Magnetic Annealing of Ferromagnetic Thin Films Using Induction Heating
Total Page:16
File Type:pdf, Size:1020Kb
Michigan Technological University Digital Commons @ Michigan Tech Michigan Tech Patents Vice President for Research Office 3-20-2007 Magnetic annealing of ferromagnetic thin films using induction heating Paul L. Bergstrom Michigan Technological University, [email protected] Melissa L. Trombley Michigan Technological University Follow this and additional works at: https://digitalcommons.mtu.edu/patents Part of the Engineering Commons Recommended Citation Bergstrom, Paul L. and Trombley, Melissa L., "Magnetic annealing of ferromagnetic thin films using induction heating" (2007). Michigan Tech Patents. 19. https://digitalcommons.mtu.edu/patents/19 Follow this and additional works at: https://digitalcommons.mtu.edu/patents Part of the Engineering Commons US007193193B2 (12) United States Patent (io) Patent No.: US 7,193,193 B2 Bergstrom et al. (45) Date of Patent: Mar. 20, 2007 (54) MAGNETIC ANNEALING OF 6,096,149 A 8/2000 Hetrick et al. FERROMAGNETIC THIN FILMS USING 6,217,672 B1 4/2001 Zhang INDUCTION HEATING 6,288,376 B1 9/2001 Tsumura 6,368,673 B1 4/2002 Seo (75) Inventors: Paul L. Bergstrom, Houghton, MI 6,455,815 B1 9/2002 Melgaard et al. 6,465,281 B1 10/2002 Xu et al. (US); Melissa L. Trombley, Chassell, 6,509,621 B2 1/2003 Nakao MI (US) 6,518,588 B1 2/2003 Parkin et al. 6,878,909 B2 * 4/2005 Bergstrom et al............. 219/635 (73) Assignee: Board of Control of Michigan 2001/0014268 Al 8/2001 Bryson, III et al. Technological University, Houghton, 2001/0021570 Al 9/2001 Cheng et al. MI (US) 2002/0183721 Al 12/2002 Santini, Jr. et al. 2003/0010775 Al 1/2003 Kim ( * ) Notice: Subject to any disclaimer, the term of this 2005/0073300 Al* 4/2005 Matsukuma et al........... 324/210 patent is extended or adjusted under 35 FOREIGN PATENT DOCUMENTS U.S.C. 154(b) by 0 days. WO WO 01/20671 3/2001 (21) Appl. No.: 11/079,618 OTHER PUBLICATIONS (22) Filed: Mar. 14, 2005 George H. Brown, Cyril N. Hoyler, and Rudolph A. Bierwirth, Theory and Application of Radio-Frequency Heating, Sep. 1948, (65) Prior Publication Data pp. 27-32, D. Van Nostrand Company, Inc., New York. US 2005/0181126 A l Aug. 18, 2005 (Continued) Primary Examiner—Quang Van (51) Int. Cl. (74) Attorney, Agent, or Firm—Michael Best & Friedrich H0SB 6/10 (2006.01) LLP (52) U.S. Cl............................................ 219/635; 219/647 (58) Field of Classification Search ................ 219/635, (57) ABSTRACT 219/697, 645, 618, 619; 118/724, 725, 50.1; 324/210, 228, 263 A method of performing magnetic annealing of a ferromag See application file for complete search history. netic thin film applied to a substrate includes applying an oscillating magnetic field to the ferromagnetic thin film to (56) References Cited induce a current therein and heat the ferromagnetic thin film. U.S. PATENT DOCUMENTS A directional magnetic field is applied to the ferromagnetic thin film at the same time as the ferromagnetic thin film is 2,393,541 A 1/1946 Kohler heated, and the ferromagnetic thin film is allowed to acquire 4,007,369 A 2/1977 Dietze a desired magnetic characteristic, and then the oscillating 4,945,397 A 7/1990 Schuetz magnetic field is removed and the ferromagnetic thin film is 4,980,198 A 12/1990 Do when et al. 4,983,804 A 1/1991 Chan et al. allowed to cool. 5,225,005 A 7/1993 Burrage et al. 5,671,524 A 9/1997 Damsky et al. 20 Claims, 4 Drawing Sheets US 7,193,193 B2 Page 2 OTHER PUBLICATIONS Melissa Trombley, Paul Bergstrom Anand Kulkarni, Craig Friedrich, and Bishnu Gogoi, Post-CMOS Microsystem Integration Chester A. Tudbury, Basics of Induction Heating, vol. 1, May 1960, through Inductive Annealing of Low-Temperature Materials, Engi pp. 1-13 and 1-71. neering Research Center for Wireless Integrated Microsystems, Magnetic Susceptibility of the Elements and Inorganic Compounds, Associated Grants and Contracts, Project Description, May 2002. CRC Handbook of Chemistry and Physics, 80th Edition, 1999, pp. Melissa L. Trombley and Paul L. Bergstrom, Microstructural 4-131 to 4-136, CRC Press, Boca Raton, Florida. Annealing using Inductively Heated Films, NSF, ERC for Wireless Constantine A. Balanis, Advanced Engineering Electromagnetics, Integrated Microsystems, Michigan Technological University, 1989, p. 55, John Wiley & Sons, New York. Department of Electrical and Computer Engineering, Houghton, Properties of Magnetic Materials, CRC Handbook of Chemistry and MI, May 14, 2002. Physics, 80th Edition, 1999, pp. 12-117 to 12-125, CRC Press, K. Thompson, J.H. Booske, Y.B. Gianchandani, and R.F. Cooper, Cleveland, Ohio. Electromagnetic Annealing for the 100 nm Technology Node, IEEE Electrical Resistivity of Pure Metals, CRC Handbook of Chemistry Electron Device Letters, Mar. 2002, pp. 127-129, vol. 23, No. 3, and Physics, 80th Edition, 1999, pp. 12-45 to 12-47, CRC Press, IEEE Electron Devices Society, New York. Boca Raton, Florida. Keith Thompson, Yogesh B. Gianchandani, John Booske, Reid F. S.M. SZE, Physics of Semiconductor Devices, Appendix H, Second Cooper, Direct Silicon-Silicon Bonding by Electromagnetic Induc Edition, 1981, pp. 850-851, John Wiley & Sons, New York. Magnetic Materials: High-permeability Materials, CRC Handbook tion Heating, Journal of Microelectromechanical Systems, Aug. 2002, pp. 285-292, vol. 11, No. 4, IEEE/ASME Publication. of Chemistry and Physics, 70th Edition, 1989, p. E-128, CRC Press, Boca Raton, Florida. Andrew Cao, Mu Chiao, and Liwei Lin, Selective and Localized M.L. Trombley, PL. Bergstrom, and B.P Gogoi, Selective anneal Bonding Using Induction Heating, Technical Digest, Solid-State ing of polysilicon microstructures by the inductive heating of thin Sensor, Actuator and Microsystems Workshop, Jun. 2002, pp. cobalt films, Applied Physics Letters, pp. 1-3, Jan. 2003. 153-156. M.L. Trombley, B.P. Gogoi, and PL. Bergstrom, Inductive Heated Valery I. Rudnev, Raymond L. Cook, Don L. Loveless, and Micah Thin Ferromagnetic Films for Localized Microstructural Annealing, R. Black, Induction Heat Treatment, Reprint of Chapters 11A and XII International Materials Research Congress (2003) Program 11B of the Steel Heat Treatment Handbook, 1997, pp. 775-782 & Abstracts, Aug. 17-21, 2003, p. 10-3, Cancun, Mexico. pp. 794-802, Marcel Dekker. Edward T. Zellers, K.D. Wise, K. Najafi, D. Aslam, R.B. Brown, Ross Spencer, Displacement Current, 1997, http://maxwell.byu.edu/ Q.Y. Cai, J. Driscoll, M. Flynn, J. Giachino, R. Gordenker, M.D. ~spencerr/websumml22/node72.html, Apr. 8, 1997. Hsieh, C.T.C. Nguyen, P. Bergstrom, J. Drelich, C. Friedrich, E. Felicity Chipperfield, Induction Welding of Thermoplastics, Dec. Gamble, M. Kaviany, C.J. Lu, A. Matzger, M. Oborny, S. Pang, J. 2000, http://www.twi.co.uk/j32k/protected/band_3/ksfc005.html, Potkay, R. Sacks, W.C. Tian, W. Steinecker, J. Whiting, Q. Zhong, 2000. Determinations of Complex Vapor Mixtures in Ambient Air with a V.A. Vas’ko, V.R. Inturi, S.C. Riemer, A. Morrone, D. Schouweiler, Wireless Microanalytical System: Vision, Progress, and Homeland R.D.Knox, and M.T. Kief, High Saturation Magnetization Films of Security Applications, Engineering Research Center for Wireless FEcOcR, Journal of Applied Physics, vol. 91, No. 10 dated May 15, Integrated Microsystems, Nov. 13-14, 2002, pp. 92-95, Digest 2002. IEEE Conference on Technologies for Homeland Security, Waltham, MA. * cited by examiner U.S. Patent Mar. 20, 2007 Sheet 1 of 4 US 7,193,193 B2 FIG 1 FIG 2 U.S. Patent Mar. 20, 2007 Sheet 2 of 4 US 7,193,193 B2 FIG. 5 U.S. Patent Inductive Heating Capabilities of Selected Materials Material Relative Permeability Conductivity (S/pm) Skin Depth at 1MHz Power Density (W/m3) Aluminum 1.0000165 41.4 78.2 pm " 6.21*10' Copper 0.99999454 64.8 62.5 pm 4.96*10' Germanium (n ~ 1013 cm'3) 0.9999884 5*10'3 71.2 mm 4.90* 103 Germanium (n ~ 10^‘ cm'3) 0.9999884 1 503 pm 9.79*10' 20,2007Mar. Sheet 3 of 4 US 7,193,193 B2 Gold 0.999972 48.8 72.0 pm 5.72*10' Molybdenum 1.000072 20.6 111 pm 8.80*10' Palladium 1.00054 10.2 158 pm 1.25*10* Platinum 1.000193 10.4 156 pm 1.24*10* Silicon (n ~ 1013 cm'3) 0.99999688 2.5*10's 101 mm 2.45* 103 Silicon (n ~ 10^' cm’3) 0.99999688 1 503 pm 9.79*10' Tantalum 1.000154 8.20 176 pm 1.40*10* Titanium 1.000151 2.56 315 pm 2.50*10* Tungsten 1.000053 20.7 111 pm 8.78*10' Cobalt (99% pure) 250 max 17.9 7.52 pm 1.49*10v Iron (99% pure) 6,000 max 11.7 1.90 pm 9.05* 109 Iron (99.9% pure) 350,000 max 11.7 0.249 pm 6.91*10‘° Nickel (99% pure) 600 max 16.2 5.10 pm 2.43*109 78 Permalloy 100,000 max 6.3 0.634 pm 5.03*101U Supermalloy 800,000 max 1.7 0.432 pm 2.74*10" 400 FIG. 4 U.S. Patent Mar. 20,2007 Sheet 4 of 4 US 7,193,193 B2 FIG. 6 FIG. US 7,193,193 B2 1 2 MAGNETIC ANNEALING OF sible for driving motors. The system might include drivers FERROMAGNETIC THIN FILMS USING for driving the motors, and a plurality of high density logic INDUCTION HEATING circuits for controlling the operation of the motor. Both the drivers and the logic circuits typically have different thermal CROSS REFERENCE TO RELATED 5 capacities and, therefore, complicated processes are required APPLICATIONS to embed the drivers and the logic circuits in a single system.