Shah Hussain Phd Thesis.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Forgotten Kingdom Ecologically Industrious and Alluringly Diverse, Australia’S Puffballs, Earthstars, Jellies, Agarics and Their Mycelial Kin Merit Your Attention
THE OTHER 99% – NEGLECTED NATURE The delicate umbrellas of this Mycena species last only fleetingly, while its fungal mycelium persists, mostly obscured within the log it is rotting. Photo: Alison Pouliot A Forgotten Kingdom Ecologically industrious and alluringly diverse, Australia’s puffballs, earthstars, jellies, agarics and their mycelial kin merit your attention. Ecologist Alison Pouliot ponders our bonds with the mighty fungus kingdom. s the sun rises, I venture off-track Fungi have been dubbed the ‘forgotten into a dripping forest in the Otway kingdom’ – their ubiquity and diversity ARanges. Mountain ash tower contrast with the sparseness of knowledge overhead, their lower trunks carpeted about them, they are neglected in in mosses, lichens and liverworts. The conservation despite their ecological leeches are also up early and greet me significance, and their aesthetic and with enthusiasm. natural history fascination are largely A white scallop-shaped form at the unsung in popular culture. The term base of a manna gum catches my eye. ‘flora and fauna’ is usually unthinkingly Omphalotus nidiformis, the ghost fungus. A assumed to cover the spectrum of visible valuable marker. If it’s dark when I return, life. I am part of a growing movement of the eerie pale green glow of this luminous fungal enthusiasts dedicated to lifting fungal cairn will be a welcome beacon. the profile of the ‘third f’ in science, Descending deeper into the forest, a conservation and society. It is an damp funk hits my nostrils, signalling engrossing quest, not only because of the fungi. As my eyes adjust and the morning alluring organisms themselves but also for lightens, I make out diverse fungal forms the curiosities of their social and cultural in cryptic microcosms. -
The Mycological Society of San Francisco • Jan. 2016, Vol. 67:05
The Mycological Society of San Francisco • Jan. 2016, vol. 67:05 Table of Contents JANUARY 19 General Meeting Speaker Mushroom of the Month by K. Litchfield 1 President Post by B. Wenck-Reilly 2 Robert Dale Rogers Schizophyllum by D. Arora & W. So 4 Culinary Corner by H. Lunan 5 Hospitality by E. Multhaup 5 Holiday Dinner 2015 Report by E. Multhaup 6 Bizarre World of Fungi: 1965 by B. Sommer 7 Academic Quadrant by J. Shay 8 Announcements / Events 9 2015 Fungus Fair by J. Shay 10 David Arora’s talk by D. Tighe 11 Cultivation Quarters by K. Litchfield 12 Fungus Fair Species list by D. Nolan 13 Calendar 15 Mushroom of the Month: Chanterelle by Ken Litchfield Twenty-One Myths of Medicinal Mushrooms: Information on the use of medicinal mushrooms for This month’s profiled mushroom is the delectable Chan- preventive and therapeutic modalities has increased terelle, one of the most distinctive and easily recognized mush- on the internet in the past decade. Some is based on rooms in all its many colors and meaty forms. These golden, yellow, science and most on marketing. This talk will look white, rosy, scarlet, purple, blue, and black cornucopias of succu- at 21 common misconceptions, helping separate fact lent brawn belong to the genera Cantharellus, Craterellus, Gomphus, from fiction. Turbinellus, and Polyozellus. Rather than popping up quickly from quiescent primordial buttons that only need enough rain to expand About the speaker: the preformed babies, Robert Dale Rogers has been an herbalist for over forty these mushrooms re- years. He has a Bachelor of Science from the Univer- quire an extended period sity of Alberta, where he is an assistant clinical profes- of slower growth and sor in Family Medicine. -
AMATOXIN MUSHROOM POISONING in NORTH AMERICA 2015-2016 by Michael W
VOLUME 57: 4 JULY-AUGUST 2017 www.namyco.org AMATOXIN MUSHROOM POISONING IN NORTH AMERICA 2015-2016 By Michael W. Beug: Chair, NAMA Toxicology Committee Assessing the degree of amatoxin mushroom poisoning in North America is very challenging. Understanding the potential for various treatment practices is even more daunting. Although I have been studying mushroom poisoning for 45 years now, my own views on potential best treatment practices are still evolving. While my training in enzyme kinetics helps me understand the literature about amatoxin poisoning treatments, my lack of medical training limits me. Fortunately, critical comments from six different medical doctors have been incorporated in this article. All six, each concerned about different aspects in early drafts, returned me to the peer reviewed scientific literature for additional reading. There remains no known specific antidote for amatoxin poisoning. There have not been any gold standard double-blind placebo controlled studies. There never can be. When dealing with a potentially deadly poisoning (where in many non-western countries the amatoxin fatality rate exceeds 50%) treating of half of all poisoning patients with a placebo would be unethical. Using amatoxins on large animals to test new treatments (theoretically a great alternative) has ethical constraints on the experimental design that would most likely obscure the answers researchers sought. We must thus make our best judgement based on analysis of past cases. Although that number is now large enough that we can make some good assumptions, differences of interpretation will continue. Nonetheless, we may be on the cusp of reaching some agreement. Towards that end, I have contacted several Poison Centers and NAMA will be working with the Centers for Disease Control (CDC). -
Mycomedicine: a Unique Class of Natural Products with Potent Anti-Tumour Bioactivities
molecules Review Mycomedicine: A Unique Class of Natural Products with Potent Anti-tumour Bioactivities Rongchen Dai 1,†, Mengfan Liu 1,†, Wan Najbah Nik Nabil 1,2 , Zhichao Xi 1,* and Hongxi Xu 3,* 1 School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; [email protected] (R.D.); [email protected] (M.L.); [email protected] (W.N.N.N.) 2 Pharmaceutical Services Program, Ministry of Health, Selangor 46200, Malaysia 3 Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China * Correspondence: [email protected] (Z.X.); [email protected] (H.X) † These authors contributed equally to this work. Abstract: Mycomedicine is a unique class of natural medicine that has been widely used in Asian countries for thousands of years. Modern mycomedicine consists of fruiting bodies, spores, or other tissues of medicinal fungi, as well as bioactive components extracted from them, including polysaccha- rides and, triterpenoids, etc. Since the discovery of the famous fungal extract, penicillin, by Alexander Fleming in the late 19th century, researchers have realised the significant antibiotic and other medic- inal values of fungal extracts. As medicinal fungi and fungal metabolites can induce apoptosis or autophagy, enhance the immune response, and reduce metastatic potential, several types of mush- rooms, such as Ganoderma lucidum and Grifola frondosa, have been extensively investigated, and anti- cancer drugs have been developed from their extracts. Although some studies have highlighted the anti-cancer properties of a single, specific mushroom, only limited reviews have summarised diverse medicinal fungi as mycomedicine. In this review, we not only list the structures and functions of pharmaceutically active components isolated from mycomedicine, but also summarise the mecha- Citation: Dai, R.; Liu, M.; Nik Nabil, W.N.; Xi, Z.; Xu, H. -
University of California Santa Cruz Responding to An
UNIVERSITY OF CALIFORNIA SANTA CRUZ RESPONDING TO AN EMERGENT PLANT PEST-PATHOGEN COMPLEX ACROSS SOCIAL-ECOLOGICAL SCALES A dissertation submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in ENVIRONMENTAL STUDIES with an emphasis in ECOLOGY AND EVOLUTIONARY BIOLOGY by Shannon Colleen Lynch December 2020 The Dissertation of Shannon Colleen Lynch is approved: Professor Gregory S. Gilbert, chair Professor Stacy M. Philpott Professor Andrew Szasz Professor Ingrid M. Parker Quentin Williams Acting Vice Provost and Dean of Graduate Studies Copyright © by Shannon Colleen Lynch 2020 TABLE OF CONTENTS List of Tables iv List of Figures vii Abstract x Dedication xiii Acknowledgements xiv Chapter 1 – Introduction 1 References 10 Chapter 2 – Host Evolutionary Relationships Explain 12 Tree Mortality Caused by a Generalist Pest– Pathogen Complex References 38 Chapter 3 – Microbiome Variation Across a 66 Phylogeographic Range of Tree Hosts Affected by an Emergent Pest–Pathogen Complex References 110 Chapter 4 – On Collaborative Governance: Building Consensus on 180 Priorities to Manage Invasive Species Through Collective Action References 243 iii LIST OF TABLES Chapter 2 Table I Insect vectors and corresponding fungal pathogens causing 47 Fusarium dieback on tree hosts in California, Israel, and South Africa. Table II Phylogenetic signal for each host type measured by D statistic. 48 Table SI Native range and infested distribution of tree and shrub FD- 49 ISHB host species. Chapter 3 Table I Study site attributes. 124 Table II Mean and median richness of microbiota in wood samples 128 collected from FD-ISHB host trees. Table III Fungal endophyte-Fusarium in vitro interaction outcomes. -
Olympic Mushrooms 4/16/2021 Susan Mcdougall
Olympic Mushrooms 4/16/2021 Susan McDougall With links to species’ pages 206 species Family Scientific Name Common Name Agaricaceae Agaricus augustus Giant agaricus Agaricaceae Agaricus hondensis Felt-ringed Agaricus Agaricaceae Agaricus silvicola Forest Agaric Agaricaceae Chlorophyllum brunneum Shaggy Parasol Agaricaceae Chlorophyllum olivieri Olive Shaggy Parasol Agaricaceae Coprinus comatus Shaggy inkcap Agaricaceae Crucibulum laeve Common bird’s nest fungus Agaricaceae Cyathus striatus Fluted bird’s nest Agaricaceae Cystoderma amianthinum Pure Cystoderma Agaricaceae Cystoderma cf. gruberinum Agaricaceae Gymnopus acervatus Clustered Collybia Agaricaceae Gymnopus dryophilus Common Collybia Agaricaceae Gymnopus luxurians Agaricaceae Gymnopus peronatus Wood woolly-foot Agaricaceae Lepiota clypeolaria Shield dapperling Agaricaceae Lepiota magnispora Yellowfoot dapperling Agaricaceae Leucoagaricus leucothites White dapperling Agaricaceae Leucoagaricus rubrotinctus Red-eyed parasol Agaricaceae Morganella pyriformis Warted puffball Agaricaceae Nidula candida Jellied bird’s-nest fungus Agaricaceae Nidularia farcta Albatrellaceae Albatrellus avellaneus Amanitaceae Amanita augusta Yellow-veiled amanita Amanitaceae Amanita calyptroderma Ballen’s American Caesar Amanitaceae Amanita muscaria Fly agaric Amanitaceae Amanita pantheriana Panther cap Amanitaceae Amanita vaginata Grisette Auriscalpiaceae Lentinellus ursinus Bear lentinellus Bankeraceae Hydnellum aurantiacum Orange spine Bankeraceae Hydnellum complectipes Bankeraceae Hydnellum suaveolens -
The Value of Fungi
Land for Wildlife Queensland: Note S2 The Value of Fungi hey are neither plants nor animals, All fungi are vital to the health and mycorrhizal fungi that assist eucalypts Tand there are about 10,000 functioning of our world and yet so little and wattles to grow. different species of them in Australia. is known about them. Only about 25% Fungi that we see are fruiting bodies They are macrofungi - the fungi that of Australian macrofungal species have of the actual fungus below the surface. you can see with an unaided eye. even been documented. Macrofungi are The fungus itself consists of microscopic This Note describes various types of fungi that you will see in bushland or threads called hyphae. A network of macrofungi and the ecological roles that on your garden mulch and are classified and defined by their fruiting bodies - hyphae is called a mycelium which they play. the mushrooms and toadstools that we resembles a tangled mass of tiny white The Fungi Kingdom is roughly divided see above ground. threads that wrap in and around the into two categories: macrofungi and material on which the fungus is growing. Macrofungi do not have roots, leaves, microfungi. Microfungi tend to be The fungus would look like a loose mass flowers or chlorophyll for photosynthesis minute and are hard to see with the and therefore need to obtain their of cotton wool if it could be separated naked eye with common examples own food from other organisms. Some from its substrate. Fungi have cell walls including yeasts, penicillin, moulds, fungi are parasitic and eventually kill made of a type of chitin (related to plant rusts and mildew. -
Los Hongos Agaricales De Las Áreas De Encino Del Estado De Baja California, México Nahara Ayala-Sánchez Universidad Autónoma De Baja California
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Estudios en Biodiversidad Parasitology, Harold W. Manter Laboratory of 2015 Los hongos Agaricales de las áreas de encino del estado de Baja California, México Nahara Ayala-Sánchez Universidad Autónoma de Baja California Irma E. Soria-Mercado Universidad Autónoma de Baja California Leticia Romero-Bautista Universidad Autónoma del Estado de Hidalgo Maritza López-Herrera Universidad Autónoma del Estado de Hidalgo Roxana Rico-Mora Universidad Autónoma de Baja California See next page for additional authors Follow this and additional works at: http://digitalcommons.unl.edu/biodiversidad Part of the Biodiversity Commons, Botany Commons, and the Terrestrial and Aquatic Ecology Commons Ayala-Sánchez, Nahara; Soria-Mercado, Irma E.; Romero-Bautista, Leticia; López-Herrera, Maritza; Rico-Mora, Roxana; and Portillo- López, Amelia, "Los hongos Agaricales de las áreas de encino del estado de Baja California, México" (2015). Estudios en Biodiversidad. 19. http://digitalcommons.unl.edu/biodiversidad/19 This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Estudios en Biodiversidad by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Nahara Ayala-Sánchez, Irma E. Soria-Mercado, Leticia Romero-Bautista, Maritza López-Herrera, Roxana Rico-Mora, and Amelia Portillo-López This article is available at DigitalCommons@University of Nebraska - Lincoln: http://digitalcommons.unl.edu/biodiversidad/19 Los hongos Agaricales de las áreas de encino del estado de Baja California, México Nahara Ayala-Sánchez, Irma E. Soria-Mercado, Leticia Romero-Bautista, Maritza López-Herrera, Roxana Rico-Mora, y Amelia Portillo-López Resumen Se realizó una recopilación de las especies de hongos del orden Agaricales (regionalmente conocido como “agaricoides”) de los bosques Quercus spp. -
Paper Format : Instruction to Authors
Proceedings of the 7th International Conference on Mushroom Biology and Mushroom Products (ICMBMP7) 2011 TAXONOMIC SIGNIFICANCE OF ANAMORPHIC CHARACTERISTICS IN THE LIFE CYCLE OF COPRINOID MUSHROOMS SUSANNA M. BADALYAN1, MÓNICA NAVARRO-GONZÁLEZ2, URSULA KÜES2 1Laboratory of Fungal Biology and Biotechnology, Faculty of Biology, Yerevan State University 1 Aleg Manoogian St., 0025, Yerevan Armenia 2Georg-August-Universität Göttingen, Büsgen-Institut, Molekulare Holzbiotechnologie und technische Mykologie Büsgenweg 2, 37077 Göttingen Germany [email protected] , [email protected] , [email protected] ABSTRACT Ink cap fungi (coprinoid mushrooms) are not monophyletic and divide into Coprinellus, Coprinopsis and Parasola (all Psathyrellaceae) and Coprinus (Agaricaceae). Knowledge on morphological mycelial features and asexual reproduction modes of coprini is restricted, with Coprinopsis cinerea being the best described species. This species produces constitutively on monokaryons and light-induced on dikaryons unicellular uninucleate haploid arthroconidia (oidia) on specific aerial structures (oidiophores). The anamorphic name Hormographiella aspergillata was coined for oidia production on monokaryons. Two other Hormographiella species are described in the literature, one unknown (candelabrata) and one (verticillata) identified as Coprinellus domesticus. Another, yet sterile anamorph associated with some coprini is called Ozonium which describes the incidence of tawny-rust mycelial mats of pigmented, well septated and clampless hyphal strands as -
Effects of Land Use on the Diversity of Macrofungi in Kereita Forest Kikuyu Escarpment, Kenya
Current Research in Environmental & Applied Mycology (Journal of Fungal Biology) 8(2): 254–281 (2018) ISSN 2229-2225 www.creamjournal.org Article Doi 10.5943/cream/8/2/10 Copyright © Beijing Academy of Agriculture and Forestry Sciences Effects of Land Use on the Diversity of Macrofungi in Kereita Forest Kikuyu Escarpment, Kenya Njuguini SKM1, Nyawira MM1, Wachira PM 2, Okoth S2, Muchai SM3, Saado AH4 1 Botany Department, National Museums of Kenya, P.O. Box 40658-00100 2 School of Biological Studies, University of Nairobi, P.O. Box 30197-00100, Nairobi 3 Department of Clinical Studies, College of Agriculture & Veterinary Sciences, University of Nairobi. P.O. Box 30197- 00100 4 Department of Climate Change and Adaptation, Kenya Red Cross Society, P.O. Box 40712, Nairobi Njuguini SKM, Muchane MN, Wachira P, Okoth S, Muchane M, Saado H 2018 – Effects of Land Use on the Diversity of Macrofungi in Kereita Forest Kikuyu Escarpment, Kenya. Current Research in Environmental & Applied Mycology (Journal of Fungal Biology) 8(2), 254–281, Doi 10.5943/cream/8/2/10 Abstract Tropical forests are a haven of biodiversity hosting the richest macrofungi in the World. However, the rate of forest loss greatly exceeds the rate of species documentation and this increases the risk of losing macrofungi diversity to extinction. A field study was carried out in Kereita, Kikuyu Escarpment Forest, southern part of Aberdare range forest to determine effect of indigenous forest conversion to plantation forest on diversity of macrofungi. Macrofungi diversity was assessed in a 22 year old Pinus patula (Pine) plantation and a pristine indigenous forest during dry (short rains, December, 2014) and wet (long rains, May, 2015) seasons. -
Revised Taxonomy and Phylogeny of an Avian-Dispersed Neotropical Rhizomorph-Forming Fungus
Mycological Progress https://doi.org/10.1007/s11557-018-1411-8 ORIGINAL ARTICLE Tying up loose threads: revised taxonomy and phylogeny of an avian-dispersed Neotropical rhizomorph-forming fungus Rachel A. Koch1 & D. Jean Lodge2,3 & Susanne Sourell4 & Karen Nakasone5 & Austin G. McCoy1,6 & M. Catherine Aime1 Received: 4 March 2018 /Revised: 21 May 2018 /Accepted: 24 May 2018 # This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2018 Abstract Rhizomorpha corynecarpos Kunze was originally described from wet forests in Suriname. This unusual fungus forms white, sterile rhizomorphs bearing abundant club-shaped branches. Its evolutionary origins are unknown because reproductive struc- tures have never been found. Recent collections and observations of R. corynecarpos were made from Belize, Brazil, Ecuador, Guyana, and Peru. Phylogenetic analyses of three nuclear rDNA regions (internal transcribed spacer, large ribosomal subunit, and small ribosomal subunit) were conducted to resolve the phylogenetic relationship of R. corynecarpos. Results show that this fungus is sister to Brunneocorticium bisporum—a widely distributed, tropical crust fungus. These two taxa along with Neocampanella blastanos form a clade within the primarily mushroom-forming Marasmiaceae. Based on phylogenetic evidence and micromorphological similarities, we propose the new combination, Brunneocorticium corynecarpon, to accommodate this species. Brunneocorticium corynecarpon is a pathogen, infecting the crowns of trees and shrubs in the Neotropics; the long, dangling rhizomorphs with lateral prongs probably colonize neighboring trees. Longer-distance dispersal can be accomplished by birds as it is used as construction material in nests of various avian species. Keywords Agaricales . Fungal systematics . -
Metabolites from Nematophagous Fungi and Nematicidal Natural Products from Fungi As Alternatives for Biological Control
Appl Microbiol Biotechnol (2016) 100:3813–3824 DOI 10.1007/s00253-015-7234-5 MINI-REVIEW Metabolites from nematophagous fungi and nematicidal natural products from fungi as alternatives for biological control. Part II: metabolites from nematophagous basidiomycetes and non-nematophagous fungi Thomas Degenkolb1 & Andreas Vilcinskas1,2 Received: 4 October 2015 /Revised: 29 November 2015 /Accepted: 2 December 2015 /Published online: 4 January 2016 # The Author(s) 2016. This article is published with open access at Springerlink.com Abstract In this second section of a two-part mini-re- Introduction view article, we introduce 101 further nematicidal and non-nematicidal secondary metabolites biosynthesized Metabolites from nematophagous basidiomycetes by nematophagous basidiomycetes or non- nematophagous ascomycetes and basidiomycetes. Sev- General remarks eral of these compounds have promising nematicidal activity and deserve further and more detailed analy- The chemical ecology of nematophagous fungi is still far from sis. Thermolides A and B, omphalotins, ophiobolins, understood. Little has been done to screen for metabolites in bursaphelocides A and B, illinitone A, pseudohalonectrins A nematophagous fungi, or nematicidal metabolites in other fun- and B, dichomitin B, and caryopsomycins A–Careex- gi, since the pioneering studies by Stadler and colleagues pub- cellent candidates or lead compounds for the develop- lished in the 1990s (Stadler et al. 1993a, b, 1994a, b, c, d). In ment of biocontrol strategies for phytopathogenic the first part of this review, we discussed 83 primary and nematodes. Paraherquamides, clonostachydiol, and secondary metabolites from nematophagous ascomycetes nafuredins offer promising leads for the development (Degenkolb and Vilcinskas, in press). In this second install- of formulations against the intestinal nematodes of ment, we consider nematicidal metabolites from ruminants.