Biomechanical Properties of the Sarcolemma and Costameres of Skeletal Muscle Lacking Desmin
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Desmin Interacts Directly with Mitochondria
International Journal of Molecular Sciences Article Desmin Interacts Directly with Mitochondria Alexander A. Dayal 1, Natalia V. Medvedeva 1, Tatiana M. Nekrasova 1, Sergey D. Duhalin 1, Alexey K. Surin 1,2 and Alexander A. Minin 1,* 1 Institute of Protein Research of Russian Academy of Sciences, Vavilova st., 34, 119334 Moscow, Russia; [email protected] (A.A.D.); [email protected] (N.V.M.); [email protected] (T.M.N.); [email protected] (S.D.D.); [email protected] (A.K.S.) 2 Pushchino Branch, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki 6, Pushchino, 142290 Moscow Region, Russia * Correspondence: [email protected] Received: 14 October 2020; Accepted: 26 October 2020; Published: 30 October 2020 Abstract: Desmin intermediate filaments (IFs) play an important role in maintaining the structural and functional integrity of muscle cells. They connect contractile myofibrils to plasma membrane, nuclei, and mitochondria. Disturbance of their network due to desmin mutations or deficiency leads to an infringement of myofibril organization and to a deterioration of mitochondrial distribution, morphology, and functions. The nature of the interaction of desmin IFs with mitochondria is not clear. To elucidate the possibility that desmin can directly bind to mitochondria, we have undertaken the study of their interaction in vitro. Using desmin mutant Des(Y122L) that forms unit-length filaments (ULFs) but is incapable of forming long filaments and, therefore, could be effectively separated from mitochondria by centrifugation through sucrose gradient, we probed the interaction of recombinant human desmin with mitochondria isolated from rat liver. Our data show that desmin can directly bind to mitochondria, and this binding depends on its N-terminal domain. -
1933.Full.Pdf
0270.6474/84/0408-1933$02.00/O The Journal of Neuroscience Copyright 0 Society for Neuroscience Vol. 4, No. 8, pp. 1933-1943 Printed in U.S.A. August 1984 PARTIAL PURIFICATION AND FUNCTIONAL IDENTIFICATION OF A CALMODULIN-ACTIVATED, ADENOSINE 5’-TRIPHOSPHATE-DEPENDENT CALCIUM PUMP FROM SYNAPTIC PLASMA MEMBRANES1 DIANE M. PAPAZIAN,* HANNAH RAHAMIMOFF,$ AND STANLEY M. GOLDIN§’ Departments of *Biological Chemistry and $Pharmacology, Harvard Medical School, Boston, Massachusetts 02115 and *Department of Biochemistry, Hadassah Medical School, Hebrew University, Jerusalem, Israel Received July 18, 1983; Revised February 27, 1984; Accepted February 28, 1984 Abstract Synaptic plasma membranes isolated from rat brain contain a calmodulin-activated Ca2+ pump. It has been purified 80- to 160-fold by solubilization with Triton X-100 and affinity chromatography on a calmodulin- Sepharose 4B column. After reconstitution into phospholipid vesicles, the affinity-purified pump efficiently catalyzed ATP dependent Ca2+ transport, which was activated 7- to g-fold by calmodulin. The major protein component of the affinity-purified preparation had a M, = 140,000; it was virtually the only band visualized on a Coomassie blue-stained SDS polyacrylamide gel. It has been identified as the Ca”’ pump by two functional criteria. First, it was phosphorylated by [y-““P]ATP in a Ca’+-dependent manner; the phosphorylated protein had the chemical reactivity of an acyl phosphate, characteristic of the phosphorylated intermediates of ion-transporting ATPases. Second, the protein was enriched by transport-specific fractiona- tion, a density gradient procedure which uses the transport properties of the reconstituted Ca2+ pump as a physical tool for its purification. -
Microanatomy of Muscles
Microanatomy of Muscles Anatomy & Physiology Class Three Main Muscle Types Objectives: By the end of this presentation you will have the information to: 1. Describe the 3 main types of muscles. 2. Detail the functions of the muscle system. 3. Correctly label the parts of a myocyte (muscle cell) 4. Identify the levels of organization in a skeletal muscle from organ to myosin. 5. Explain how a muscle contracts utilizing the correct terminology of the sliding filament theory. 6. Contrast and compare cardiac and smooth muscle with skeletal muscle. Major Functions: Muscle System 1. Moving the skeletal system and posture. 2. Passing food through the digestive system & constriction of other internal organs. 3. Production of body heat. 4. Pumping the blood throughout the body. 5. Communication - writing and verbal Specialized Cells (Myocytes) ~ Contractile Cells Can shorten along one or more planes because of specialized cell membrane (sarcolemma) and specialized cytoskeleton. Specialized Structures found in Myocytes Sarcolemma: The cell membrane of a muscle cell Transverse tubule: a tubular invagination of the sarcolemma of skeletal or cardiac muscle fibers that surrounds myofibrils; involved in transmitting the action potential from the sarcolemma to the interior of the myofibril. Sarcoplasmic Reticulum: The special type of smooth endoplasmic Myofibrils: reticulum found in smooth and a contractile fibril of skeletal muscle, composed striated muscle fibers whose function mainly of actin and myosin is to store and release calcium ions. Multiple Nuclei (skeletal) & many mitochondria Skeletal Muscle - Microscopic Anatomy A whole skeletal muscle (such as the biceps brachii) is considered an organ of the muscular system. Each organ consists of skeletal muscle tissue, connective tissue, nerve tissue, and blood or vascular tissue. -
VIEW Open Access Muscle Spindle Function in Healthy and Diseased Muscle Stephan Kröger* and Bridgette Watkins
Kröger and Watkins Skeletal Muscle (2021) 11:3 https://doi.org/10.1186/s13395-020-00258-x REVIEW Open Access Muscle spindle function in healthy and diseased muscle Stephan Kröger* and Bridgette Watkins Abstract Almost every muscle contains muscle spindles. These delicate sensory receptors inform the central nervous system (CNS) about changes in the length of individual muscles and the speed of stretching. With this information, the CNS computes the position and movement of our extremities in space, which is a requirement for motor control, for maintaining posture and for a stable gait. Many neuromuscular diseases affect muscle spindle function contributing, among others, to an unstable gait, frequent falls and ataxic behavior in the affected patients. Nevertheless, muscle spindles are usually ignored during examination and analysis of muscle function and when designing therapeutic strategies for neuromuscular diseases. This review summarizes the development and function of muscle spindles and the changes observed under pathological conditions, in particular in the various forms of muscular dystrophies. Keywords: Mechanotransduction, Sensory physiology, Proprioception, Neuromuscular diseases, Intrafusal fibers, Muscular dystrophy In its original sense, the term proprioception refers to development of head control and walking, an early im- sensory information arising in our own musculoskeletal pairment of fine motor skills, sensory ataxia with un- system itself [1–4]. Proprioceptive information informs steady gait, increased stride-to-stride variability in force us about the contractile state and movement of muscles, and step length, an inability to maintain balance with about muscle force, heaviness, stiffness, viscosity and ef- eyes closed (Romberg’s sign), a severely reduced ability fort and, thus, is required for any coordinated move- to identify the direction of joint movements, and an ab- ment, normal gait and for the maintenance of a stable sence of tendon reflexes [6–12]. -
Genetic Mutations and Mechanisms in Dilated Cardiomyopathy
Genetic mutations and mechanisms in dilated cardiomyopathy Elizabeth M. McNally, … , Jessica R. Golbus, Megan J. Puckelwartz J Clin Invest. 2013;123(1):19-26. https://doi.org/10.1172/JCI62862. Review Series Genetic mutations account for a significant percentage of cardiomyopathies, which are a leading cause of congestive heart failure. In hypertrophic cardiomyopathy (HCM), cardiac output is limited by the thickened myocardium through impaired filling and outflow. Mutations in the genes encoding the thick filament components myosin heavy chain and myosin binding protein C (MYH7 and MYBPC3) together explain 75% of inherited HCMs, leading to the observation that HCM is a disease of the sarcomere. Many mutations are “private” or rare variants, often unique to families. In contrast, dilated cardiomyopathy (DCM) is far more genetically heterogeneous, with mutations in genes encoding cytoskeletal, nucleoskeletal, mitochondrial, and calcium-handling proteins. DCM is characterized by enlarged ventricular dimensions and impaired systolic and diastolic function. Private mutations account for most DCMs, with few hotspots or recurring mutations. More than 50 single genes are linked to inherited DCM, including many genes that also link to HCM. Relatively few clinical clues guide the diagnosis of inherited DCM, but emerging evidence supports the use of genetic testing to identify those patients at risk for faster disease progression, congestive heart failure, and arrhythmia. Find the latest version: https://jci.me/62862/pdf Review series Genetic mutations and mechanisms in dilated cardiomyopathy Elizabeth M. McNally, Jessica R. Golbus, and Megan J. Puckelwartz Department of Human Genetics, University of Chicago, Chicago, Illinois, USA. Genetic mutations account for a significant percentage of cardiomyopathies, which are a leading cause of conges- tive heart failure. -
Vocabulario De Morfoloxía, Anatomía E Citoloxía Veterinaria
Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) Servizo de Normalización Lingüística Universidade de Santiago de Compostela COLECCIÓN VOCABULARIOS TEMÁTICOS N.º 4 SERVIZO DE NORMALIZACIÓN LINGÜÍSTICA Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) 2008 UNIVERSIDADE DE SANTIAGO DE COMPOSTELA VOCABULARIO de morfoloxía, anatomía e citoloxía veterinaria : (galego-español- inglés) / coordinador Xusto A. Rodríguez Río, Servizo de Normalización Lingüística ; autores Matilde Lombardero Fernández ... [et al.]. – Santiago de Compostela : Universidade de Santiago de Compostela, Servizo de Publicacións e Intercambio Científico, 2008. – 369 p. ; 21 cm. – (Vocabularios temáticos ; 4). - D.L. C 2458-2008. – ISBN 978-84-9887-018-3 1.Medicina �������������������������������������������������������������������������veterinaria-Diccionarios�������������������������������������������������. 2.Galego (Lingua)-Glosarios, vocabularios, etc. políglotas. I.Lombardero Fernández, Matilde. II.Rodríguez Rio, Xusto A. coord. III. Universidade de Santiago de Compostela. Servizo de Normalización Lingüística, coord. IV.Universidade de Santiago de Compostela. Servizo de Publicacións e Intercambio Científico, ed. V.Serie. 591.4(038)=699=60=20 Coordinador Xusto A. Rodríguez Río (Área de Terminoloxía. Servizo de Normalización Lingüística. Universidade de Santiago de Compostela) Autoras/res Matilde Lombardero Fernández (doutora en Veterinaria e profesora do Departamento de Anatomía e Produción Animal. -
Structural Organization of the Perimysium in Bovine Skeletal Muscle: Junctional Plates and Associated Intracellular Subdomains E
Structural organization of the perimysium in bovine skeletal muscle: Junctional plates and associated intracellular subdomains E. Passerieux, R. Rossignol, A. Chopard, A. Carnino, J.F. Marini, T. Letellier, J.P. Delage To cite this version: E. Passerieux, R. Rossignol, A. Chopard, A. Carnino, J.F. Marini, et al.. Structural organization of the perimysium in bovine skeletal muscle: Junctional plates and associated intracellular subdomains. Journal of Structural Biology, Elsevier, 2006, 154 (2), pp.206 - 216. 10.1016/j.jsb.2006.01.002. hal- 01758589 HAL Id: hal-01758589 https://hal.umontpellier.fr/hal-01758589 Submitted on 4 Apr 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Journal of Structural Biology 154 (2006) 206–216 www.elsevier.com/locate/yjsbi Structural organization of the perimysium in bovine skeletal muscle: Junctional plates and associated intracellular subdomains E. Passerieux a, R. Rossignol a, A. Chopard b, A. Carnino b, J.F. Marini b, a a, T. Letellier , J.P. Delage ¤ a INSERM, U688 Physiopathologie Mitochondriale, Université -
Multiomic Approaches to Uncover the Complexities of Dystrophin-Associated Cardiomyopathy
International Journal of Molecular Sciences Review Multiomic Approaches to Uncover the Complexities of Dystrophin-Associated Cardiomyopathy Aoife Gowran 1,*, Maura Brioschi 2, Davide Rovina 1 , Mattia Chiesa 3,4 , Luca Piacentini 3,* , Sara Mallia 1, Cristina Banfi 2,* , Giulio Pompilio 1,5,6,* and Rosaria Santoro 1,4 1 Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino-IRCCS, 20138 Milan, Italy; [email protected] (D.R.); [email protected] (S.M.); [email protected] (R.S.) 2 Unit of Cardiovascular Proteomics, Centro Cardiologico Monzino-IRCCS, 20138 Milan, Italy; [email protected] 3 Bioinformatics and Artificial Intelligence Facility, Centro Cardiologico Monzino-IRCCS, 20138 Milan, Italy; [email protected] 4 Department of Electronics, Information and Biomedical Engineering, Politecnico di Milano, 20133 Milan, Italy 5 Department of Cardiac Surgery, Centro Cardiologico Monzino-IRCCS, 20138 Milan, Italy 6 Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy * Correspondence: [email protected] (A.G.); [email protected] (L.P.); cristina.banfi@cardiologicomonzino.it (C.B.); [email protected] (G.P.) Abstract: Despite major progress in treating skeletal muscle disease associated with dystrophinopathies, cardiomyopathy is emerging as a major cause of death in people carrying dystrophin gene mutations that remain without a targeted cure even with new treatment directions and advances in modelling Citation: Gowran, A.; Brioschi, M.; abilities. The reasons for the stunted progress in ameliorating dystrophin-associated cardiomyopathy Rovina, D.; Chiesa, M.; Piacentini, L.; (DAC) can be explained by the difficulties in detecting pathophysiological mechanisms which can also Mallia, S.; Banfi, C.; Pompilio, G.; Santoro, R. -
'Clustering of Nicotinic Acetylcholine Receptors: from the Neuromuscular
Huh, K H; Fuhrer, C. Clustering of nicotinic acetylcholine receptors: from the neuromuscular junction to interneuronal synapses. Mol. Neurobiol. 2002, 25(1):79-112. Postprint available at: http://www.zora.unizh.ch University of Zurich Posted at the Zurich Open Repository and Archive, University of Zurich. Zurich Open Repository and Archive http://www.zora.unizh.ch Originally published at: Mol. Neurobiol. 2002, 25(1):79-112 Winterthurerstr. 190 CH-8057 Zurich http://www.zora.unizh.ch Year: 2002 Clustering of nicotinic acetylcholine receptors: from the neuromuscular junction to interneuronal synapses Huh, K H; Fuhrer, C Huh, K H; Fuhrer, C. Clustering of nicotinic acetylcholine receptors: from the neuromuscular junction to interneuronal synapses. Mol. Neurobiol. 2002, 25(1):79-112. Postprint available at: http://www.zora.unizh.ch Posted at the Zurich Open Repository and Archive, University of Zurich. http://www.zora.unizh.ch Originally published at: Mol. Neurobiol. 2002, 25(1):79-112 Clustering of nicotinic acetylcholine receptors: from the neuromuscular junction to interneuronal synapses Abstract Fast and accurate synaptic transmission requires high-density accumulation of neurotransmitter receptors in the postsynaptic membrane. During development of the neuromuscular junction, clustering of acetylcholine receptors (AChR) is one of the first signs of postsynaptic specialization and is induced by nerve-released agrin. Recent studies have revealed that different mechanisms regulate assembly vs stabilization of AChR clusters and of the postsynaptic apparatus. MuSK, a receptor tyrosine kinase and component of the agrin receptor, and rapsyn, an AChR-associated anchoring protein, play crucial roles in the postsynaptic assembly. Once formed, AChR clusters and the postsynaptic membrane are stabilized by components of the dystrophin/utrophin glycoprotein complex, some of which also direct aspects of synaptic maturation such as formation of postjunctional folds. -
Molecular Genetic Analysis of the Adenomatous Polyposis Coli (APC)
Molecular Genetic Analysis of the Adenomatous Polyposis Coli(APC) gene region by Garret Malcolm Hampton A thesis submitted in requirement for the degree of Doctor of Philosophy at the University of London May, 1992 Cancer Genetics Laboratory (formerly Director's Laboratory) Imperial Cancer Research Fund London and Department of Genetics and Biometry University College London London University Page -1- ProQuest Number: 10609182 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 10609182 Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 To my parents and my wife, Kate Page -2- Abstract Familial Adenomatous Polyposis (FAP) is a rare, autosomal dominant predisposition to colorectal cancer, affecting about one in ten thousand individuals in all populations studied. The gene responsible for this syndrome, designated APC (for Adenomatous Polyposis Coli) was mapped to 5q21-q22 by linkage analysis following a cytogenetic report of a male patient with polyposis and an interstitial deletion on 5q. The high incidence of allele loss at 5q21-q22 in carcinomas of sporadic patients suggests that mutation of the APC gene is a very frequent step in the tumorigenic pathway to nonfamilial colorectal carcinomas and emphasises the importance of isolating the gene and identifying its function. -
Limb-Girdle Muscular Dystrophy
www.ChildLab.com 800-934-6575 LIMB-GIRDLE MUSCULAR DYSTROPHY What is Limb-Girdle Muscular Dystrophy? Limb-Girdle Muscular Dystrophy (LGMD) is a group of hereditary disorders that cause progressive muscle weakness and wasting of the shoulders and pelvis (hips). There are at least 13 different genes that cause LGMD, each associated with a different subtype. Depending on the subtype of LGMD, the age of onset is variable (childhood, adolescence, or early adulthood) and can affect other muscles of the body. Many persons with LGMD eventually need the assistance of a wheelchair, and currently there is no cure. How is LGMD inherited? LGMD can be inherited by autosomal dominant (AD) or autosomal recessive (AR) modes. The AR subtypes are much more common than the AD types. Of the AR subtypes, LGMD2A (calpain-3) is the most common (30% of cases). LGMD2B (dysferlin) accounts for 20% of cases and the sarcoglycans (LGMD2C-2F) as a group comprise 25%-30% of cases. The various subtypes represent the different protein deficiencies that can cause LGMD. What testing is available for LGMD? Diagnosis of the LGMD subtypes requires biochemical and genetic testing. This information is critical, given that management of the disease is tailored to each individual and each specific subtype. Establishing the specific LGMD subtype is also important for determining inheritance and recurrence risks for the family. The first step in diagnosis for muscular dystrophy is usually a muscle biopsy. Microscopic and protein analysis of the biopsy can often predict the type of muscular dystrophy by analyzing which protein(s) is absent. A muscle biopsy will allow for targeted analysis of the appropriate LGMD gene(s) and can rule out the diagnosis of the more common dystrophinopathies (Duchenne and Becker muscular dystrophies). -
Contralateral Recurrence of Aggressive Fibromatosis in a Young Woman: a Case Report and Review of the Literature
ONCOLOGY LETTERS 10: 325-328, 2015 Contralateral recurrence of aggressive fibromatosis in a young woman: A case report and review of the literature CHRISTOPHER J. SCHMOYER, HARMAR D. BRERETON and ERIC W. BLOMAIN Clinical Faculty, Department of Medicine, The Commonwealth Medical College, Scranton, PA 18509, USA Received August 9, 2014; Accepted April 24, 2015 DOI: 10.3892/ol.2015.3215 Abstract. Aggressive fibromatosis (AF) is a benign and shoulder girdle. Individuals with familial adenomatous non-encapsulated tumor of mesenchymal origin, with a polyposis (FAP) or Gardner's syndrome have a 1,000 times tendency for local spread along fascial planes. Local inva- greater risk for developing the disease due to inheritance of sion can lead to extensive morbidity and even mortality due the adenomatous polyposis coli (APC) gene (3). These patients to destruction of the bones, organs and soft tissues. This rare may present with intra-abdominal lesions following colonic lesion is observed 1,000 times more frequently in patients with resection (4). While AF does not metastasize, local recurrence familial adenomatous polyposis or Gardner's syndrome due to is common. Distant recurrence is extremely rare, but is typi- the inheritance of the adenomatous polyposis coli (APC) gene. cally observed in those with a new primary tumor associated While AF does not metastasize, local recurrence is common. with the APC mutation. The present study reports the case of Distant recurrence is extremely rare, but is observed in those a 20-year-old female with sporadic contralateral recurrence of with a germ line APC mutation. The present study details clinically diagnosed AF and no familial predisposition.