Biochemical and Evolutionary Aspects of Arthropod Predation on Ferns

Total Page:16

File Type:pdf, Size:1020Kb

Biochemical and Evolutionary Aspects of Arthropod Predation on Ferns Oecologia (Berl.) 35, 55-89 (1978) Biochemical and Evolutionary Aspects of Arthropod Predation on Ferns Michael J. Balickl, David G. Furthz, and Gillian Cooper-Driver3 * ' Botanical Museum of Harvard University, Oxford Street, Cambridge, MA 02138, USA ' Department of Biology. Yale University, New Haven, CT 06520, USA ' Jhpartment of Biological Sciences, Boston University, 2 Cummington St., Boston, MA 02215, USA Summary. The widely held assumption that very few arthropods feed on ferns was questioned following field observations of arthropod damage on ferns in the state of Veracruz, Mexico. The extent and type of damage was recorded and it was found that in a measured locality, ferns were no less attacked than the angiospermous flora. As chemistry and arthropod host relationships have been shown to be so closely intertwined, plants collected in the field were analysed for both condensed tannins and cyanoge- nic glycosides, compounds known to be effedtive deterrents in temperate climates. Although all ferns tested contained tannins these did not appear to inhibit predation. Cyanogenic glycosides were present in only 3% of the fern species analysed, and it is, therefork unlikely that they play a significant role as defensive compounds in the ferns examined. A literature search revealed a large number of ferns cited as being arthro- pod hosts. Approximately 420 named species of arthropods have been recorded, the majority of which are from the orders Coleoptera, Hymen- optera,. Lepidoptera, and Hemiptera. Both evolutionary primitive (sawflies) and advanced (moths) arthropods are reported to be present on ferns suggest- ing possible coevolution of arthropods and ferns both before and after the radiation of angiosperms. I. Introduction It is assumed that ferns generally are not eaten by herbivorous insects (Soo Hoo and Fraenkel, 1964; Eastopp 1973; Southwood, 1973). Indeed in their cl'assical paper on the co-evolution of bufferflies and plants Ehrlich and Raven (1964) state "In fact, very few insects feed on ferns at 'all, a most surprising and as yet unexplained fact with no evident chemical or mechanical basis ". 'Some ferns have toxic effects on both invertebrates (Carlisle and Ellis, 1968) * To whom offprint requests should be sent M.J. Balick et a]. as well as vertebrates (I.A. Evans, 1976; W.C. Evans, 1976), but as have generally managed to exploit most other toxic plants, why is it that they have been reported to avoid ferns? During field studies on the biology of ferns in the state of Veracruz, Mexico (March-April, 1976) it was noticed that many of the ferns showed a considerable amount of damage which was apparently due to arthropod feeding. It appeared, therefore, that entomologists and field ecologists may have either over-looked or ignored ferns as possible host plants for insect herbivores. Since earlier work had shown that two groups of secondary plant compounds, the tannins and cyanogenic glycosides (Cooper-Driver et al., 1977), are probably important in determining the extent of herbivore attack on a given fern species, the original observations were followed up with estimations of the amounts of these com- pounds in selected fern species. We also carried out an extensive literature search revealing a large number of references to ferns being used as host plants by arthropods, although it must be stressed that these records are not always clear as to whether the host plant was providing shelter or food. Few of these records relate to tropical flora and fauna, surprisingly in that insects are much more diverse in the tropics than elsewhere and doubtless constitute the major class of herbivorous animals (Janzen, 1975). From these preliminary observations on the degree and type of damage to Mexican ferns and from the records in the literature, it is concluded that the widely held assumption that very few arthropods feed on ferns, is not well founded. The chemical studies showed that while both tannins and cyanoge- nic glycosides were present in the ferns examined, their role as efficient feeding deterrents may not be as great as in other plant phyla (Swain, 1977), or as in temperate fern species (Cooper-Driver, 1976; Lawton, 1976). These findings are used to discuss the way in which ferns, during the course of evolution, have developed defensive strategies and in fact have co-evolved with their arthro- pod predators. 11. Materials and Methods I. Field Collection All field studies and collections were made in the state of Veracruz, Mexico near Jalopa in areas around Puente National, Misantla, Las Vigas and Perote, during March-April 1976. A total of six ecologically diverse sites were visited and every species of fern in the area was examined for insects or visible indications of damage due to insect feeding. Many of the specimans were collected, pressed, dried and examined in the laboratory. To determine the relative amount of damage to ferns and other plants, an "ecological plot", 2 by 4 m was laid out in a Liquidambar forest site at 1350 m altitude near Las Vigas. The location of the individual plants was recorded and a survey for insect damage made. Representative samples of each plant were pressed and dried and a rough estimate of the amount of damage obtained by photocopying the plants, cutting out the outline on the copy and weighing it (A, "intact plant") then removing from the copy the (white) area plainly showing damage (B) and weighing this. The percentage damage was then B/A x 100. 2. Chemical In~stigations Chemical tests were carried out using both fresh and dried material. The presence of a cyanogenic glycoside was determined using the method of Eyjolfsson (1970). Fresh frond samples in the field Biochemical and Evolutionary Aspects of Arthropod Predation on Ferns were tested for the production of HCN by treating the material (ca. 1.5 g of terminal pinnae) with 2-3 drops of toluene in a sealed tube with a filter paper strip, which had been pre-treated with sodium picrate solution, suspended from the stopper and leaving the tube at room temperature for 24 h. Any change in the color of the papers from yellow to brown that was observed indicated that HCN had been released. Estimation for condensed tannins was carried out in the laboratory on dried specimans. The plant material was extracted twice with 80% boiling methanol and the extracts combined. Equal volumes of the extract and 5% conc. HCI in n-butanol were heated at 100" C for 40 min and the absorbtivity read at 530 nm (modification of Swain and Hillis, 1959). Quebracho tannin was used as the standard. 3. Literature Search This was carried out using abstract literature from Biological Abstracts, Review of Applied entomol- ogy and Bibliography of Agriculture from 1930 up to the present time. In addition, the entomological libraries of the Connecticut Agricultural Experimental Station, Yale University and Harvard (Museum Comparative Zoology) were xanned for host plant data in taxonomic monogaphs or faunal surveys. 1. Survey for Arthropod Damage Of the 137 fern species collected in the Veracruz area of Mexico, insect damage was noted in a total of 26 or approximately 19% of the total fern flora observed. Species for which damage was recorded are given in Table 1. The damage ranged from slight to that which appeared to be severe enough to have affected . the photosynthetic and reproductive capacity of the plant. Despite signs of considerable insect damage to the ferns in this tropical Mexican locality there : were very few arthropods actually found on the ferns at the time of collecting. This may be due to a predominance of nocturnal feeding, arthropod seasonality in the Mexican populations, collecting techniques, or some other factors. Subse- quent careful examination of pressed ferns from this locality revealed several different types of apparent arthropod damage. We have speculated, with each damage-type, which insect order might have caused the particular damage. These are as follows: a) small crescent notching of pinnules either at apex, base, or bases of several adjacent pinnules - Coleoptera (Curculionidae) (Fig. 1) ; b) large notching of pinnae-Lepidoptera, possibly Orthoptera (Figs. 2 and 5); c) skeletonization of upper surface of pinnule between the veins- Lepidoptera, Coleoptera (Fig. 3); d) shot-hole (upper surface), often concentrated but not always spherical -possibly Hemiptera (Homoptera) (Fig. 4); e) complete or par- tial elimination of several or many pinnules on one or both sides of the rachis- Lepidoptera (Fig. 6). Several fern species displayed fungal or viral damage and it may be that these pathogens are transmitted by arthropod vectors, i.e. aphids ' or leafhoppers, as is known to occur in other plants (Wood, 1967). The 8 square meter plot in the Liquidambar forest contained 3 species of ferns and 6 other flowering plant genera. The average percentage dafnage to the leaves of several selected individuals of these different taxa is recorded in Table 2. From these results it is apparent that ferns were preferred as a M.J. Balick et al. Table 1. Fern species collected in Veracruz, Mexico on which arthropod damage was recorded, most of which were subsequently analysed for condensed tannins Taxa % condensed Proposed type tannin of arthropod mg/g dry weight damage Adiantum fenerum Sw. 8.40 C Anemin adiantifolia (L.) Sw. 7.80 a Asplenium momnfhes L. 0.90 d Blechnum varians (Fourn.) C. Chr. 5.10 a, b Ctenifis subincisa (Willd.) Ching - a a Cyrtomium juglandfolium (H + B) Moore - a Dicksonia ghiesbreghtii Maxon - a Dryopteris parallelogramma (Kze.) Alston 5.40 a, b, c, e Eluphoglosum latifoium (Sw.) J. Sm. 12.30 a, b Hypolepis reprms (L.) Presl. 0.14 a, d, e Lygodium mexicanwn Presl. 0.30 a Polypodium aureum L. 0.60 a Polypodium Ianceolarum L. - b. Polypodum loricewn L. 0.60 a, b Polypodium pectimtum L.
Recommended publications
  • Fauna Lepidopterologica Volgo-Uralensis" 150 Years Later: Changes and Additions
    ©Ges. zur Förderung d. Erforschung von Insektenwanderungen e.V. München, download unter www.zobodat.at Atalanta (August 2000) 31 (1/2):327-367< Würzburg, ISSN 0171-0079 "Fauna lepidopterologica Volgo-Uralensis" 150 years later: changes and additions. Part 5. Noctuidae (Insecto, Lepidoptera) by Vasily V. A n ik in , Sergey A. Sachkov , Va d im V. Z o lo t u h in & A n drey V. Sv ir id o v received 24.II.2000 Summary: 630 species of the Noctuidae are listed for the modern Volgo-Ural fauna. 2 species [Mesapamea hedeni Graeser and Amphidrina amurensis Staudinger ) are noted from Europe for the first time and one more— Nycteola siculana Fuchs —from Russia. 3 species ( Catocala optata Godart , Helicoverpa obsoleta Fabricius , Pseudohadena minuta Pungeler ) are deleted from the list. Supposedly they were either erroneously determinated or incorrect noted from the region under consideration since Eversmann 's work. 289 species are recorded from the re­ gion in addition to Eversmann 's list. This paper is the fifth in a series of publications1 dealing with the composition of the pres­ ent-day fauna of noctuid-moths in the Middle Volga and the south-western Cisurals. This re­ gion comprises the administrative divisions of the Astrakhan, Volgograd, Saratov, Samara, Uljanovsk, Orenburg, Uralsk and Atyraus (= Gurjev) Districts, together with Tataria and Bash­ kiria. As was accepted in the first part of this series, only material reliably labelled, and cover­ ing the last 20 years was used for this study. The main collections are those of the authors: V. A n i k i n (Saratov and Volgograd Districts), S.
    [Show full text]
  • (Hydrilla Verticillata) Stem Quality
    BIOLOGICAL CONTROL 8, 52–57 (1997) ARTICLE NO. BC960484 Growth and Development of the Biological Control Agent Bagous hydrillae as Influenced by Hydrilla (Hydrilla verticillata) Stem Quality G. S. WHEELER AND T. D. CENTER USDA/ARS Aquatic Weed Research Unit, 3205 College Avenue, Ft. Lauderdale, Florida 33314 Received March 11, 1996; accepted August 28, 1996 that reduces the impact of insects imported for weed Plant quality of dioecious hydrilla was studied as a biological control. factor that may influence larval survival, growth, and The Australian weevil Bagous hydrillae O’Brien (Bal- development of the biological control agent Bagous ciunas and Purcell, 1991) was introduced into the hydrillae. Nitrogen content and stem toughness of United States for biological control of hydrilla. Release hydrilla varied among the five sites studied and be- of this species began in 1991, and to date, at least two tween summer and fall collections. The nitrogen con- field populations have established, one in Florida and tent of hydrilla collected during summer ranged from another in Texas (Center et al., unpublished data). 1.2 to 3.6% (dry weight) and during fall from 1.6 to 2.9%. Considerable difficulty has been experienced in estab- Stem toughness ranged from 487 to 940 g/mm2 during lishing this species despite release of several thousand the summer and from 418 to 1442 g/mm2 during the fall. individuals throughout the area. Among the factors The larvae of this weevil species required more time to that could influence weevil performance and establish- complete development when fed hydrilla containing ment, the quality of hydrilla, which varies greatly at lower levels of nitrogen and tougher stemmed plants.
    [Show full text]
  • Water Beetles
    Ireland Red List No. 1 Water beetles Ireland Red List No. 1: Water beetles G.N. Foster1, B.H. Nelson2 & Á. O Connor3 1 3 Eglinton Terrace, Ayr KA7 1JJ 2 Department of Natural Sciences, National Museums Northern Ireland 3 National Parks & Wildlife Service, Department of Environment, Heritage & Local Government Citation: Foster, G. N., Nelson, B. H. & O Connor, Á. (2009) Ireland Red List No. 1 – Water beetles. National Parks and Wildlife Service, Department of Environment, Heritage and Local Government, Dublin, Ireland. Cover images from top: Dryops similaris (© Roy Anderson); Gyrinus urinator, Hygrotus decoratus, Berosus signaticollis & Platambus maculatus (all © Jonty Denton) Ireland Red List Series Editors: N. Kingston & F. Marnell © National Parks and Wildlife Service 2009 ISSN 2009‐2016 Red list of Irish Water beetles 2009 ____________________________ CONTENTS ACKNOWLEDGEMENTS .................................................................................................................................... 1 EXECUTIVE SUMMARY...................................................................................................................................... 2 INTRODUCTION................................................................................................................................................ 3 NOMENCLATURE AND THE IRISH CHECKLIST................................................................................................ 3 COVERAGE .......................................................................................................................................................
    [Show full text]
  • The Pentatomidae, Or Stink Bugs, of Kansas with a Key to Species (Hemiptera: Heteroptera) Richard J
    Fort Hays State University FHSU Scholars Repository Biology Faculty Papers Biology 2012 The eP ntatomidae, or Stink Bugs, of Kansas with a key to species (Hemiptera: Heteroptera) Richard J. Packauskas Fort Hays State University, [email protected] Follow this and additional works at: http://scholars.fhsu.edu/biology_facpubs Part of the Biology Commons, and the Entomology Commons Recommended Citation Packauskas, Richard J., "The eP ntatomidae, or Stink Bugs, of Kansas with a key to species (Hemiptera: Heteroptera)" (2012). Biology Faculty Papers. 2. http://scholars.fhsu.edu/biology_facpubs/2 This Article is brought to you for free and open access by the Biology at FHSU Scholars Repository. It has been accepted for inclusion in Biology Faculty Papers by an authorized administrator of FHSU Scholars Repository. 210 THE GREAT LAKES ENTOMOLOGIST Vol. 45, Nos. 3 - 4 The Pentatomidae, or Stink Bugs, of Kansas with a key to species (Hemiptera: Heteroptera) Richard J. Packauskas1 Abstract Forty eight species of Pentatomidae are listed as occurring in the state of Kansas, nine of these are new state records. A key to all species known from the state of Kansas is given, along with some notes on new state records. ____________________ The family Pentatomidae, comprised of mainly phytophagous and a few predaceous species, is one of the largest families of Heteroptera. Some of the phytophagous species have a wide host range and this ability may make them the most economically important family among the Heteroptera (Panizzi et al. 2000). As a group, they have been found feeding on cotton, nuts, fruits, veg- etables, legumes, and grain crops (McPherson 1982, McPherson and McPherson 2000, Panizzi et al 2000).
    [Show full text]
  • Genetic Structure of Cytochrome Oxidase Subunit II of Microcentrum Rhombifolium
    Research in Biotechnology, 6(1): 54-58, 2015 ISSN: 2229-791X www.researchinbiotechnology.com Short Communication Genetic Structure of Cytochrome Oxidase Subunit II of Microcentrum rhombifolium Mashhoor, K., Swathi, R., Leya, T., Sebastian, C. D., Akhilesh, V.P., Tanuja, D., Rosy, P.A. and Lazar, K.V.* Molecular Biology Laboratory, Dept. of Zoology, University of Calicut, Kerala, 673635, India *Corresponding Author Email: [email protected], [email protected] The angle-wing katydid, Microcentrum rhombifolium is widely distributed in Asia- Pacific, Europe, Australia and America. The molecular genetic structure of katydid fauna of Indian subcontinent is not studied in detail. Here we report the partial sequence of cytochrome oxidase subunit II (COII) gene of M. rhombifolium collected from Calicut of North Kerala and its phylogenetic position in the family Tettigonidae. Genetically M. rhombifolium is closure to Elimaea cheni isolated from China with 81% identity in nucleotide sequence. Conceptual translation of its peptide sequence showed 87% similarity to that of the katydid Kawanaphila yarraga. Key words: Anglewing katydid, phylogeny, DNA barcoding, cytochrome oxidase The katydid fauna of the Indian Microcentrum rhombifolium is a broad subcontinent is not studied in detail. The winged katydid, with 2 to 2.5 inch size, family Tettigoniidae comprises approxi- widely distributed over Asia-Pacific, Europe, mately 1,070 genera and 6,000 species and Australia and America. This bright green widely distributed (Ferreira and Mesa, 2007). katydid has a long slender legs, which helps Ingrisch and Shishodia (1998) reported 8 new to jump when it get disturbed. Each year’s its species from India. Recently some studies produce several generations with largest described the phylogeny of different species population occurs during June through of Tettigonidae.
    [Show full text]
  • Methods and Work Profile
    REVIEW OF THE KNOWN AND POTENTIAL BIODIVERSITY IMPACTS OF PHYTOPHTHORA AND THE LIKELY IMPACT ON ECOSYSTEM SERVICES JANUARY 2011 Simon Conyers Kate Somerwill Carmel Ramwell John Hughes Ruth Laybourn Naomi Jones Food and Environment Research Agency Sand Hutton, York, YO41 1LZ 2 CONTENTS Executive Summary .......................................................................................................................... 8 1. Introduction ............................................................................................................ 13 1.1 Background ........................................................................................................................ 13 1.2 Objectives .......................................................................................................................... 15 2. Review of the potential impacts on species of higher trophic groups .................... 16 2.1 Introduction ........................................................................................................................ 16 2.2 Methods ............................................................................................................................. 16 2.3 Results ............................................................................................................................... 17 2.4 Discussion .......................................................................................................................... 44 3. Review of the potential impacts on ecosystem services .......................................
    [Show full text]
  • A Molecular Phylogeny for the Pyraloid Moths (Lepidoptera: Pyraloidea) and Its Implications for Higher-Level Classification
    Systematic Entomology (2012), 37, 635–656 DOI: 10.1111/j.1365-3113.2012.00641.x A molecular phylogeny for the pyraloid moths (Lepidoptera: Pyraloidea) and its implications for higher-level classification JEROME C. REGIER1,2, CHARLES MITTER1,M.ALMASOLIS3, JAMES E. HAYDEN4, BERNARD LANDRY5, MATTHIAS NUSS6, THOMAS J. SIMONSEN7, SHEN-HORN YEN8, ANDREAS ZWICK9 andMICHAEL P. CUMMINGS10 1Department of Entomology, University of Maryland, College Park, MD, U.S.A., 2Institute for Bioscience and Biotechnology Research, College Park, MD, U.S.A., 3Systematic Entomology Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, U.S.A., 4Florida State Collection of Arthropods, Gainesville, FL, U.S.A., 5Museum´ d’Histoire Naturelle, Geneva, Switzerland, 6Senckenberg Naturhistorische Sammlungen Dresden, Museum fur¨ Tierkunde, Konigsbr¨ ucker¨ Landstr., Dresden, Germany, 7Department of Entomology, The Natural History Museum, London, U.K., 8Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan, 9Department of Entomology, State Museum of Natural History Stuttgart, Stuttgart, Germany and 10Laboratory of Molecular Evolution, Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD, U.S.A. Abstract. Pyraloidea, one of the largest superfamilies of Lepidoptera, comprise more than 15 684 described species worldwide, including important pests, biological control agents and experimental models. Understanding of pyraloid phylogeny, the basis for a predictive classification, is currently provisional. We present the most detailed molecular estimate of relationships to date across the subfamilies of Pyraloidea, and assess its concordance with previous morphology-based hypotheses. We sequenced up to five nuclear genes, totalling 6633 bp, in each of 42 pyraloids spanning both families and 18 of the 21 subfamilies, plus up to 14 additional genes, for a total of 14 826 bp, in 21 of those pyraloids plus all 24 outgroups.
    [Show full text]
  • First Record of Dendrobaris Tatjanae (Egorov, 1976) (Insecta: Coleoptera: Curculionidae) from Novosibirsk Oblast'
    Ukrainian Journal of Ecology Ukrainian Journal of Ecology, 2018, 8(4), 459-461 RESEARCH ARTICLE First record of Dendrobaris tatjanae (Egorov, 1976) (Insecta: Coleoptera: Curculionidae) from Novosibirsk Oblast' A.A. Legalov1,2, S.V. Reshetnikov3 1Institute of Systematics and Ecology of Animals, Siberian Branch, Russian Academy of Sciences Frunze Street, 11, Novosibirsk 630091, Russia E-mail: [email protected] 2Altai State University, pr. Lenina, 61, Barnaul, 656049, Russia 3Kropotkina Street, 273, Novosibirsk 630111, Russia E-mail: [email protected] Received: 12.10.2018. Accepted: 01.12.2018 The first record of Dendrobaris tatjanae Egorov, 1976 for Novosibirsk Oblast' is presented. It is the most western locality of the species. Distribution map of D. tatjanae is given. Keywords: Insecta; Coleoptera; Curculionoidea; Conoderinae; new records; Siberia; Russian Far East The weevil fauna of Novosibirsk Oblast' is well studied (Legalov, Opanassenko, 2000; Legalov, 2009), but new finds are possible. In 2018, relict nemoral Dendrobaris tatjanae was collected in the northeast of Novosibirsk Oblast'. The species is the single representative of the East Asian genus Dendrobaris Egorov, 1976 (Morimoto and Yoshihara, 1996; Zherikhin, 1997) in Siberia. Some nemoral species of the weevils are known from Siberia (Legalov, 2010, 2011), because each record deserves attention. Materials and methods A specimen from Novosibirsk Oblast' is kept in the private collection of S.V. Reshetnikov (Novosibirsk), other studied specimens are kept in the Institute of Systematics and Ecology of Animals of the Siberian Branch, Russian Academy of Sciences (Novosibirsk) and Zoological Institute of the Russian Academy of Sciences (St. Petersburg). The systematics of studied taxon is from Legalov (2018c).
    [Show full text]
  • Phylogeny of the Aphnaeinae: Myrmecophilous African Butterflies
    Systematic Entomology (2015), 40, 169–182 DOI: 10.1111/syen.12098 Phylogeny of the Aphnaeinae: myrmecophilous African butterflies with carnivorous and herbivorous life histories JOHN H. BOYLE1,2, ZOFIA A. KALISZEWSKA1,2, MARIANNE ESPELAND1,2,3, TAMARA R. SUDERMAN1,2, JAKE FLEMING2,4, ALAN HEATH5 andNAOMI E. PIERCE1,2 1Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, U.S.A., 2Museum of Comparative Zoology, Harvard University, Cambridge, MA, U.S.A., 3Museum of Natural History and Archaeology, Norwegian University of Science and Technology, Trondheim, Norway, 4Department of Geography, University of Wisconsin, Madison, WI, U.S.A. and 5Iziko South African Museum, Cape Town, South Africa Abstract. The Aphnaeinae (Lepidoptera: Lycaenidae) are a largely African subfamily of 278 described species that exhibit extraordinary life-history variation. The larvae of these butterflies typically form mutualistic associations with ants, and feed on awide variety of plants, including 23 families in 19 orders. However, at least one species in each of 9 of the 17 genera is aphytophagous, parasitically feeding on the eggs, brood or regurgitations of ants. This diversity in diet and type of symbiotic association makes the phylogenetic relations of the Aphnaeinae of particular interest. A phylogenetic hypothesis for the Aphnaeinae was inferred from 4.4 kb covering the mitochondrial marker COI and five nuclear markers (wg, H3, CAD, GAPDH and EF1) for each of 79 ingroup taxa representing 15 of the 17 currently recognized genera, as well as three outgroup taxa. Maximum Parsimony, Maximum Likelihood and Bayesian Inference analyses all support Heath’s systematic revision of the clade based on morphological characters.
    [Show full text]
  • In Mississippi
    Biodiversity of Bariditae (Coleoptera: Curculionidae: Conoderinae) in Mississippi By TITLE PAGE Ryan J. Whitehouse Approved by: Richard L. Brown (Major Professor) Robert S. Anderson Gerald T. Baker Kenneth Willeford (Graduate Coordinator) George M. Hopper (Dean, College of Agriculture and Life Sciences) A Thesis Submitted to the Faculty of Mississippi State University in Partial Fulfillment of the Requirements for the Degree of Master of Science in Agricultural Life Sciences in the Department of Biochemistry, Molecular Biology, Entomology & Plant Pathology Mississippi State, Mississippi May 2020 Copyright by COPYRIGHT PAGE Ryan J. Whitehouse 2020 Name: Ryan J. Whitehouse ABSTRACT Date of Degree: May 1, 2020 Institution: Mississippi State University Major Field: Agricultural Life Sciences Major Professor: Richard L. Brown Title of Study: Biodiversity of Bariditae (Coleoptera: Curculionidae: Conoderinae) in Mississippi Pages in Study: 262 Candidate for Degree of Master of Science A survey of Bariditae in Mississippi resulted in records of 75 species in 32 genera and included two undescribed species and 36 new state records. An additional two species were recognized as possibly occurring in Mississippi as well. Diagnoses for all of the genera and species in the state are provided and keys to the genera as well as all of the species were made. Species were found in every county within Mississippi and are representative of the Bariditae fauna of the southeastern United States. Open, prairie-like habitats and aquatic wetland habitats were the habitats with the highest biodiversity of Bariditae in the state. Species of Baris, Geraeus, Linogeraeus, and Odontocorynus, were found in the highest numbers and Linogeraeus and Sibariops were found to be the most speciose genera in the state.
    [Show full text]
  • A Short History Regarding the Taxonomy and Systematic Researches of Platygastroidea (Hymenoptera)
    Memoirs of the Scientific Sections of the Romanian Academy Tome XXXIV, 2011 BIOLOGY A SHORT HISTORY REGARDING THE TAXONOMY AND SYSTEMATIC RESEARCHES OF PLATYGASTROIDEA (HYMENOPTERA) O.A. POPOVICI1 and P.N. BUHL2 1 “Al.I.Cuza” University, Faculty of Biology, Bd. Carol I, nr. 11, 700506, Iasi, Romania. 2 Troldhøjvej 3, DK-3310 Ølsted, Denmark, e-mail: [email protected],dk Corresponding author: [email protected] This paper presents an overview of the most important and best-known works that were the subject of taxonomy or systematics Platygastroidea superfamily. The paper is divided into three parts. In the first part of the research surprised the early period can be placed throughout the XIXth century between Latreille and Dalla Torre. Before this period, references about platygastrids and scelionids were made by Linnaeus and Schrank, they are the ones who described the first platygastrid and scelionid respectively. In this the first period work entomologists as: Haliday, Westwood, Walker, Forster, Ashmead, Thomson, Howard, etc., the result of their work being the description of 699 scelionids species which are found quoted in Dalla Torre's catalogue. The second part of the paper is devoted to early 20th century. This vibrant work is marked by the work of two great entomologists: Kieffer and Dodd. In this period one publish the first and only global monograph of platygastrids and scelionids until now. In this monograph are twice the number of species than in Dalla Torre's catalogue which shows the magnitude of the systematic research of those moments. The third part of the paper refers to the late 20th and early 21st century.
    [Show full text]
  • The Evolution of Complex Calls in Meadow
    THE EVOLUTION OF COMPLEX CALLS IN MEADOW KATYDIDS _______________________________________ A Dissertation presented to the Faculty of the Graduate School at the University of Missouri-Columbia _______________________________________________________ In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy _____________________________________________________ by NATHAN HARNESS Dr. Johannes Schul, Dissertation Supervisor July 2018 The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled THE EVOLUTION OF COMPLEX CALLS IN MEADOW KATYDIDS presented by Nathan Harness, a candidate for the degree of doctor of philosophy, and hereby certify that, in their opinion, it is worthy of acceptance. Professor Johannes Schul Professor Sarah Bush Professor Lori Eggert Professor Patricia Friedrichsen For my family Rachel and Mayr have given me so much. They show me unselfish affection, endless support, and generosity that seems to only grow. Without them the work here, and the adventure we’ve all three gone on surrounding it, would not have been possible. They have sacrificed birthdays, anniversaries, holidays, and countless weekends and evenings. They’ve happily seen me off to weeks of field work and conference visits. I am thankful to them for being so generous, and completely lacking in resentment at all the things that pull their husband and dad in so many directions. They have both necessarily become adept at melting away anxiety; I will forever be indebted to the hugs of a two-year-old and the kind words of his mom. Rachel and Mayr both deserve far more recognition than is possible here. I also want to thank my parents and brother and sisters.
    [Show full text]