Structural Organization of the Perimysium in Bovine Skeletal Muscle: Junctional Plates and Associated Intracellular Subdomains E

Total Page:16

File Type:pdf, Size:1020Kb

Structural Organization of the Perimysium in Bovine Skeletal Muscle: Junctional Plates and Associated Intracellular Subdomains E Structural organization of the perimysium in bovine skeletal muscle: Junctional plates and associated intracellular subdomains E. Passerieux, R. Rossignol, A. Chopard, A. Carnino, J.F. Marini, T. Letellier, J.P. Delage To cite this version: E. Passerieux, R. Rossignol, A. Chopard, A. Carnino, J.F. Marini, et al.. Structural organization of the perimysium in bovine skeletal muscle: Junctional plates and associated intracellular subdomains. Journal of Structural Biology, Elsevier, 2006, 154 (2), pp.206 - 216. 10.1016/j.jsb.2006.01.002. hal- 01758589 HAL Id: hal-01758589 https://hal.umontpellier.fr/hal-01758589 Submitted on 4 Apr 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Journal of Structural Biology 154 (2006) 206–216 www.elsevier.com/locate/yjsbi Structural organization of the perimysium in bovine skeletal muscle: Junctional plates and associated intracellular subdomains E. Passerieux a, R. Rossignol a, A. Chopard b, A. Carnino b, J.F. Marini b, a a, T. Letellier , J.P. Delage ¤ a INSERM, U688 Physiopathologie Mitochondriale, Université Victor Segalen-Bordeaux 2, 146 rue Léo-Saignat, F-33076 Bordeaux Cedex, France b EA 3837, Laboratoire de Physiologie des Adaptations, Performances Motrices et Santé, Université de Nice Sophia Antipolis, Faculté des Sciences du Sport, 261 route de Grenoble, 06205 Nice Cedex, France Received 19 October 2005; received in revised form 6 January 2006; accepted 7 January 2006 Available online 8 February 2006 Abstract We analyzed the structural features of the perimysium collagen network in bovine Flexor carpi radialis muscle using various sample preparation methods and microscopy techniques. We Wrst observed by scanning electron microscopy that perimysium formed a regular network of collagen Wbers with three hierarchical levels including (i) a loose lattice of large interwoven Wbers ramiWed in (ii) numerous col- lagen plexi attaching together adjacent myoWbers at the level of (iii) speciWc structures that we call perimysial junctional plates. Second, we looked more closely at the intracellular organization underneath each plate using transmission electron microscopy, immunohisto- chemistry, and a three-dimensional reconstruction from serial sections. We observed the accumulation of myonuclei arranged in clusters surrounded by a high density of subsarcolemmal mitochondria and the proximity of capillary branches. Third, we analyzed the distribu- tion of these perimysial junctional plates, subsarcolemmal mitochondria, and myonuclei clusters along the myoWbers using a statistical analysis of the distances between these structures. This revealed a global colocalization and the existence of adhesion domains between endomysium and perimysium. Taken together, our observations give a better description of the perimysium organization in skeletal muscle, and provide evidence that perimysial junctional plates with associated intracellular subdomains may participate in the lateral transmission of contractile forces as well as mechanosensing. © 2006 Elsevier Inc. All rights reserved. Keywords: Perimysium; Myonuclear domains; Mitochondria; Muscle contraction; Skeletal muscle 1. Introduction tendinous junction (Borg and CaulWeld, 1980; Swasdison and Mayne, 1989; Trotter and Purslow, 1992). It is orga- The extracellular matrix (ECM)1 plays a fundamental nized as a regular network of thin Wbrillar collagen Wbers role, both in structural and functional aspects of skeletal composed mostly of type IV, as well as types III, VI (Listrat muscle. Its two components are the endomysium and the et al., 1999), and XII (Listrat et al., 2000) to a minor extent. perimysium. The endomysium is made of a continuous This network attaches myoWbers sarcolemma to speciWc sheath covering the full length of myoWbers until the myo- transmembrane proteins (Kovanen, 2002), thereby forming a regular mosaic pattern (Borg and CaulWeld, 1980). These * Corresponding author. Fax: +33 5 57 57 16 12. proteins, such as integrins or dystrophin–glycoprotein com- E-mail address: [email protected] (J.P. Delage). plexes (Rando, 2001), interact directly with the cytoskele- 1 Abbreviations used: COX, cytochrome c oxidase; DAPI, 4Ј,6-diamidi- ton (Berthier and Blaineau, 1997) and transmit the no-2-phenylindole, dihydrochloride; ECM, extracellular matrix; KS, contractile forces between adjacent myoWbers (Monti et al., Kolmogorov–Smirnov; PJP, perimysial junctional plate; SEM, scanning electron microscopy; TEM, transmission electron microscopy; 3D, three- 1999; Sheard et al., 2002) as far as the tendon (Purslow, dimensional. 2002). Taking into account this particular anatomy and 1047-8477/$ - see front matter © 2006 Elsevier Inc. All rights reserved. doi:10.1016/j.jsb.2006.01.002 E. Passerieux et al. / Journal of Structural Biology 154 (2006) 206–216 207 associated roles, the endomysium can be considered the easily visualize the perimysium between adjacent myoWbers, main ECM component involved in muscle Xexibility. or (ii) a fracture technique that does not alter the chemical In contrast, the second component of ECM, i.e., the peri- structure of connective tissue, and makes it possible to mysium, is formed by an areolar network of crimped colla- remove the endomysium and visualize perimysium connec- gen Wbers varying in diameter and composition, including tions at the surface of myoWbers. The digestion technique of essentially type I collagen in conjunction with types III, VI NaOH cell maceration was adapted from Ohtani et al. (Listrat et al., 1999), and XII (Listrat et al., 2000). However, (1991). For this, muscle samples were immersed in NaOH few studies have analyzed the perimysium’s Wne organization 6N and maintained at a temperature of 18°C for 5 days, so perimysium continues to be considered a simple packing before being rinsed for 3 days in water at 18 °C. Afterward, tissue, even though some early observations have suggested a the samples were Wxed in 2% tannin, freeze-dried, and frac- connection with endomysium (Borg and CaulWeld, 1980; tured. The sections were coated with gold and examined on Moore, 1983) and a possible role in the lateral transmission a Philips 515 scanning electron microscope. The fracture of contractile forces (Huijing et al., 1998). In particular, there technique consisted in the Wxation of muscle samples in 2% is a lack of detail concerning contact sites between perimy- osmic acid, followed by freeze-drying and fracture. For sium and endomysium, their organization, distribution along each analysis, a series of at least Wve diVerent samples were myoWbers, and underlying intracellular environment. We taken from three diVerent muscles. analyzed these features of the perimysium collagen network with a particular emphasis on endomysium contact sites, as 2.2. Transmission electron microscopy well as the associated intracellular subdomains in bovine Flexor carpi radialis muscle using scanning electron micros- The Flexor carpi radialis was stretched by a 300-g weight copy (SEM), transmission electron microscopy (TEM), to preserve muscle Wber straightness and immediately Wxed three-dimensional reconstruction from serial sections, and by the injection of solution A (0.5% glutaraldehyde, 2% immunohistochemistry techniques. paraformaldehyde, 7% saccharose, and 4% polyvinylpyroli- Our results show that the perimysium forms a network done in 0.1 M cacodylate buVer). This made it possible to of collagen Wbers with three hierarchical levels including (i) increase intramuscular pressure and separate muscle Wbers a regular lattice of interwoven Wbers with (ii) collagen plexi for better visualization of the connective tissue. The muscle at each angle that attach adjacent myoWbers at (iii) particu- was sectioned in 40 mm3 blocks, immersed for 1 h in Wxative lar domains that we call perimysial junctional plates (PJPs). solution A, and rinsed with water. These blocks were recut A three-dimensional reconstruction from serial sections into smaller samples of about 12 mm3 and immersed in a showed that, underneath each plate, there was an accumu- second Wxative solution B (2% osmic acid in 0.1 M cacodyl- lation of myonuclei arranged in clusters near capillary ate buVer) for 1 h. After dehydration, these blocks were branches. Surrounding these clusters, we observed a high embedded in epoxy (epon) resin and cut into longitudinal or density of subsarcolemmal mitochondria by immunohisto- transversal sections 0.1 !m thick. These sections were chemistry and TEM. Comparison of the data obtained by stained with a solution of uranyl acetate and lead citrate. these various techniques enabled us to propose a model of They were observed on a Philips CM10 microscope to ana- perimysium organization that may underline its role in lat- lyse the contact sites between perimysium and myoWbers as eral transmission of contractile forces and thus in various well as the intracellular subdomains. aspects of muscle Xexibility. 2.3. Three-dimensional reconstruction 2. Materials and methods Samples of embedded material (see above) were cut by All procedures were
Recommended publications
  • Microanatomy of Muscles
    Microanatomy of Muscles Anatomy & Physiology Class Three Main Muscle Types Objectives: By the end of this presentation you will have the information to: 1. Describe the 3 main types of muscles. 2. Detail the functions of the muscle system. 3. Correctly label the parts of a myocyte (muscle cell) 4. Identify the levels of organization in a skeletal muscle from organ to myosin. 5. Explain how a muscle contracts utilizing the correct terminology of the sliding filament theory. 6. Contrast and compare cardiac and smooth muscle with skeletal muscle. Major Functions: Muscle System 1. Moving the skeletal system and posture. 2. Passing food through the digestive system & constriction of other internal organs. 3. Production of body heat. 4. Pumping the blood throughout the body. 5. Communication - writing and verbal Specialized Cells (Myocytes) ~ Contractile Cells Can shorten along one or more planes because of specialized cell membrane (sarcolemma) and specialized cytoskeleton. Specialized Structures found in Myocytes Sarcolemma: The cell membrane of a muscle cell Transverse tubule: a tubular invagination of the sarcolemma of skeletal or cardiac muscle fibers that surrounds myofibrils; involved in transmitting the action potential from the sarcolemma to the interior of the myofibril. Sarcoplasmic Reticulum: The special type of smooth endoplasmic Myofibrils: reticulum found in smooth and a contractile fibril of skeletal muscle, composed striated muscle fibers whose function mainly of actin and myosin is to store and release calcium ions. Multiple Nuclei (skeletal) & many mitochondria Skeletal Muscle - Microscopic Anatomy A whole skeletal muscle (such as the biceps brachii) is considered an organ of the muscular system. Each organ consists of skeletal muscle tissue, connective tissue, nerve tissue, and blood or vascular tissue.
    [Show full text]
  • 4 Muscle Tissue Smooth Muscle
    4 Muscle tissue Smooth muscle Smooth muscle cell bundle (oblique section) Loose connective tissue layer permitting movement between muscle layers Elongated centrally located nucleus of smooth muscle cell (longitudinal section) Elongated, tapering cytoplasm of a smooth muscle cell Smooth muscle, small intestine, cat. H.E. stain; x400. Perimysium composed of connective tissue with blood vessels and autonomic nerves Smooth muscle cell bundle with central nuclei and elongated cytoplasm (longitudinal section) Perimysium Oblique and cross sections of smooth muscle cells Smooth muscle, small intestine, cat. H.E. stain; x400. Smooth muscle cells (oblique and cross sections) Smooth muscle cells (cross section) Perimysium Smooth muscle, urinary bladder, cat. H.E. stain; x350. 4 Muscle tissue Smooth muscle Predominantly longitudinally oriented smooth muscle fibre bundles closely invested with endomysium (nuclei appear longitudinally oval) Perimysium Endomysium Predominantly transversely oriented smooth muscle fibre bundles (nuclei appear round) Sooth muscle, urinary bladder, cat. Golder's Masson trichrome stain; x480. Nucleus of smooth muscle cell (weakly contracted) Perimysium with fibrocytes Cytoplasm of smooth muscle cell (weakly contracted) Nuclei and cytoplasm of smooth muscle cells (relaxed) Endomysium surrounding isolated smooth muscle cell (at transition to perimysium) Perimysium with fibrocytes Smooth muscle, urinary bladder, cat. H.E. stain; Goldner's Masson trichrome stain; x480. Central nucleus and cytoplasm of weakly contracted smooth muscle cell Heterochromatic nucleus of smooth muscle cell Endomysium Perimysium with fibrocytes Euchromatic nucleus of smooth muscle cell with spindle-like elongation of cytoplasm Smooth muscle, gall bladder, ox. Goldner's stain; x600..
    [Show full text]
  • Back-To-Basics: the Intricacies of Muscle Contraction
    Back-to- MIOTA Basics: The CONFERENCE OCTOBER 11, Intricacies 2019 CHERI RAMIREZ, MS, of Muscle OTRL Contraction OBJECTIVES: 1.Review the anatomical structure of a skeletal muscle. 2.Review and understand the process and relationship between skeletal muscle contraction with the vital components of the nervous system, endocrine system, and skeletal system. 3.Review the basic similarities and differences between skeletal muscle tissue, smooth muscle tissue, and cardiac muscle tissue. 4.Review the names, locations, origins, and insertions of the skeletal muscles found in the human body. 5.Apply the information learned to enhance clinical practice and understanding of the intricacies and complexity of the skeletal muscle system. 6.Apply the information learned to further educate clients on the importance of skeletal muscle movement, posture, and coordination in the process of rehabilitation, healing, and functional return. 1. Epithelial Four Basic Tissue Categories 2. Muscle 3. Nervous 4. Connective A. Loose Connective B. Bone C. Cartilage D. Blood Introduction There are 3 types of muscle tissue in the muscular system: . Skeletal muscle: Attached to bones of skeleton. Voluntary. Striated. Tubular shape. Cardiac muscle: Makes up most of the wall of the heart. Involuntary. Striated with intercalated discs. Branched shape. Smooth muscle: Found in walls of internal organs and walls of vascular system. Involuntary. Non-striated. Spindle shape. 4 Structure of a Skeletal Muscle Skeletal Muscles: Skeletal muscles are composed of: • Skeletal muscle tissue • Nervous tissue • Blood • Connective tissues 5 Connective Tissue Coverings Connective tissue coverings over skeletal muscles: .Fascia .Tendons .Aponeuroses 6 Fascia: Definition: Layers of dense connective tissue that separates muscle from adjacent muscles, by surrounding each muscle belly.
    [Show full text]
  • Single-Cell Analysis Uncovers Fibroblast Heterogeneity
    ARTICLE https://doi.org/10.1038/s41467-020-17740-1 OPEN Single-cell analysis uncovers fibroblast heterogeneity and criteria for fibroblast and mural cell identification and discrimination ✉ Lars Muhl 1,2 , Guillem Genové 1,2, Stefanos Leptidis 1,2, Jianping Liu 1,2, Liqun He3,4, Giuseppe Mocci1,2, Ying Sun4, Sonja Gustafsson1,2, Byambajav Buyandelger1,2, Indira V. Chivukula1,2, Åsa Segerstolpe1,2,5, Elisabeth Raschperger1,2, Emil M. Hansson1,2, Johan L. M. Björkegren 1,2,6, Xiao-Rong Peng7, ✉ Michael Vanlandewijck1,2,4, Urban Lendahl1,8 & Christer Betsholtz 1,2,4 1234567890():,; Many important cell types in adult vertebrates have a mesenchymal origin, including fibro- blasts and vascular mural cells. Although their biological importance is undisputed, the level of mesenchymal cell heterogeneity within and between organs, while appreciated, has not been analyzed in detail. Here, we compare single-cell transcriptional profiles of fibroblasts and vascular mural cells across four murine muscular organs: heart, skeletal muscle, intestine and bladder. We reveal gene expression signatures that demarcate fibroblasts from mural cells and provide molecular signatures for cell subtype identification. We observe striking inter- and intra-organ heterogeneity amongst the fibroblasts, primarily reflecting differences in the expression of extracellular matrix components. Fibroblast subtypes localize to discrete anatomical positions offering novel predictions about physiological function(s) and regulatory signaling circuits. Our data shed new light on the diversity of poorly defined classes of cells and provide a foundation for improved understanding of their roles in physiological and pathological processes. 1 Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre, Blickagången 6, SE-14157 Huddinge, Sweden.
    [Show full text]
  • 8 Skeletal M Uscle
    8 Skeletal m uscle (a) Diagram of a cross section through a (c) Skeletal muscle (LS) muscle fibre: three layers of connective tissue Cross-wise striations Endomysium 20µm Epimysium Perimysium Myofibrils run longitudinally along the Capillary Endomysium muscle fiber Muscle fiber The cross striations are due to the regular repeating units along the muscle Peripheral fiber called ‘muscle sarcomeres’ nucleus (b) Skeletal muscle fibers are formed by fusion (d) Skeletal Muscle (TS) of many myoblasts Myoblasts Myoblasts Peripheral align nucleus and adhere Fusion into Perimysium Myofibrils multinucleated in cross- myotube section Differentiate Innervation Blood into mature by motor Muscle fiber vessel muscle fiber neuron 20µm Endomysium Attach Attach to tendon to tendon (e) Electron micrograph of a sarcomere (f) A sarcomere and some of its components ZZM Costamere Binding to proteins in Costamere Z-disc extracellular matrix (e.g. laminin) in Focal adhesion m T- the basal lamina T- µ SR Myofibril complex 1 tubule tubule T-tubule Sarcolemma Proteins that link focal adhesion complex to I-band A-band I-band Z-lines in the muscle sarcomere for lateral transmission of force Sarcoplasmic reticulum Z Thick filament Z Thin filament (simplified) Thick Thin The muscle sarcomere Z-disc filament filament Z-disc In cardiac and skeletal muscle cells, thick (myosin-containing) Key filaments and thin (actin-containing) filaments are organized into regular repeating units called the muscle sarcomere. Titin (centres thick filament and regulates its length) A single sarcomere extends from one Z-disc to the next. Tropomyosin/Troponin The stripes in H&E stained longitudinal sections shown above Tropomodulin (’caps’ end of thin filaments) (1c) show the end-to-end arrangement of many muscle α-actinin sarcomeres along the fiber.
    [Show full text]
  • Structure and Function of Connective Tissue in Cardiac Muscle: Collagen Types I and III in Endomysial Struts and Pericellular Fibers
    Scanning Microscopy Volume 2 Number 2 Article 33 2-10-1988 Structure and Function of Connective Tissue in Cardiac Muscle: Collagen Types I and III in Endomysial Struts and Pericellular Fibers Thomas F. Robinson Albert Einstein College of Medicine Leona Cohen-Gould Albert Einstein College of Medicine Stephen M. Factor Albert Einstein College of Medicine Mahboubeh Eghbali Albert Einstein College of Medicine Olga O. Blumenfeld Albert Einstein College of Medicine Follow this and additional works at: https://digitalcommons.usu.edu/microscopy Part of the Life Sciences Commons Recommended Citation Robinson, Thomas F.; Cohen-Gould, Leona; Factor, Stephen M.; Eghbali, Mahboubeh; and Blumenfeld, Olga O. (1988) "Structure and Function of Connective Tissue in Cardiac Muscle: Collagen Types I and III in Endomysial Struts and Pericellular Fibers," Scanning Microscopy: Vol. 2 : No. 2 , Article 33. Available at: https://digitalcommons.usu.edu/microscopy/vol2/iss2/33 This Article is brought to you for free and open access by the Western Dairy Center at DigitalCommons@USU. It has been accepted for inclusion in Scanning Microscopy by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. Scanning Microscopy, Vol. 2, No. 2, 1988 (Pages 1005-1015) 0891-7035/88$3.00+.00 Scanning Microscopy International, Chicago (AMF O'Hare), IL 60666 USA STRUCTURE AND FUNCTION OF CONNECTIVE TISSUE IN CARDIAC MUSCLE: COLLAGEN TYPES I and III IN ENDOMYSIAL STRUTS AND PERICELLULAR FIBERS Thomas F. Robinsonl,2 *, Leona Cohen-Gouldl
    [Show full text]
  • Lab-Muscle-2018.Pdf
    Introduction Remember those four Basic Tissues? Here they are again: 1. Epithelial tissue 2. Connective tissues 3. Muscle tissue 4. Nervous tissue During this lab you will learn about the third Basic Tissues: Muscle. Muscle comes in three different flavors: smooth, cardiac and skeletal. You need to be able to recognize each type of muscle and also differentiate from other tissues that it may easily be confused with (such as connective tissue), which takes practice. Learning objectives and activities Using the Virtual Slidebox: A Identify the connective tissue component of skeletal muscle Examine the organization of connective tissue within a whole skeletal muscle. B Differentiate between muscle types Identify and distinguish between smooth, skeletal and cardiac muscle histologically in both longitudinal and transverse section. C Decipher an EM of a sarcomere Decipher the pattern of proteins that form a sarcomere by interpreting an electron micrograph of skeletal muscle. D Test your skills Complete the self-quiz to test your understanding and master your learning. IDENTIFY THE CONNECTIVE TISSUE COMPONENT OF SKELETAL MUSCLE i. Tendon Examine Slide 1(15) to review the structure of a tendon. i. Dense regular connective tissue and accompanying fibroblasts. Recall why this organization is the most optimal for a tendon. ii. ii. Deep fascia Examine Slide 2a (13) and Slide 3a to approximate the location of deep fascia. iii. Dense regular/irregular connective tissue that separates muscles into compartments. This layer is best seen in gross anatomy and is not iv. observed in these specimens. iii. Epimysium Examine Slide 2a (13) and Slide 3a to locate the epimysium.
    [Show full text]
  • Characterization and Quantification of Myocardial Collagen in the Borderline Hypertensive Rat
    Characterization and Quantification of Myocardial Collagen in the Borderline Hypertensive Rat by Margaret M. Person Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in the Biological Sciences Program YOUNGSTOWN STATE UNIVERSITY May, 2007 Characterization and Quantification of Myocardial Collagen In the Borderline Hypertensive Rat By Margaret M. Person I hereby release this thesis to the public. I understand this thesis will be housed at the Circulation Desk of the University Library and will be available for public access. I also authorize the University or other individuals to make copies of this thesis as needed for scholarly research. Signature: ______________________________________________________________ Student Date Approvals: ______________________________________________________________ Thesis Advisor Date ______________________________________________________________ Committee Member Date ______________________________________________________________ Committee Member Date ______________________________________________________________ Dean of Graduate Studies Date Abstract Hypertension or high blood pressure is a response to an increase in blood volume that the heart must pump at a given period of time or an increase in resistance that blood vessels must overcome to generate an adequate cardiac output, thus adequate oxygen delivery and tissue perfusion. More than 50 million Americans have hypertension; consequently it is a public health threat and a powerful independent predictor of premature
    [Show full text]
  • Microscopic Anatomy and Organization of Skeletal Muscle
    M14_MARI0000_00_SE_CH14.qxd 3/28/11 2:59 PM Page 84 REVIEW SHEET NAME ____________________________________ EXERCISE 14 LAB TIME/DATE _______________________ Microscopic Anatomy and Organization of Skeletal Muscle Skeletal Muscle Cells and Their Packaging into Muscles 1. Use the items in the key to correctly identify the structures described below. Key: g; perimysium 1. connective tissue ensheathing a bundle of muscle cells a. endomysium c; fascicle 2. bundle of muscle cells b. epimysium c. fascicle i; sarcomere 3. contractile unit of muscle d. fiber d; fiber 4. a muscle cell e. myofibril a; endomysium 5. thin reticular connective tissue surrounding each muscle cell f. myofilament h; sarcolemma 6. plasma membrane of the muscle fiber g. perimysium e; myofibril 7. a long filamentous organelle with a banded appearance found h. sarcolemma within muscle cells i. sarcomere f; myofilament 8. actin- or myosin-containing structure j. sarcoplasm k; tendon 9. cord of collagen fibers that attaches a muscle to a bone k. tendon 2. List three reasons why the connective tissue wrappings of skeletal muscle are important. The connective tissue wrappings (a) bundle the muscle fibers together, increasing coordination of their activity; (b) add strength to the muscle; and (c) provide a route for entry and exit of blood vessels and nerves to the muscle fibers. 3. Why are there more indirect—that is, tendinous—muscle attachments to bone than there are direct attachments? They conserve space (less bulky than fleshy muscle attachments) and are more durable than muscle tissue where bony prominences must be spanned. 4. How does an aponeurosis differ from a tendon structurally? An aponeurosis is a sheet of white fibrous connective tissue; a tendon is a band or cord of the same tissue.
    [Show full text]
  • Skeletal Muscle
    Muscle 解剖學暨細胞生物學研究所 黃敏銓 基醫大樓6樓 0646室 [email protected] 1 Single-cell contractile units Multicellular contractile units • Myoepithelial cells • Smooth muscle – Expel secretion from • Striated muscle glandular acini – Skeletal muscle • Pericytes – Surround blood vessels – Visceral striated muscle • Myofibroblast Tongue, pharynx, diaphragm, esophagus – A dominant cell type in formation of a scar – Cardiac muscle 2 Skeletal muscle • Muscle fibers: extremely elongated, multinucleate contractile cells, bound by collagenous supporting tissue – Individual muscle fiber: 10-100 m in diameter, may reach up to 35 cm in length • Motor unit: the motor neuron and the muscle fibers it supplies – Vitality of skeletal muscle fibers is dependent on the maintenance of their nerve supply 3 Muscle fibers (cells) Skeletal muscle Muscle fiber (muscle cell) Myofibril Sarcomere Thick filament Thin filament (myosin filament) (actin filament) Molecules: Molecule: Actin myosin Tropomyosin 4 Troponin complex Skeletal muscle Connective tissues: endomysium, perimysium, epimysium Blood vessels and nerves (肌束) Endomysium • Small fasciculi: external muscles of the eye • Large fasciculi: the muscle of the buttocks 5 * Fasciculus = Fascicle Skeletal muscle ─ fasciculus Trichrome stain X150 muscle cells (fibers) endomysium 1. Reticulin fibers 2. collagen N: nerve bundle V: blood vessel 6 Basal lamina stained by silver stain Reticular fiber 7 Skeletal muscle ─ fasciculi of the tongue Masson’s trichrome stain X300 TS: transverse section P: perimysium C: capillaries 8 Red:
    [Show full text]
  • Muscle Tissue and Organization 289
    MUSCULAR SYSTEM OUTLINE 10.1 Properties of Muscle Tissue 289 10.2 Characteristics of Skeletal Muscle Tissue 289 10 10.2a Functions of Skeletal Muscle Tissue 289 10.2b Gross Anatomy of Skeletal Muscle 290 10.2c Microscopic Anatomy of Skeletal Muscle 293 10.3 Contraction of Skeletal Muscle Fibers 298 Muscle 10.3a The Sliding Filament Theory 298 10.3b Neuromuscular Junctions 298 10.3c Physiology of Muscle Contraction 301 10.3d Muscle Contraction: A Summary 303 Tissue and 10.3e Motor Units 303 10.4 Types of Skeletal Muscle Fibers 305 10.4a Distribution of Slow, Intermediate, and Fast Fibers 307 10.5 Skeletal Muscle Fiber Organization 307 Organization 10.5a Circular Muscles 307 10.5b Parallel Muscles 307 10.5c Convergent Muscles 307 10.5d Pennate Muscles 307 10.6 Exercise and Skeletal Muscle 309 10.6a Muscle Atrophy 309 10.6b Muscle Hypertrophy 309 10.7 Levers and Joint Biomechanics 309 10.7a Classes of Levers 309 10.7b Actions of Skeletal Muscles 310 10.8 The Naming of Skeletal Muscles 311 10.9 Characteristics of Cardiac and Smooth Muscle 312 10.9a Cardiac Muscle 312 10.9b Smooth Muscle 313 10.10 Aging and the Muscular System 313 10.11 Development of the Muscular System 317 MODULE 6: MUSCULAR SYSTEM mck78097_ch10_288-321.indd 288 2/14/11 3:42 PM Chapter Ten Muscle Tissue and Organization 289 hen most of us hear the word “muscle,” we think of the W muscles that move the skeleton. These muscles are con- 10.2 Characteristics of Skeletal sidered organs because they are composed not only of muscle Muscle Tissue tissue, but also of epithelial, connective, and nervous tissue.
    [Show full text]
  • Physiology and Biochemistry of Connective Tissue Within Meat
    Physiology and Biochemistry of Connective Tissue within meat Peter Purslow Dept. Food Science University of Guelph These beef cuts show a price differential of 550% -Not based on nutritional value, but expected tenderness - connective tissue effect Fillet steak 45€ or $55 /kg Rump steak 20.8€ or $25.6 /kg Shin beef 8.2€ or $10 /kg Retail prices from Highland Beef, Preston UK, Jun 2004 ConnectiveConnective tissuetissue structuresstructures associatedassociated withwith musclemuscle Low mag: muscle cross section Scanning electron micrographs of muscle - shows fibrils grouped into fibres, grouped into fascicles….by ECM Myofibrils within a single muscle fibre NaOH extraction of muscle reveals CT network structures Perimysial thickness ~ 10-20x endomysial thickness Perimysial collagen varies most between muscles Muscle Perimysial Endomysial collagen collagen (%DM) (% of DM) Extensor carpi radialis 4.76 1.20 Infraspinatus 4.30 0.58 Sternocephalicus 3.37 0.76 Supraspinatus 2.38 0.66 Rhomboideus 2.09 0.89 Splenius 2.12 0.56 Subscapularis 1.96 0.65 Pectoralis profundus 1.62 0.89 Triceps brachii cap. long. 1.80 0.46 Complexus 1.44 0.71 Gluteus medius 1.23 0.64 Endomysial Gastrocnemius 1.15 0.63 content varies Obliquus intern. abdom. 0.54 0.55 less than 3:1 Serratus ventralis 0.43 0.47 Values are means of measurements from 6 Friesian bovine animals Perimysial Proc. ICoMST 1999 content varies by 10:1 P R S P = pectoralis profundus S = sternocephalicus R =rhomboideus Meat structure breaks apart at perimysial connective tissue - Matches damage in first
    [Show full text]