Design of Inductive Coupling for Powering and Communication of Implantable Medical Devices
Total Page:16
File Type:pdf, Size:1020Kb
Design of Inductive Coupling for Powering and Communication of Implantable Medical Devices Master of Science Thesis in Microelectronics by Andreas Svensson Stockholm, October, 2012 Supervisor: Dr. Saúl Rodríguez Dueñas Examiner: Prof. Ana Rusu TRITA-ICT-EX-2012:221 Abstract Technological advances over the years have made it possible to reduce the size and power consumption of electronics. This has led to significant advances for biomedical sensors. It is now possible to reduce the size enough to create implantable sensors. This type of sensors can for instance be used to measure the glucose level of diabetes patients. An implantable sensor can significantly simplify the measurement procedure. Taking a measurement can be as simple as turning on a device, capable of receiving the data sent by the sensor. Unfortunately, the lifetime of this type of sensors can be limited by the battery of the implanted sensor. To improve the lifetime, the battery has to be replaced. Instead of a battery, energy harvesting can be used. One promising such method is to transfer power from outside the body to the implanted sensor. This thesis focuses on one such way, inductive coupling. Inductive coupling, can be used both to transfer power from an external device to the sensor, and to transfer data from the sensor to the external device. In this thesis a system for wireless power transfer has been proposed. The system is based on state of the art circuits for inductive powering and communication, for implantable devices. The system is adapted for powering an implantable biomedical sensor including a PIC16LF1823 microcontroller. The system includes asynchronous serial communication, from the microcontroller in the implantable device to the external reader device using load shift keying. The external device of the system, has been implemented in two different versions, one using a printed circuit board (PCB), and one simplified version using a breadboard. The implantable device has been implemented in three different versions, one on a PCB, one simplified version using a breadboard and finally one application specific integrated circuit (ASIC). All three implementations of the implantable devices use a resistor to simulate the power consumption of an actual biomedical sensor. The ASIC implementation contains only the parts needed for receiving power and transmitting data. The ASIC was designed using a 150nm CMOS process. The PCB implementations of both devices have been used to measure the system performance. The maximum total power consumption was found to be 107 mW, using a 5 V supply voltage. The maximum distance for powering the implantable device was found to be 4.5 cm in air. The sensor, including the microcontroller, is provided with 648 µW of power at the maximum distance. A raw data rate of 19200 bit/s has been used successfully to transfer data. Additionally, oscilloscope measurements indicates that a data rate close to 62500 bit/s could be possible. Simulations of the proposed ASIC show that the minimum total voltage drop from the received AC voltage to the regulated output voltage is 430 mV. This is much smaller than for the PCB implementation. The reduced voltage drop will reduce the power dissipation of the implantable device and increase the maximum possible distance between the external device and the implanted devices. The ASIC can provide 648 µW of power at a coupling coefficient k=0.0032. i Sammanfattning Tekniska framsteg genom åren har gjort det möjligt att minska storleken och effektförbrukningen hos elektronik. Detta har lett till stora framsteg för biomedicinska sensorer. Det är nu möjligt att tillverka elektronik liten nog att användas i sensor implantat. En sådan sensor skulle till exempel kunna användas för att mäta glukos värden i blodet hos diabetes patienter. Ett sådant Implantat kan förenkla mätningar, genom att endast en mottagare behövs för att kunna få mätvärden från sensorn. Livslängden för denna typ av sensor kan förbättras genom att undvika att använda ett batteri som energikälla. Istället kan energin överföras från en apparat utanför kroppen till implantatet. Denna rapport handlar om ett sådant sätt, nämligen induktiv energiöverföring. Denna teknik kan användas både till att överföra energi till implantatet, och till att överföra data från implantatet till den externa enheten. I den här rapporten beskrivs ett system för trådlös energiöverföring. Systemet är baserat på den senaste tekniken för induktiv överföring, och har anpassats för att förse en sensor som inkluderar en PIC16LF1823 mikrokontroller. Systemet inkluderar också asynkron seriell kommunikation från mikrokontrollern i implantatet till den externa enheten genom att använda lastmodulering. Den externa enheten har implementerats i två versioner. En full version på ett kretskort, samt en förenklad version på ett kopplingsdäck. Tre versioner av kretsarna för implantatet har använts, en förenklad version på ett kopplingsdäck, en version på kretskort och en applikations specifik integrerad krets. Den applikations specifika integrerade kretsen har simulerats med modeller från en 150 nm CMOS tillverknings process, menads de andra versionerna har konstruerats av diskreta komponenter och använts för mätningar. Mätresultat från kretskorts implementationen visar på en maximal räckvidd på cirka 4,5 cm i luft, med en total effektförbrukning på 107 mW. Vid det maximala räkvidden mottags 648 µW. En dataöverföringshastighet på 19200 bitar/s har uppnåtts med kretskorts versionen. Mätningar med oscilloskop visar att det kan vara möjligt att öka överförings hastigheten till 62500 bitar/s. Simuleringsresultat för den integrerade kretsen visar att det lägsta spänningsfallet från den mottagna växelspänningen till den reglerade likspänningen är 430 mV. Detta är betydligt mindre för den integrerade kretsen än för kretskorts versionen, vilket resulterar i en lägre effektförbrukning och troligen en längre räckvidd för systemet. Den integrerade kretsen kan leverera 648 µW vid en kopplingsfaktor på k=0.0032. ii Acknowledgments I would like to thank professor Ana Rusu for giving me the opportunity to write this thesis. I also would like to thank my supervisor Dr. Saul Rodriguez for his help during this thesis. He has helped a lot especially with the practical parts, including how to measure the quality factors of the coils and showing how to solder surface mounted components on a PCB. iii List of acronyms AC Alternating Current ADC Analog to Digital Converter ASIC Application Specific Integrated Circuit ASK Amplitude Shift Keying bjt binary junction transistor (also called bipolar transistor) DC Direct Current IC Integrated Circuit LED Light Emitting Diode LSK Load Shift Keying opamp Operational amplifier PA Power Amplifier PCB Printed Circuit Board PSC Printed Spiral Coil PSRR Power Supply Ripple Rejection SAR Specific Absorption Rate USB Universal Serial Bus WWC Wire Wound Coil P-MOSFET P channel Metal Oxide Semiconductor Field-Effect Transistor N-MOSFET N channel Metal Oxide Semiconductor Field-Effect Transistor PMOS P channel Metal Oxide Semiconductor NMOS N channel Metal Oxide Semiconductor iv Table of Contents 1 Introduction................................................................................................................1 1.1 Objectives........................................................................................................1 1.2 Contributions...................................................................................................2 1.3 Thesis organization..........................................................................................2 2 Theory and state of the art..........................................................................................3 2.1 Inductance.......................................................................................................3 2.2 Inductive links .................................................................................................7 2.2.1 Power transfer..........................................................................................7 2.2.2 Communication......................................................................................11 2.2.2.1 Modulation circuits..........................................................................12 3 System description....................................................................................................14 3.1 Breadboard prototype....................................................................................14 3.2 Prototype PCB ..............................................................................................17 3.2.1 Data coding............................................................................................17 3.2.2 External reader device...........................................................................18 3.2.2.1 Design considerations....................................................................20 3.2.2.2 Layout.............................................................................................23 3.2.3 PCB implementation of the implantable device......................................23 3.3 ASIC implementation.....................................................................................26 3.3.1 Rectifier, data-transmitter and voltage limiter.........................................27 3.3.1.1 Biasing............................................................................................29 3.3.2 Bandgap voltage reference....................................................................30