THE GENUS PHILINE (OPISTHOBRANCHIA, GASTROPODA) Downloaded from by Guest on 27 September 2021 W

Total Page:16

File Type:pdf, Size:1020Kb

THE GENUS PHILINE (OPISTHOBRANCHIA, GASTROPODA) Downloaded from by Guest on 27 September 2021 W Proc. malac. Soc. Lend. (1972) 40, 171. THE GENUS PHILINE (OPISTHOBRANCHIA, GASTROPODA) Downloaded from https://academic.oup.com/mollus/article/40/3/171/1087467 by guest on 27 September 2021 W. B. RUDMAN Department of Zoology, University of Auckland, Auckland, New Zealand INTRODUCTION An earlier study of Philine angasi and Philine auriformis, from New Zealand (Rudman, 1972), showed some interesting variations in the structure of the foregut. Specimens of P. falklandica and P. gibba, from Antarctica, were subsequently studied and with P. quadrata and P. powelli these species exhibit an interesting range of development within the genus. EXTERNAL FEATURES AND MANTLE CAVITY The external features of the animal, and structure of the mantle cavity are similar in all species studied. Published information shows these features are constant throughout the genus (Franz and Clark, 1969; Horikoshi, 1967; Mattox, 1958; Sars, 1878; Vayssiere, 1885). The following description is based on Philine auriformis Suter, 1909; for illustrations of P. auriformis, P. angasi and P. powelli, see Rudman (1970). The animal is elongate and the head shield is approximately two-thirds the length of the body. The posterior edge of the head shield sometimes has a median indentation and a thin median line, free of cilia, runs the length of the shield. The posterior or mantle shield, approximately one-third of the body-length, arises from under the head shield and extends some distance beyond the foot. There is usually a median notch on the posterior edge of this shield. The shell is internal and, as in the Aglajidae, there is a narrow ciliated duct running from the shell cavity to open in the left posterior quarter of the mantle shield. A small glandular pocket is situated on the posterior end of the mantle shield below the median notch of the notum (Figs. 4c, d, 5); it consists of a central ciliated pouch which is surrounded by a radially arranged group of gland cells. Most of the gland cells are clustered just below the epithelium with a few cells scattered more deeply. The granular cytoplasm of the cells stains brown in Weigert's iron haematoxylin and van Gieson and blue in Mallory and Heidenhain. This is the 'fossette glandulaire' of Pelseneer (1894). On each side of the mouth are two light brown patches. These patches, which are innervated, are considered to be sensory (Brown, 1934). Large glands, lying above and below the buccal bulb, open above and below the mouth. The granular cytoplasm of these gland cells stains light blue in Mallory and Heidenhain and light grey in Weigert and van Gieson. 172 PROCEEDINGS OF THE MALAGOLOGICAL SOCIETY At the posterior end of the mantle shield, the sides fold down and under, forming a posterior border to the mantle cavity (Fig. 5). The spiralling raphae, at the posterior end of the cavity, run dorso-ventrally. At the anterior end, on the right side of the body, is the genital opening; from this the external seminal groove runs forward to the opening of the penial sac on the right hand side of the head. The simple plicate gill is relatively small and is attached to the roof of the mantle cavity. Just behind it is a short length of intestine, the anus opening alongside the lower raphe. The Downloaded from https://academic.oup.com/mollus/article/40/3/171/1087467 by guest on 27 September 2021 ciliation of the raphae draws water down both sides of the body, over the gill and out posteriorly. The foot is relatively short ending approximately half way down the mantle shield. The parapodia enclose the sides of the body and fold over the edges of the dorsum. ALIMENTARY CANAL The species studied show a wide variety in the structure of the alimentary canal, and each species will be discussed separately. A full account of the structure and functioning of the gut of P. angasi and P. auriformis has been published separately (Rudman, 1972). Philine quadrata (Wood, 1839) The buccal bulb is relatively large being between one-third and one-half the length of the anterior body cavity. There are four pairs of extrinsic muscles. Two large lateral protractors run from the posterior end of each side of the buccal bulb to the body wall at the side of the mouth. There are also two pairs of anterior muscles, one attached mid-dorsally, the other mid-ventrally. The salivary glands, opening on each side of the oesophageal opening, are approximately as long as the buccal bulb. The radular formula is 2.1.0.1.2, the inner row of teeth being typically philinid in shape, the inner edge denticulate, while the outer two teeth on each side are much smaller and are similar in shape to those of P. gibba (Fig. 2a). The radula of P. quadrata has been illustrated by Sars (1878, Table 12, Fig. 7). The specimens I studied possessed neither gizzard nor crop. However, both Sars (1878) and Marcus and Marcus (1969) described a small crop, and the latter stated that the epithelium is thrown into small folds. The rest of the gut is similar to that of Philine auriformis and P. angasi. In one specimen food remains were found in the stomach. These consisted of two conical sand tubes, open only at the wide end. These were tentatively identified as the test of a spirotrich protozoan of the genus Tintinnopsis Stein (Kudo, 1960). Philine falklandica Powell, 1954 The buccal bulb is large, filling most_of the anterior body cavity (Figs, la, b, 2c). It has four pairs of extrinsic muscles; the numbering is identical to that used for Philine angasi and P. auriformis described in an earlier study (Rudman, 1972). A muscle (P.M.2) arises on each side, just below the oesophageal opening, and runs forward to the body wall at the side of the mouth; another pair of long muscles RUDMAN: PHILINE 173 Downloaded from https://academic.oup.com/mollus/article/40/3/171/1087467 by guest on 27 September 2021 P.M. 2 S.G.- CR. G. OES. (W FIG. I. (a) Philine falklandica, foregut, X 10; (b) Philine falklandka, gizzard plates, x 20; (c) Philine gibba, foregut, X 13. B.G., buccal ganglion; CR., crop; G., gizzard; OES., oesophagus; P.M., protractor muscle; S.G., salivary gland. (P.M.3) arises below the former and each is inserted in the body wall below and to the side of the mouth. The other two pairs arise at the anterior end of the buccal bulb and run out to the body wall, one dorsally (P.M.I) and one ventrally (P.M.6). The large pair of muscles (P.M.4, 5), acting as retractors in P. angasi and dilators in P. auriformis, are not present in this species. The radular formula is 2.1.1.1.2. The central tooth, in each row, is a very small, semi-circular, raised plate. The inner lateral tooth of each side is large and has very insignificant serrations along the inner edge, while the outer two rows are small and hook-shaped. This radula is similar to that 174 PROCEEDINGS OF THE MALACOLOGICAL SOCIETY Downloaded from https://academic.oup.com/mollus/article/40/3/171/1087467 by guest on 27 September 2021 R.S. (c) RM.3 P.M.6 FIG. 2. (a) Philine gibba, radula, x 100; (b) Phitine gibba, buccal bulb and gizzard, x 20; (c) Philine falklandica, buccal bulb, X 10; D.M., dilator muscles; P.M., protractor muscle; R. M., retractor muscle; R.S., radular sac. of P. gibba (Fig. 2a) and the occurrence of a central tooth is obviously primitive. The oesophagus enlarges to form a thin-walled crop followed at the posterior end by a small gizzard containing three brown chitinous plates (Fig. lb). For the size of the animal, the gizzard plates are extremely small; in one specimen with a shell measuring 16'5 X 11 mm the gizzard plates were 1-5 mm long and in another specimen with a shell 15 X 10 mm, the plates were 1-2 mm long. This can be com- r RUDMAN: PH1LINE 175 pared with both P. angasi and P. auriformis in which the plates are between half and two-thirds the length of the shell. The rest of the alimentary canal is typical of the genus. Philine gibba Strebel, 1908 The buccal bulb is relatively much smaller in size than that of the preceding Downloaded from https://academic.oup.com/mollus/article/40/3/171/1087467 by guest on 27 September 2021 species and the proportion of buccal bulb to gizzard is as in P. angasi. The extrinsic musculature is similar to that of P. falklandica but there is a pair of dilator muscles (Fig. 2b, D.M.) running out, one from each side of the oesophageal opening. There is also a pair of long thin muscles (R.M.) attached to the anterior end of the buccal bulb which run back to the body wall behind the buccal bulb (Fig. 2b). The radula is similar to that of P. falklandica but the inner edge of the large lateral teeth is slightly denticulate. The gizzard is large containing three large, oval chitinous plates. In a specimen with a shell 9 mm long, the gizzard plates were 3 mm long. There is no oesophageal crop. Philine powelli Rudman, 1970 The structure of the foregut is very similar to that described for P. auriformis (see Rudman, 1972). However, the large lateral muscles which act as dilators in that species are longer in P. powelli, joining the body wall some distance behind the buccal bulb, and acting as retractor muscles.
Recommended publications
  • E Urban Sanctuary Algae and Marine Invertebrates of Ricketts Point Marine Sanctuary
    !e Urban Sanctuary Algae and Marine Invertebrates of Ricketts Point Marine Sanctuary Jessica Reeves & John Buckeridge Published by: Greypath Productions Marine Care Ricketts Point PO Box 7356, Beaumaris 3193 Copyright © 2012 Marine Care Ricketts Point !is work is copyright. Apart from any use permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission of the publisher. Photographs remain copyright of the individual photographers listed. ISBN 978-0-9804483-5-1 Designed and typeset by Anthony Bright Edited by Alison Vaughan Printed by Hawker Brownlow Education Cheltenham, Victoria Cover photo: Rocky reef habitat at Ricketts Point Marine Sanctuary, David Reinhard Contents Introduction v Visiting the Sanctuary vii How to use this book viii Warning viii Habitat ix Depth x Distribution x Abundance xi Reference xi A note on nomenclature xii Acknowledgements xii Species descriptions 1 Algal key 116 Marine invertebrate key 116 Glossary 118 Further reading 120 Index 122 iii Figure 1: Ricketts Point Marine Sanctuary. !e intertidal zone rocky shore platform dominated by the brown alga Hormosira banksii. Photograph: John Buckeridge. iv Introduction Most Australians live near the sea – it is part of our national psyche. We exercise in it, explore it, relax by it, "sh in it – some even paint it – but most of us simply enjoy its changing modes and its fascinating beauty. Ricketts Point Marine Sanctuary comprises 115 hectares of protected marine environment, located o# Beaumaris in Melbourne’s southeast ("gs 1–2). !e sanctuary includes the coastal waters from Table Rock Point to Quiet Corner, from the high tide mark to approximately 400 metres o#shore.
    [Show full text]
  • Mapping and Distribution of Sabella Spallanzanii in Port Phillip Bay Final
    Mapping and distribution of Sabellaspallanzanii in Port Phillip Bay Final Report to Fisheries Research and Development Corporation (FRDC Project 94/164) G..D. Parry, M.M. Lockett, D.P. Crookes, N. Coleman and M.A. Sinclair May 1996 Mapping and distribution of Sabellaspallanzanii in Port Phillip Bay Final Report to Fisheries Research and Development Corporation (FRDC Project 94/164) G.D. Parry1, M. Lockett1, D. P. Crookes1, N. Coleman1 and M. Sinclair2 May 1996 1Victorian Fisheries Research Institute Departmentof Conservation and Natural Resources PO Box 114, Queenscliff,Victoria 3225 2Departmentof Ecology and Evolutionary Biology Monash University Clayton Victoria 3068 Contents Page Technical and non-technical summary 2 Introduction 3 Background 3 Need 4 Objectives 4 Methods 5 Results 5 Benefits 5 Intellectual Property 6 Further Development 6 Staff 6 Final cost 7 Distribution 7 Acknow ledgments 8 References 8 Technical and Non-technical Summary • The sabellid polychaete Sabella spallanzanii, a native to the Mediterranean, established in Port Phillip Bay in the late 1980s. Initially it was found only in Corio Bay, but during the past fiveyears it has spread so that it now occurs throughout the western half of Port Phillip Bay. • Densities of Sabella in many parts of the bay remain low but densities are usually higher (up to 13/m2 ) in deeper water and they extend into shallower depths in calmer regions. • Sabella larvae probably require a 'hard' surface (shell fragment, rock, seaweed, mollusc or sea squirt) for initial attachment, but subsequently they may use their own tube as an anchor in soft sediment . • Changes to fish communities following the establishment of Sabella were analysed using multidimensional scaling and BACI (Before, After, Control, Impact) design analyses of variance.
    [Show full text]
  • Benthic Data Sheet
    DEMERSAL OTTER/BEAM TRAWL DATA SHEET RESEARCH VESSEL_____________________(1/20/13 Version*) CLASS__________________;DATE_____________;NAME:___________________________; DEVICE DETAILS_________ LOCATION (OVERBOARD): LAT_______________________; LONG______________________________ LOCATION (AT DEPTH): LAT_______________________; LONG_____________________________; DEPTH___________ LOCATION (START UP): LAT_______________________; LONG______________________________;.DEPTH__________ LOCATION (ONBOARD): LAT_______________________; LONG______________________________ TIME: IN______AT DEPTH_______START UP_______SURFACE_______.DURATION OF TRAWL________; SHIP SPEED__________; WEATHER__________________; SEA STATE__________________; AIR TEMP______________ SURFACE TEMP__________; PHYS. OCE. NOTES______________________; NOTES_______________________________ INVERTEBRATES Phylum Porifera Order Pennatulacea (sea pens) Class Calcarea __________________________________ Family Stachyptilidae Class Demospongiae (Vase sponge) _________________ Stachyptilum superbum_____________________ Class Hexactinellida (Hyalospongia- glass sponge) Suborder Subsessiliflorae Subclass Hexasterophora Family Pennatulidae Order Hexactinosida Ptilosarcus gurneyi________________________ Family Aphrocallistidae Family Virgulariidae Aphrocallistes vastus ______________________ Acanthoptilum sp. ________________________ Other__________________________________________ Stylatula elongata_________________________ Phylum Cnidaria (Coelenterata) Virgularia sp.____________________________ Other_______________________________________
    [Show full text]
  • An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
    NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department.
    [Show full text]
  • Diet Preferences of the Aglajidae: a Family of Cephalaspidean Gastropod Predators on Tropical and Temperate Shores
    Journal of the Marine Biological Association of the United Kingdom, 2016, 96(5), 1101–1112. # Marine Biological Association of the United Kingdom, 2015. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. doi:10.1017/S0025315415000739 Diet preferences of the Aglajidae: a family of cephalaspidean gastropod predators on tropical and temperate shores andrea zamora-silva and manuel anto’ nio e. malaquias Phylogenetic Systematics and Evolution Research Group, Department of Natural History, University Museum of Bergen, University of Bergen, PB 7800, 5020-Bergen, Norway Aglajidae is a family of tropical and temperate marine Cephalaspidea gastropod slugs regarded as active predators. In order to better understand their food habits and trophic interactions, we have studied the diet of all genera through the examination of gut contents. Specimens were dissected for the digestive tract and gut contents were removed and identified by optical and scanning electron microscopy. Our results confirmed that carnivory is the only feeding mode in aglajids and showed a sharp preference for vagile prey (94% of food items). We suggest that the interaction between crawling speed, presence of sen- sorial structures capable of detecting chemical signals from prey, and unique features of the digestive system (e.g. lack of radula, eversion of the buccal bulb, thickening of gizzard walls) led aglajid slugs to occupy a unique trophic niche among cephalaspideans, supporting the hypothesis that dietary specialization played a major role in the adaptive radiation of Cephalaspidea gastropods.
    [Show full text]
  • Rapid Assessment of Sustainability for Ecological Risk of Shark and Other
    Rapid assessment of sustainability for ecological risk of shark and other chondrichthyan bycatch species taken in the Southern and Eastern Scalefish and Shark Fishery Terence I. Walker, John D. Stevens, J. Matias Braccini, Ross K. Daley, Charlie Huveneers, Sarah B. Irvine, Justin D. Bell, Javier Tovar‐Ávila, Fabian I. Trinnie, David T. Phillips, Michelle A. Treloar, Cynthia A. Awruck, Anne S. Gason, John Salini, and William C. Hamlett Project No. 2002/033 Rapid assessment of sustainability for ecological risk of shark and other chondrichthyan bycatch species taken in the Southern and Eastern Scalefish and Shark Fishery Terence I. Walker, John D. Stevens, J. Matias Braccini, Ross K. Daley, Charlie Huveneers, Sarah B. Irvine, Justin D. Bell, Javier Tovar‐ Ávila, Fabian I. Trinnie, David T. Phillips, Michelle A. Treloar, Cynthia A. Awruck, Anne S. Gason, John Salini, and William C. Hamlett July 2008 Project Number 2002/033 Rapid assessment of sustainability for ecological risk of shark and other chondrichthyan bycatch species taken in the Southern and Eastern Scalefish and Shark Fishery FRDC Report 2002/033 Terence I. Walker, John D. Stevens, J. Matias Braccini, Ross J. Daley, Charlie Huveneers, Sarah B. Irvine, Justin D. Bell, Javier Tovar‐ Ávila, Fabian I. Trinnie, David T. Phillips, Michelle A. Treloar, Cynthia A. Awruck, Anne S. Gason, John Salini, and Hamlett, W. C. Published by Department of Primary Industries, Fisheries Research Brand, Queenscliff, Victoria, 3225. © Fisheries Research and Development Corporation, and Fisheries Victoria. 2008 This work is copyright. Except as permitted under the Copyright Act 1968 (Cth), no part of this publication may be reproduced by any process, electronic or otherwise, without the specific written permission of the copyright owners.
    [Show full text]
  • A New Phylogeny of the Cephalaspidea (Gastropoda: Heterobranchia) Based on Expanded Taxon Sampling and Gene Markers Q ⇑ Trond R
    Molecular Phylogenetics and Evolution 89 (2015) 130–150 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev A new phylogeny of the Cephalaspidea (Gastropoda: Heterobranchia) based on expanded taxon sampling and gene markers q ⇑ Trond R. Oskars a, , Philippe Bouchet b, Manuel António E. Malaquias a a Phylogenetic Systematics and Evolution Research Group, Section of Taxonomy and Evolution, Department of Natural History, University Museum of Bergen, University of Bergen, PB 7800, 5020 Bergen, Norway b Muséum National d’Histoire Naturelle, UMR 7205, ISyEB, 55 rue de Buffon, F-75231 Paris cedex 05, France article info abstract Article history: The Cephalaspidea is a diverse marine clade of euthyneuran gastropods with many groups still known Received 28 November 2014 largely from shells or scant anatomical data. The definition of the group and the relationships between Revised 14 March 2015 members has been hampered by the difficulty of establishing sound synapomorphies, but the advent Accepted 8 April 2015 of molecular phylogenetics is helping to change significantly this situation. Yet, because of limited taxon Available online 24 April 2015 sampling and few genetic markers employed in previous studies, many questions about the sister rela- tionships and monophyletic status of several families remained open. Keywords: In this study 109 species of Cephalaspidea were included covering 100% of traditional family-level Gastropoda diversity (12 families) and 50% of all genera (33 genera). Bayesian and maximum likelihood phylogenet- Euthyneura Bubble snails ics analyses based on two mitochondrial (COI, 16S rRNA) and two nuclear gene markers (28S rRNA and Cephalaspids Histone-3) were used to infer the relationships of Cephalaspidea.
    [Show full text]
  • Molluscs of the Leschenault Inlet Estuary
    Journal of the Royal Society of Western Australia, 83: 377-418, 2000 Molluscs of the Leschenault Inlet estuary: their diversity, distribution, and population dynamics V Semeniuk1 & P A S Wurm2 1 21 Glenmere Road, Warwick WA 6024 2 Faculty of Science, Information Technology and Education, Northern Territory University, Darwin NT 0909 Abstract Thirty-one species of mollusc were collected in Leschenault Inlet during 1982-1987. Seven species were common, with the remaining 24 species occurring sporadically, rarely or only once during the study. These seven most common species in order of general abundance were: Arthritica semen, Tellina deltoidalis, Nassarius burchardi, Spisula trigonella, Hydrococcus brazieri, Acteocina sp and Bedeva paivae. The molluscs of Leschenault Inlet can be classified as follows: (1) a stenohaline marine component: Bittium granarium, Mytilus edulis, Polinices conicus, Pholas australasiae, Nassarius nigellus, Solemya australis, Irus crenata, and Venerupis anomala; (2) a euryhaline marine component: Tellina deltoidalis, Tellina sp, Theora lubrica, Sanguinolaria biradiata, Philine angasi, Nassarius burchardi, Bedeva paivae, Spisula trigonella, Epicodakia sp, and Laternula creccina; and (3) a true estuarine component: Acteocina sp, Arthritica semen, Xenostrobus securis, Hydrococcus brazieri, Fluviolanatus subtorta, Assiminea sp, and Salinator sp. Across the inlet in general, molluscs inhabited tidal sand or tidal mud, shallow water platform sand or muddy sand, or deep water basin mud, within lower, middle, or upper estuarine
    [Show full text]
  • The Origin and Diversification of Pteropods Precede Past Perturbations in the Earth’S Carbon Cycle
    The origin and diversification of pteropods precede past perturbations in the Earth’s carbon cycle Katja T. C. A. Peijnenburga,b,1, Arie W. Janssena, Deborah Wall-Palmera, Erica Goetzec, Amy E. Maasd, Jonathan A. Todde, and Ferdinand Marlétazf,g,1 aPlankton Diversity and Evolution, Naturalis Biodiversity Center, 2300 RA Leiden, The Netherlands; bDepartment Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, The Netherlands; cDepartment of Oceanography, University of Hawai’iat Manoa, Honolulu, HI 96822; dBermuda Institute of Ocean Sciences, St. Georges GE01, Bermuda; eDepartment of Earth Sciences, Natural History Museum, London SW7 5BD, United Kingdom; fCentre for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom; and gMolecular Genetics Unit, Okinawa Institute of Science and Technology, Onna-son 904-0495, Japan Edited by John P. Huelsenbeck, University of California, Berkeley, CA, and accepted by Editorial Board Member David Jablonski August 19, 2020 (received for review November 27, 2019) Pteropods are a group of planktonic gastropods that are widely modern rise in ocean-atmosphere CO2 levels, global warming, and regarded as biological indicators for assessing the impacts of ocean acidification (16–18). Knowing whether major pteropod ocean acidification. Their aragonitic shells are highly sensitive to lineages have been exposed during their evolutionary history to acute changes in ocean chemistry. However, to gain insight into periods of high CO2 is important to extrapolate from current ex- their potential to adapt to current climate change, we need to perimental and observational studies to predictions of species-level accurately reconstruct their evolutionary history and assess their responses to global change over longer timescales.
    [Show full text]
  • The Evolution of the Cephalaspidea (Mollusca: Gastropoda) and Its Implications to the Origins and Phylogeny of the Opisthobranchia Terrence Milton Gosliner
    University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Spring 1978 THE EVOLUTION OF THE CEPHALASPIDEA (MOLLUSCA: GASTROPODA) AND ITS IMPLICATIONS TO THE ORIGINS AND PHYLOGENY OF THE OPISTHOBRANCHIA TERRENCE MILTON GOSLINER Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation GOSLINER, TERRENCE MILTON, "THE EVOLUTION OF THE CEPHALASPIDEA (MOLLUSCA: GASTROPODA) AND ITS IMPLICATIONS TO THE ORIGINS AND PHYLOGENY OF THE OPISTHOBRANCHIA" (1978). Doctoral Dissertations. 1197. https://scholars.unh.edu/dissertation/1197 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1.The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image.
    [Show full text]
  • Abbreviation Kiel S. 2005, New and Little Known Gastropods from the Albian of the Mahajanga Basin, Northwestern Madagaskar
    1 Reference (Explanations see mollusca-database.eu) Abbreviation Kiel S. 2005, New and little known gastropods from the Albian of the Mahajanga Basin, Northwestern Madagaskar. AF01 http://www.geowiss.uni-hamburg.de/i-geolo/Palaeontologie/ForschungImadagaskar.htm (11.03.2007, abstract) Bandel K. 2003, Cretaceous volutid Neogastropoda from the Western Desert of Egypt and their place within the noegastropoda AF02 (Mollusca). Mitt. Geol.-Paläont. Inst. Univ. Hamburg, Heft 87, p 73-98, 49 figs., Hamburg (abstract). www.geowiss.uni-hamburg.de/i-geolo/Palaeontologie/Forschung/publications.htm (29.10.2007) Kiel S. & Bandel K. 2003, New taxonomic data for the gastropod fauna of the Uzamba Formation (Santonian-Campanian, South AF03 Africa) based on newly collected material. Cretaceous research 24, p. 449-475, 10 figs., Elsevier (abstract). www.geowiss.uni-hamburg.de/i-geolo/Palaeontologie/Forschung/publications.htm (29.10.2007) Emberton K.C. 2002, Owengriffithsius , a new genus of cyclophorid land snails endemic to northern Madagascar. The Veliger 45 (3) : AF04 203-217. http://www.theveliger.org/index.html Emberton K.C. 2002, Ankoravaratra , a new genus of landsnails endemic to northern Madagascar (Cyclophoroidea: Maizaniidae?). AF05 The Veliger 45 (4) : 278-289. http://www.theveliger.org/volume45(4).html Blaison & Bourquin 1966, Révision des "Collotia sensu lato": un nouveau sous-genre "Tintanticeras". Ann. sci. univ. Besancon, 3ème AF06 série, geologie. fasc.2 :69-77 (Abstract). www.fossile.org/pages-web/bibliographie_consacree_au_ammon.htp (20.7.2005) Bensalah M., Adaci M., Mahboubi M. & Kazi-Tani O., 2005, Les sediments continentaux d'age tertiaire dans les Hautes Plaines AF07 Oranaises et le Tell Tlemcenien (Algerie occidentale).
    [Show full text]
  • Of Combined Demersal Fish and Megabenthic Invertebrate Recurrent Groups on the Southern California Shelf and Upper Slope, July-October, 2003
    Southern California Bight 2003 Regional Monitoring Program: IV. Demersal Fishes and Megabenthic Invertebrates March 2007 M.J. Allen1, T. Mikel 2, D. Cadien3, J.E. Kalman4, E.T. Jarvis1, K.C. Schiff1, D.W. Diehl1, S.L. Moore1, S. Walther3, G. Deets5, C. Cash5, S. Watts6, D.J. Pondella II7, V. Raco-Rands1, C. Thomas4, R. Gartman8, L. Sabin1, W. Power3, A.K. Groce8 and J.L. Armstrong4 1Southern California Coastal Water Research Project 2Aquatic Bioassay and Consulting Laboratory 3County Sanitation Districts of Los Angeles County 4Orange County Sanitation District 5City of Los Angeles, Environmental Monitoring Division 6 Weston Solutions, Inc. 7Occidental College, Vantuna Research Group 8City of San Diego, Metropolitan Wastewater Department THE BIGHT '03 TRAWL WORKING GROUP MEMBERS Member Affiliation Chair - Dr. M. James Allen Southern California Coastal Water Research Project Co-Chair - Tim Mikel Aquatic Bioassay and Consulting Laboratories Dr. Jeff L. Armstrong Orange County Sanitation District Don Cadien County Sanitation Districts of Los Angeles County Curtis Cash City of Los Angeles, Environmental Monitoring Division Dr. Gregory Deets City of Los Angeles, Environmental Monitoring Division Dario W. Diehl Southern California Coastal Water Research Project Sarah Fangman Channel Islands National Marine Sanctuary Robin Gartman City of San Diego, Metropolitan Wastewater Department Ami K. Groce City of San Diego, Metropolitan Wastewater Department Erica T. Jarvis Southern California Coastal Water Research Project Dr. Julianne E. Kalman Orange County Sanitation District/University of California, Los Angeles/ currently California State University, Long Beach Shelly L. Moore Southern California Coastal Water Research Project Dr. Daniel J. Pondella, II Occidental College, Vantuna Research Group William Power County Sanitation Districts of Los Angeles County Valerie Raco-Rands Southern California Coastal Water Research Project Dr.
    [Show full text]