollivier's Ricci Curvature Notions and Their
    Combinatorial, Bakry-Émery, Ollivier’s Ricci curvature notions and their motivation from Riemannian geometry Supanat Kamtue arXiv:1803.08898v1 [math.CO] 23 Mar 2018 Department of Mathematical Sciences Durham University, UK Abstract In this survey, we study three different notions of curvature that are defined on graphs, namely, combinatorial curvature, Bakry-Émery curvature, and Ollivier’s Ricci curvature. For each curvature notion, the definition and its motivation from Riemannian geometry will be explained. Moreover, we bring together some global results and geometric concepts in Riemannian geometry that are related to curvature (e.g. Bonnet-Myers theorem, Laplacian opera- tor, Lichnerowicz theorem, Cheeger constant), and then compare them to the discrete analogues in some (if not all) of the discrete curvature notions. The structure of this survey is as follows: the first chapter is dedicated to relevant background in Riemannian geometry. Each following chapter is focussing on one of the discrete curvature notions. This survay is an MSc dissertation in Mathematical Sciences at Durham University. Contents 1 Background in Riemannian Geometry3 1.1 Gauss-Bonnet, Cartan-Hadamard, and Cheeger constant . .3 1.2 Laplacian operator and Bochner’s formula . .8 1.3 Eigenvalues of Laplacian and Lichnerowicz theorem . 14 1.4 Bonnet-Myers theorem . 15 1.5 Average distance between two balls . 17 1.6 Examples of graphs and manifolds . 21 2 Combinatorial Curvature 24 2.1 Planar tessellations . 24 2.2 Combinatorial Gauss-Bonnet and Cartan-Hadamard . 27 2.3 Cheeger constant and isoperimetric inequality on graphs . 29 2.4 Combinatorial Bonnet-Myers . 32 3 Bakry-Émery Curvature 35 3.1 CD inequality and Γ-calculus .
    [Show full text]
  • On the Total Curvature and Betti Numbers of Complex Projective Manifolds
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2018 On The Total Curvature And Betti Numbers Of Complex Projective Manifolds Joseph Ansel Hoisington University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Mathematics Commons Recommended Citation Hoisington, Joseph Ansel, "On The Total Curvature And Betti Numbers Of Complex Projective Manifolds" (2018). Publicly Accessible Penn Dissertations. 2791. https://repository.upenn.edu/edissertations/2791 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/2791 For more information, please contact [email protected]. On The Total Curvature And Betti Numbers Of Complex Projective Manifolds Abstract We prove an inequality between the sum of the Betti numbers of a complex projective manifold and its total curvature, and we characterize the complex projective manifolds whose total curvature is minimal. These results extend the classical theorems of Chern and Lashof to complex projective space. Degree Type Dissertation Degree Name Doctor of Philosophy (PhD) Graduate Group Mathematics First Advisor Christopher B. Croke Keywords Betti Number Estimates, Chern-Lashof Theorems, Complex Projective Manifolds, Total Curvature Subject Categories Mathematics This dissertation is available at ScholarlyCommons: https://repository.upenn.edu/edissertations/2791 ON THE TOTAL CURVATURE AND BETTI NUMBERS OF COMPLEX PROJECTIVE MANIFOLDS Joseph Ansel Hoisington
    [Show full text]
  • The Second Fundamental Form. Geodesics. the Curvature Tensor
    Differential Geometry Lia Vas The Second Fundamental Form. Geodesics. The Curvature Tensor. The Fundamental Theorem of Surfaces. Manifolds The Second Fundamental Form and the Christoffel symbols. Consider a surface x = @x @x x(u; v): Following the reasoning that x1 and x2 denote the derivatives @u and @v respectively, we denote the second derivatives @2x @2x @2x @2x @u2 by x11; @v@u by x12; @u@v by x21; and @v2 by x22: The terms xij; i; j = 1; 2 can be represented as a linear combination of tangential and normal component. Each of the vectors xij can be repre- sented as a combination of the tangent component (which itself is a combination of vectors x1 and x2) and the normal component (which is a multi- 1 2 ple of the unit normal vector n). Let Γij and Γij denote the coefficients of the tangent component and Lij denote the coefficient with n of vector xij: Thus, 1 2 P k xij = Γijx1 + Γijx2 + Lijn = k Γijxk + Lijn: The formula above is called the Gauss formula. k The coefficients Γij where i; j; k = 1; 2 are called Christoffel symbols and the coefficients Lij; i; j = 1; 2 are called the coefficients of the second fundamental form. Einstein notation and tensors. The term \Einstein notation" refers to the certain summation convention that appears often in differential geometry and its many applications. Consider a formula can be written in terms of a sum over an index that appears in subscript of one and superscript of P k the other variable. For example, xij = k Γijxk + Lijn: In cases like this the summation symbol is omitted.
    [Show full text]
  • Connections and Curvature
    C Connections and Curvature Introduction In this appendix we present results in differential geometry that serve as a useful background for material in the main body of the book. Material in 1 on connections is somewhat parallel to the study of the natural connec- tion§ on a Riemannian manifold made in 11 of Chapter 1, but here we also study the curvature of a connection. Material§ in 2 on second covariant derivatives is connected with material in Chapter 2 on§ the Laplace operator. Ideas developed in 3 and 4, on the curvature of Riemannian manifolds and submanifolds, make§§ contact with such material as the existence of com- plex structures on two-dimensional Riemannian manifolds, established in Chapter 5, and the uniformization theorem for compact Riemann surfaces and other problems involving nonlinear, elliptic PDE, arising from studies of curvature, treated in Chapter 14. Section 5 on the Gauss-Bonnet theo- rem is useful both for estimates related to the proof of the uniformization theorem and for applications to the Riemann-Roch theorem in Chapter 10. Furthermore, it serves as a transition to more advanced material presented in 6–8. In§§ 6 we discuss how constructions involving vector bundles can be de- rived§ from constructions on a principal bundle. In the case of ordinary vector fields, tensor fields, and differential forms, one can largely avoid this, but it is a very convenient tool for understanding spinors. The principal bundle picture is used to construct characteristic classes in 7. The mate- rial in these two sections is needed in Chapter 10, on the index§ theory for elliptic operators of Dirac type.
    [Show full text]
  • On Total Absolute Curvatu°
    ON TOTAL ABSOLUTE CURVATU° THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN MATHEMATICS BY VIQAR AZAM KHAN DEPARTMENT OF MATHEMATICS ALIGARH MUSLIM UNIVERSITY ALIGARH (INDIA) 1988 14131 1^0^- 3 0 OCT 1992 CERTIFICATE Tlvu yU> to ceAtA-iy that the. aonttnt^ o^ tku> thej>Aj> e.yvtctttd "OW TOTAL ABSOLUTE CURVATURE" U tkz onlglml fLo^zaAch mfik o^ M/L. \/x,qa/L Azam Khan aoA/Uzd out undeA my &wp(iA.VAj>.ioyio He, hcu, ^al- lUl.e,d the pfie^bcJilbed condlAxom given -in the o^dlnance^ and fiegaZa- tA.Qn& oi AtiQOAk Uiuj>tm UntveMlty, ALLgoAh. ..' -1J' I {^uJvtheA. ceAtt^y that the wohk ha^ not be.en submitted eAXhe/i pofctty Oh. iixZty to any otheA uyu.veA>!>^y ofi InAtitatton ^OK the oijxuid 0^ any de.gn.ee. / {^% IZHAR HUSAIW 11 ACKNOWLEDGEMENT It has been my privilege indeed to work under my reverend teacher Professor S. Izhar Husain from whom I learnt differential geometry and under whose able and inspiring supervision I comple­ ted this thesis. His rigorous training and constant encouragement were solely instrumental in getting the work completed. His cons­ tructive criticism at the time of drafting of the thesis resulted in many improvements of both the contents and presentation. I take this opportunity to put on record my profound indebtedness to him. I owe a lot to Dr. Sharief Deshmukh who introduced me to this topic and motivated me to persue it. He gave me several key insights on many occasions during the course of discussion with him. I express my deep sence of gratitude to the scientific and moral support which I received from him all along the work.
    [Show full text]
  • Curvature Notions on Graphs Leeds Summer School, 18-19 July 2019
    CURVATURE NOTIONS ON GRAPHS LEEDS SUMMER SCHOOL, 18-19 JULY 2019 NORBERT PEYERIMHOFF Abstract. In these lecture notes we introduce some curvature notions on graphs. After a brief discussion of Gaussian curvature of surfaces we introduce three curvature notions which can be de- fined in the discrete setting of graphs: combinatorial curvature of surface tessellations, Ollivier Ricci curvature based on notions of Optimal Transport Theory and, finally, Gromov hyperbolicity cap- turing global aspects of negative curvature. Problems inserted in the text help to become more familiar with these curvature notions and to learn more about them. Contents 1. Introduction 1 2. Combinatorial curvature 7 3. Ollivier Ricci curvature 12 4. Gromov hyperbolicity 28 5. Summary 37 References 39 1. Introduction Curvature is a fundamental concept in Differential Geometry. In the case of surfaces in 3-dimensional Euclidean space, the Gaussian curvature at a given point of a surface is the product κ1κ2 of the prin- cipal curvatures (with signs corresponding to a given normal vector N). These principal curvatures are determined by two (orthogonal) direc- tions X1,X2, in which the surface bends most. In other words, we take the affine plane spanned by a tangent vector X and N and intersect this plane with the surface. The result is a curve which can be approx- imated, up to second order, at the point of the surface by a circle. The reciprocal value of the radius of this circle is the normal curvature in direction X. Rotating this tangent direction X leads to two orthogonal directions in which this normal curvature assumes extremal values.
    [Show full text]