Aphanoascus Fulvescens (Cooke) Apinis

Total Page:16

File Type:pdf, Size:1020Kb

Aphanoascus Fulvescens (Cooke) Apinis The ultimate benchtool for diagnostics. Introduction Introduction of ATLAS Introduction CLINICAL FUNGI Introduction The ultimate benchtool for diagnostics Introduction Introduction Introduction Sample pages Introduction G.S. de Hoog, J. Guarro, J. Gené, S. Ahmed, Introduction A.M.S. Al-Hatmi, M.J. Figueras and R.G. Vitale 1 ATLAS of CLINICAL FUNGI The ultimate benchtool for diagnostics Overview of approximate effective application of comparative techniques in mycology Use Strain Variety Species Genus Family Order Class Keyref Cell wall Tax Kreger & Veenhuis (191) Pore Tax Moore (198) Karyology Tax Takeo & de Hoog (1991) Co- Tax Yamada et al. (198) Carbohydrate pattern Tax eijman & Golubev (198) Classical physiology Tax Yarrow (1998) API 32C Diag Guého et al. (1994b) API-Zym Diag Fromentin et al. (1981) mole% G+C Tax Guého et al. (1992b) SSU seq Tax Gargas et al. (1995) SSU-RFLP Tax Machouart et al. (2006) LSU Diag Kurtzman & Robnett (1998) ITS seq/RFLP Diag Lieckfeldt & Seifert (2000) IGS Epid Diaz & Fell (2000) Tubulin Tax Keeling et al. (2000) Actin Tax Donnelly et al. (1999) Chitin synthase Tax Karuppayil et al. (1996) Elongation factor Diag Helgason et al. (2003) NASBA Tax Compton (1991) nDNA homology Epid Voigt et al. (199) RCA Epid Barr et al. (199) LAMP Tax Guého et al. (199) MLPA Diag Sun et al. (2010) Isoenzymes (MLEE) Epid Pujol et al. (199) Maldi-tof Diag Schrödl et al. (2012) Fish Diag Rigby et al. (2002) RLB Diag Bergmans et al. (2008) PCR-ELISA Diag Beifuss et al. (2011) Secondary metabolites Tax/Diag Frisvad & Samson (2004) SSR Epid Karaoglu et al. (2005) rep-PCR Epid MacDonald et al. (2000) rt-PCR Diag Bergmans et al. (2010) RAPD / UP-PCR Tax Doherty et al. (2003) M-13 Epid/Tax eising et al. (1995) T3B Epid Gäser et al. (2000) Microsatellites Epid/Tax Cai et al. (2013) mtDNA RFLP Epid Ishizaki et al. (1996) AFLP Epid Savelkoul et al. (1999) Karyotyping Epid Franzot et al. (1998) MLST Epid Meyer et al. (2009) AFLP = Amplifi ed Fragment Length Polymorphism; Co-Q = Coenzyme Q; IGS = InterGeneric Spacer; ITS = Internal Transcribed Spacer; LAMP = Loop-medicated Isothermed Amplifi cation; LSU = Large SubUnitMaldi-tof= Matrix-assisted Laser-Desorption/Ionisation time-of-fl ight; MLEE = MultiLocus Enzyme Electrophoresis; MLPA = Multiplex Ligation - Dependent Probe Amplifi cation; MLST = Multi-locus Sequence Typing; NASBA = Nucleic Acid Sequence-Based Amplifi cation; RAPD = Random Amplifi ed Polymorphic DNA; RCA = Rolling Circle Amplifi cation; RFLP = Restric- tion Fragment Length Polymorphism; SSU = Small SubUnit rDNA; UP-PCR = Universally Primed PCR.Diag = Diagnostics; Epid = Epidemiology; Tax = Taxonomy. Recipes of recommended media (all recipes based on 1 litre medium) BCPCG: Bromocresol purple casein glucose agar skimmed milk 80 g bromocresol purple 1% in ethanol 2 mL glucose 40 g agar 30 g pH 6.8 BHI: Brain-heart infusion agar commercial BHI agar 52 g final pH 7.4 CEA: Casamino acids erythritol agar casamino acids (Bacto) 3 g MgSO4 0.1 g KH2PO4 1.8 g meso-erythritol 10 g albumin 10 mL agar 15 g final pH 6.8 CDBT: Creatine dextrose bromothymol blue thymine agar Solution A: 2 ATLAS of CLINICAL FUNGI Clinical pathology fused with secondary skin infections caused by systemic inflammation occurs. According to the appearance of the fungi treated below. causative agent as seen in native preparations, the follow- ing subdivision is made: Dermatophyte infections of the dermis Hyalohyphomycosis. The fungal elements are colourless. Phaeohyphomycosis. The fungal elements are melanised Dermatophytes are normally confined to cutis, hair and (special staining often necessary). nails, but occasionally the dermis is involved. Chromoblastomycosis Introductions Majocchi’s granuloma. Perifollicular granulomatous inflammation. The dermatophyte may be present in the The disease occurs mostly on the extremities and is char- cutis, but also deeper skin layers are involved. acterized by localized, slowly expanding lesions. Superfi- cial, warty to cauliflower-like tumours and deformations Kerion (pseudomycetoma). Subcutaneous, elevated, develop, due to hyperkeratosis and acanthosis. The le- spongy lesion by dermatophytes with local necrosis and sions are greyish, crusted and dry in appearance. The fun- with presence of hyphae or grain-like structures. gus occurs as dark, muriform cells in the tissue. Causative agents: Fonsecaea monophora, F. nubica, F. pedrosoi, Clado- Non-ulcerative infections by diverse fungi phialophora carrionii, Phialophora verrucosa, Rhinocladiella aquaspersa. The following types can be distinguished, of These concern local, non-ulcerative infections caused by which several may occur in the same patient (adapted a variety of fungi. The fungus is present in the form of from Queiroz Telles et al., 2009): septate hyphae or hyphal elements. In the case of hy- Nodular. Moderately elevated, fairly soft, dull to pink phomycotic cysts the affected area is surrounded by a violaceous growth. Surface smooth, verrucous or scaly. fibrous, collagenous secretion of the host, and hence no With time lesions may gradually become tumorous. Main types of histopathological response to subcutaneous and deep infection Subcutaneous Special features Purulence Granuloma Fibrosis Necrosis - + - -,w Hyphae with melanin - + - -,w Hyphae without melanin + + + + Grains - + + - Muriform cells + + + + Asteroid bodies, rabbit ears - + - - ide hyphal elements, oedema Pulmonary + + - + Hyphae without melanin + + + - Yeast cells with wide base + + + - Spherules + + + + Pilot wheel/Mickey Mouse - + + - Intracellular yeast - + + - Adiaspores - + - - Intracellular arthroconidia Rhinoorbital + - - + ide hyphal elements, oedema - + + - Splendore-Hoeppli - + + - Hyphae Systemic yeast infection + + - + Yeast cells, pseudohyphae - + - - Capsular yeast cells Overview of histopathological features in subcutaneous, deep and disseminated infections in immunologically competent individuals: host responses and fungal tissue forms. 3 ATLAS of CLINICAL FUNGI The ultimate benchtool for diagnostics Phylum Basidiomycota The life cycle of a prototypical basidiomycete is depicted. Thethallus consists of a septate, dikaryotic mycelium, often provided with clamp connections; these are bridges between adjacent cells to provide each of them with a nucleus derived from one of the parent strains. The septa are perforated by a single, central pore. The wall of the pore canal is often characteristically swollen; such a structure is called a dolipore. Spores each produce a short-lived, haploid myce- lium. Cells of suitable mating type show plasmogamy, but karyogamy is postponed. Consequently a heterokaryon with clamp connections is formed. This condition is maintained during the major part of the life cycle, including fruitbody production. Karyogamy, immediately followed by meiosis, takes place in the basidium, which produces meiospores (basidiospores) exogenously, the spores often being forcibly discharged. Prototypical life cycle Basidiomycota 4 ATLAS of CLINICAL FUNGI Basidio filamentous Basidio filamentous Bjerkandera adusta, CBS 230.93. A. Fruitbody in natural habitat on rotten wood, left carpophores, right backside with pores; B. colony (MEA, 1 wk, 24°C, blue light), obverse; C. colony (OA, 4 wk, 24°C, blue light), obverse, with fruiting structures formed near colony edge; D-F. details of fruiting structures; G. section of fruiting structure; H-K. basidia with basidiospores; L. arthroconidia; M. clamp connection. Scale bars = 10 µm. 5 ATLAS of CLINICAL FUNGI The ultimate benchtool for diagnostics A. longipes CBS 540.94 A. gossypina CBS 104.32 A. gaisen CBS 632.93 A. arborescens CBS 102605 A. alstroemeriae CBS 118809 A. burnsii CBS 107.38 A. tomato CBS 114.35 Section A. jacinthicola CBS 133751 Alternaria A. doliconidium KUMCC 17-0263 100 A. alternata CBS 916.96 A. betae-kenyensis CBS 118810 A. eichhorniae CBS 489.92 A. iridiaustralis CBS 118486 A. hordeicola CBS 121458 A. montsantina FMR 17060 A. graminicola CBS 119400 A. conjuncta CBS 196.86 A. caespitosa CBS 177.80 A. intercepta CBS 119406 A. cesenica MFLUCC 13-0450 A. novae-zelandiae CBS 119405 A. broccoli-italicae CBS 118485 A. dactylidicola MFLUCC 15-0466 A. fimeti FMR 17110 A. ventricosa CBS 121546 A. quercicola CBS 141466 A. triticina CBS 763.84 A. triticimaculans CBS 578.94 A. merytae CBS 119403 Section A. pseudoventricosa FMR 16900 Infectoriae A. lawrencei FMR 17004 A. alternarina CBS 119396 A. curvata FMR 16901 A. daucicaulis CBS 119398 A. ethzedia CBS 197.86 A. hordeiaustralica CBS 119402 A. infectoria CBS 210.86 A. slovaca CBS 567.66 x3 A. aconidiophora FMR 17111 99 A. metachromatica CBS 553.94 A. arbusti CBS 596.93 A. incomplexa CBS 121330 84 A. oregonensis CBS 542.94 A. pobletensis FMR 16448 97 A. cetera CBS 121340 A. obclavata CBS 124120 Section 99 A. malorum CBS 135.31 Chalastospora A. breviramosa CBS 121331 A. abundans CBS 534.83 94 A. armoraciae CBS 118702 80 A. chlamydospora CBS 491.72 A. phragmospora CBS 274.70 A. limaciformis CBS 481.81 Section A. molesta CBS 548.81 Phragmosporae A. mouchaccae CBS 119671 A. papavericola CBS 116606 A. penicillata CBS 116608 0.01 Maximum Likelihood (ML) tree of four sections of the genus Alternaria based on confidently aligned rDNAITS sequences using ClustalW. The sub- stitution model is Kimura 2-parameter and gamma distributed (K2+G). The tree was bootstrapped 1000 times and values above 80% are indicated near of the nodes and with thick branches. The tree is rooted withAlternaria papavericola and A. penicillata. Note that the general barcoding marker ITS does not allow species
Recommended publications
  • Phylogeny of the Genus Arachnomyces and Its Anamorphs and the Establishment of Arachnomycetales, a New Eurotiomycete Order in the Ascomycota
    STUDIES IN MYCOLOGY 47: 131-139, 2002 Phylogeny of the genus Arachnomyces and its anamorphs and the establishment of Arachnomycetales, a new eurotiomycete order in the Ascomycota 1, 2 1* 3 2 C. F. C. Gibas , L. Sigler , R. C. Summerbell and R. S. Currah 1University of Alberta Microfungus Collection and Herbarium, Edmonton, Alberta, Canada; 2Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada; 3Centraalbureau voor Schimmelcultures, Utrecht, The Netherlands Abstract: Arachnomyces is a genus of cleistothecial ascomycetes that has morphological similarities to the Onygenaceae and the Gymnoascaceae but is not accommodated well in either taxon. The phylogeny of the genus and its related anamorphs was studied using nuclear SSU rDNA gene sequences. Partial sequences were determined from ex-type cultures representing A. minimus, A. nodosetosus (anamorph Onychocola canadensis), A. kanei (anamorph O. kanei) and A. gracilis (anamorph Malbranchea sp.) and aligned together with published sequences of onygenalean and other ascomycetes. Phylogenetic analysis based on maximum parsimony showed that Arachnomyces is monophyletic, that it includes the hyphomycete Malbranchea sclerotica, and it forms a distinct lineage within the Eurotiomycetes. Based on molecular and morphological data, we propose the new order Arachnomycetales and a new family Arachnomycetaceae. All known anamorphs in this lineage are arthroconidial and have been placed either in Onychocola (A. nodosetosus, A. kanei) or in Malbranchea (A. gracilis). Onychocola is considered appropriate for disposition of the arthroconidial states of Arachnomyces and thus Malbranchea sclerotica and the unnamed anamorph of A. gracilis are redisposed as Onychocola sclerotica comb. nov. and O. gracilis sp. nov. Keywords: Eurotiomycetes, Arachnomycetales, Arachnomycetaceae, Arachnomyces, Onychocola, Malbranchea sclerotica, SSU rDNA, Ascomycota, phylogeny Introduction described from herbivore dung maintained in damp chambers (Singh & Mukerji, 1978; Mukerji, pers.
    [Show full text]
  • Keratinases and Microbial Degradation of Keratin
    Available online a t www.pelagiaresearchlibrary.com Pelagia Research Library Advances in Applied Science Research, 2015, 6(2):74-82 ISSN: 0976-8610 CODEN (USA): AASRFC Keratinases and microbial degradation of Keratin Itisha Singh 1 and R. K. S. Kushwaha 2 1Department of Microbiology, Saaii College of Medical Sciences and Technology, Chaubepur, Kanpur 2Shri Shakti College, Harbaspur, Ghatampur, Kanpur ______________________________________________________________________________________________ ABSTRACT The present review deals with fungal keratinases including that of dermatophytes. Bacterial keratinases were also included. Temperature and substrate relationship keratinase production has also been discussed. Keratin degradation and industrial involvement of keratinase producing fungi is also reviewed. Key words : Keratinase, keratin, degradation, fungi. ______________________________________________________________________________________________ INTRODUCTION Keratin is an insoluble macromolecule requiring the secretion of extra cellular enzymes for biodegradation to occur. Keratin comprises long polypeptide chains, which are resistant to the activity of non-substrate-specific proteases. Adjacent chains are linked by disulphide bonds thought responsible for the stability and resistance to degradation of keratin (Safranek and Goos, 1982). The degradation of keratinous material is important medically and agriculturally (Shih, 1993; Matsumoto, 1996). Secretion of keratinolytic enzymes is associated with dermatophytic fungi, for which keratin
    [Show full text]
  • Carboxylesterase Activity of Filamentous Soil Fungi from a Potato Plantation in Mankayan, Benguet
    Studies in Fungi 4(1): 292–303 (2019) www.studiesinfungi.org ISSN 2465-4973 Article Doi 10.5943/sif/4/1/31 Carboxylesterase activity of filamentous soil fungi from a potato plantation in Mankayan, Benguet Poncian M, Beray BJW, Dadulla HCP and Hipol RM Department of Biology, College of Science, University of the Philippines Baguio Poncian M, Beray BJW, Dadulla HCP, Hipol RM 2019 – Carboxylesterase activity of filamentous soil fungi from a potato plantation in Mankayan, Benguet. Studies in Fungi 4(1), 292–303, Doi 10.5943/sif/4/1/31 Abstract In this study, filamentous fungi were isolated from a soil sample from a farm in Mankayan, Benguet. The isolates were tested for the presence of carboxylesterase enzyme as it would indicate the ability to breakdown pyrethroid pesticides such as Cypermethrin. A total of fourteen fungal isolates were characterized morphologically and were identified using the D1/D2 regions of 28S rDNA. All were identified to be members of the Ascomycetes. Seven of the isolates belong to the genus Fusarium, and two were identified to be Aspergillus heteromorphus and Penicillium sp. All fourteen isolates exhibited carboxylesterase activity. Isolates BDP3 and BDP10 exhibited the greatest carboxylesterase activity. These two isolates, both unidentified Ascomycetes, are promising species for mycoremediation specifically targeting pyrethroid pesticides. Key words – Aspergillus heteromorphus – carboxylesterase – cypermethrin – pyrethroids Introduction The potential for bioremediation by fungi, also known as mycoremediation, is largely ignored. Singh (2006) says in his review paper that there is shortage of reports involving fungi in bioremediation because the biology and ecology of fungal metabolic processes are rarely examined.
    [Show full text]
  • 25 Chrysosporium
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Universidade do Minho: RepositoriUM 25 Chrysosporium Dongyou Liu and R.R.M. Paterson contents 25.1 Introduction ..................................................................................................................................................................... 197 25.1.1 Classification and Morphology ............................................................................................................................ 197 25.1.2 Clinical Features .................................................................................................................................................. 198 25.1.3 Diagnosis ............................................................................................................................................................. 199 25.2 Methods ........................................................................................................................................................................... 199 25.2.1 Sample Preparation .............................................................................................................................................. 199 25.2.2 Detection Procedures ........................................................................................................................................... 199 25.3 Conclusion .......................................................................................................................................................................200
    [Show full text]
  • Coprophilous Fungal Community of Wild Rabbit in a Park of a Hospital (Chile): a Taxonomic Approach
    Boletín Micológico Vol. 21 : 1 - 17 2006 COPROPHILOUS FUNGAL COMMUNITY OF WILD RABBIT IN A PARK OF A HOSPITAL (CHILE): A TAXONOMIC APPROACH (Comunidades fúngicas coprófilas de conejos silvestres en un parque de un Hospital (Chile): un enfoque taxonómico) Eduardo Piontelli, L, Rodrigo Cruz, C & M. Alicia Toro .S.M. Universidad de Valparaíso, Escuela de Medicina Cátedra de micología, Casilla 92 V Valparaíso, Chile. e-mail <eduardo.piontelli@ uv.cl > Key words: Coprophilous microfungi,wild rabbit, hospital zone, Chile. Palabras clave: Microhongos coprófilos, conejos silvestres, zona de hospital, Chile ABSTRACT RESUMEN During year 2005-through 2006 a study on copro- Durante los años 2005-2006 se efectuó un estudio philous fungal communities present in wild rabbit dung de las comunidades fúngicas coprófilos en excementos de was carried out in the park of a regional hospital (V conejos silvestres en un parque de un hospital regional Region, Chile), 21 samples in seven months under two (V Región, Chile), colectándose 21 muestras en 7 meses seasonable periods (cold and warm) being collected. en 2 períodos estacionales (fríos y cálidos). Un total de Sixty species and 44 genera as a total were recorded in 60 especies y 44 géneros fueron detectados en el período the sampling period, 46 species in warm periods and 39 de muestreo, 46 especies en los períodos cálidos y 39 en in the cold ones. Major groups were arranged as follows: los fríos. La distribución de los grandes grupos fue: Zygomycota (11,6 %), Ascomycota (50 %), associated Zygomycota(11,6 %), Ascomycota (50 %), géneros mitos- mitosporic genera (36,8 %) and Basidiomycota (1,6 %).
    [Show full text]
  • Fungal Allergy and Pathogenicity 20130415 112934.Pdf
    Fungal Allergy and Pathogenicity Chemical Immunology Vol. 81 Series Editors Luciano Adorini, Milan Ken-ichi Arai, Tokyo Claudia Berek, Berlin Anne-Marie Schmitt-Verhulst, Marseille Basel · Freiburg · Paris · London · New York · New Delhi · Bangkok · Singapore · Tokyo · Sydney Fungal Allergy and Pathogenicity Volume Editors Michael Breitenbach, Salzburg Reto Crameri, Davos Samuel B. Lehrer, New Orleans, La. 48 figures, 11 in color and 22 tables, 2002 Basel · Freiburg · Paris · London · New York · New Delhi · Bangkok · Singapore · Tokyo · Sydney Chemical Immunology Formerly published as ‘Progress in Allergy’ (Founded 1939) Edited by Paul Kallos 1939–1988, Byron H. Waksman 1962–2002 Michael Breitenbach Professor, Department of Genetics and General Biology, University of Salzburg, Salzburg Reto Crameri Professor, Swiss Institute of Allergy and Asthma Research (SIAF), Davos Samuel B. Lehrer Professor, Clinical Immunology and Allergy, Tulane University School of Medicine, New Orleans, LA Bibliographic Indices. This publication is listed in bibliographic services, including Current Contents® and Index Medicus. Drug Dosage. The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any change in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means electronic or mechanical, including photocopying, recording, microcopy- ing, or by any information storage and retrieval system, without permission in writing from the publisher.
    [Show full text]
  • Survey on the Presence of Bacterial, Fungal and Helminthic Agents in Off-Leash Dog Parks Located in Urban Areas in Central-Italy
    animals Article Survey on the Presence of Bacterial, Fungal and Helminthic Agents in Off-Leash Dog Parks Located in Urban Areas in Central-Italy Valentina Virginia Ebani 1,2,*, Simona Nardoni 1 , Stefania Ciapetti 1, Lisa Guardone 1, Enrico Loretti 3 and Francesca Mancianti 1,4 1 Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; [email protected] (S.N.); [email protected] (S.C.); [email protected] (L.G.); [email protected] (F.M.) 2 Centre for Climate Change Impact, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy 3 UFC Igiene Urbana, USL Toscana Centro, Viale Corsica 4, 50127 Firenze, Italy; [email protected] 4 Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy * Correspondence: [email protected] Simple Summary: Off-leash dog parks are designated, generally fenced, public spaces where dogs can move freely under the supervision of their owners. These areas, allowing animals to socialize and run free, play a fundamental role in dogs’ welfare. However, such environments may be a source of different pathogens, even zoonotic, excreted by the attending animals. The present study evaluated the occurrence of bacterial, fungal, and parasitic pathogens in off-leash dog parks located in Florence (central Italy). Yersinia spp., Listeria innocua, Toxocara canis eggs and Ancylostoma caninum/Uncinaria Citation: Ebani, V.V.; Nardoni, S.; Ciapetti, S.; Guardone, L.; Loretti, E.; stenocephala eggs were found in canine feces. Keratinophilic geophilic fungi (mostly Microsporum Mancianti, F. Survey on the Presence gypseum/A.
    [Show full text]
  • Geophilic Dermatophytes and Other Keratinophilic Fungi in the Nests of Wetland Birds
    ACTA MyCoLoGICA Vol. 46 (1): 83–107 2011 Geophilic dermatophytes and other keratinophilic fungi in the nests of wetland birds Teresa KoRnIŁŁoWICz-Kowalska1, IGnacy KIToWSKI2 and HELEnA IGLIK1 1Department of Environmental Microbiology, Mycological Laboratory University of Life Sciences in Lublin Leszczyńskiego 7, PL-20-069 Lublin, [email protected] 2Department of zoology, University of Life Sciences in Lublin, Akademicka 13 PL-20-950 Lublin, [email protected] Korniłłowicz-Kowalska T., Kitowski I., Iglik H.: Geophilic dermatophytes and other keratinophilic fungi in the nests of wetland birds. Acta Mycol. 46 (1): 83–107, 2011. The frequency and species diversity of keratinophilic fungi in 38 nests of nine species of wetland birds were examined. nine species of geophilic dermatophytes and 13 Chrysosporium species were recorded. Ch. keratinophilum, which together with its teleomorph (Aphanoascus fulvescens) represented 53% of the keratinolytic mycobiota of the nests, was the most frequently observed species. Chrysosporium tropicum, Trichophyton terrestre and Microsporum gypseum populations were less widespread. The distribution of individual populations was not uniform and depended on physical and chemical properties of the nests (humidity, pH). Key words: Ascomycota, mitosporic fungi, Chrysosporium, occurrence, distribution INTRODUCTION Geophilic dermatophytes and species representing the Chrysosporium group (an arbitrary term) related to them are ecologically classified as keratinophilic fungi. Ke- ratinophilic fungi colonise keratin matter (feathers, hair, etc., animal remains) in the soil, on soil surface and in other natural environments. They are keratinolytic fungi physiologically specialised in decomposing native keratin. They fully solubilise na- tive keratin (chicken feathers) used as the only source of carbon and energy in liquid cultures after 70 to 126 days of growth (20°C) (Korniłłowicz-Kowalska 1997).
    [Show full text]
  • SINGLE DOSE PHARMACOKINETICS of AZITHROMYCIN in BALL PYTHONS (Python Regius)
    SINGLE DOSE PHARMACOKINETICS OF AZITHROMYCIN IN BALL PYTHONS (Python regius) Rob L. Coke, DVM,1* Robert P. Hunter, MS, PhD,2 Ramiro Isaza, MS, DVM,1 James W. Carpenter, MS, DVM,1 David Koch, MS,2 and Marie Goatley, BS2 1Department of Clinical Sciences and the 2Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506 USA Abstract Azithromycin is a new sub-class of macrolide antibiotics classified as an azalide. This antimicrobial has a similar mechanism of action to the other macrolides (i.e., erythromycin) by binding to the 50S ribosomal subunit.2 Azithromycin provides broad-spectrum antibiosis against gram-positive and gram-negative bacteria.2 It also has the ability to obtain sustained drug concentrations in tissues much greater than the corresponding plasma concentration.1,3 This study determined the pharmacokinetics of azithromycin (Zithromax®, Pfizer Inc., New York, NY 10017 USA) in ball pythons (Python regius), a species that is representative of the Boidae family. Snakes were administered azithromycin intravenously (i.v.) to determine distribution and orally (p.o.) to determine bioavailability and absorption. Seven ball pythons (two males, five females), weighing approximately 0.67-0.96 kg, were used in this experiment. Using a crossover design, each snake was given a single 10 mg/kg i.v. dose of azithromycin via cardiocentesis. For the oral study, each snake was dosed at 10 mg/kg using the same i.v. azithromycin preparation. Blood samples were collected prior to dosing and at 1, 3, 6, 12, 24, 48, 72, and 96 hr post-azithromycin administration.
    [Show full text]
  • An Annotated Check-List of Ascomycota Reported from Soil and Other Terricolous Substrates in Egypt A
    Journal of Basic & Applied Mycology 2 (2011): 1-27 1 © 2010 by The Society of Basic & Applied Mycology (EGYPT) An annotated check-list of Ascomycota reported from soil and other terricolous substrates in Egypt A. F. Moustafa* & A. M. Abdel – Azeem Department of Botany, Faculty of Science, University of Suez *Corresponding author: e-mail: Canal, Ismailia 41522, Egypt [email protected] Received 26/6/2010, Accepted 6/4 /2011 ____________________________________________________________________________________________________ Abstract: By screening of available sources of information, it was possible to figure out a range of 310 taxa that could be representing Egyptian Ascomycota up to the present time. In this treatment, concern was given to ascomycetous fungi of almost all terricolous substrates while phytopathogenic and aquatic forms are not included. According to the scheme proposed by Kirk et al. (2008), reported taxa in Egypt belonged to 88 genera in 31 families, and 11 orders. In view of this scheme, very few numbers of taxa remained without certain taxonomic position (incertae sedis). It is also worthy to be mentioned that among species included in the list, twenty-eight are introduced to the ascosporic mycobiota as novel taxa based on type materials collected from Egyptian habitats. The list includes also 19 species which are considered new records to the general mycobiota of Egypt. When species richness and substrate preference, as important ecological parameters, are considered, it has been noticed that Egyptian Ascomycota shows some interesting features noteworthy to be mentioned. At the substrate level, clay soils, came first by hosting a range of 108 taxa followed by desert soils (60 taxa).
    [Show full text]
  • EFFECTS of BOTANICALS and BIOCONTROL AGENTS on GROWTH and AFLATOXIN PRODUCTION by Aspergillus Flavus INFECTING MAIZE in SOME PARTS of NIGERIA
    EFFECTS OF BOTANICALS AND BIOCONTROL AGENTS ON GROWTH AND AFLATOXIN PRODUCTION BY Aspergillus flavus INFECTING MAIZE IN SOME PARTS OF NIGERIA BY OKECHI, OGECHUKWU CALISTA PG/Ph.D./09/54408 DEPARTMENT OF MEDICAL LABORATORY SCIENCES FACULTY OF HEALTH SCIENCES AND TECHNOLOGY COLLEGE OF MEDICINE UNIVERSITY OF NIGERIA ENUGU CAMPUS OCTOBER, 2014 TITLE PAGE EFFECTS OF BOTANICALS AND BIOCONTROL AGENTS ON GROWTH AND AFLATOXIN PRODUCTION BY Aspergillus flavus INFECTING MAIZE IN SOME PARTS OF NIGERIA BY OKECHI, OGECHUKWU CALISTA PG/Ph.D./09/54408 A THESIS SUBMITTED TO THE DEPARTMENT OF MEDICAL LABORATORY SCIENCES, FACULTY OF HEALTH SCIENCES AND TECHNOLOGY, IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF DOCTOR OF PHILOSOPHY (Ph.D.) IN MEDICAL LABORATORY SCIENCES (MEDICAL MIROBIOLOGY), COLLEGE OF MEDICINE, UNIVERSITY OF NIGERIA ENUGU CAMPUS SUPERVISOR: PROFESSOR N.F. ONYEMELUKWE OCTOBER, 2014 i DEPARTMENT OF MEDICAL LABORATORY SCIENCES COLLEGE OF MEDICINE UNIVERSITY OF NIGERIA Telegrams NIGERSITY, ENUGU ENUGU CAMPUS HEAD OF DEPARTMENT NIGERIA OUR REF:……………………UN/CM/MLS/B2 Tel. YOUR REF: ……………… DATE: …………… CERTIFICATION Mr / Mrs / Miss OKECHI OGECHUKWU CALISTA a Ph.D student of the Department of Medical Laboratory Sciences, College of Medicine University of Nigeria, Enugu Campus, majoring in MEDICAL MICROBIOLOGY has satisfactorily completed the requirement for the research work. The results embodied in the work have not been submitted in part or full to any Diploma or Degree of this in any other University. Supervisor’s Name: PROF N .F. ONYEMELUKWE Signature: _____________________________________ ii DEDICATION To Almighty God and my loving mother Mrs. Caroline Nwamaka Okechi. iii ACKNOWLEDGEMENTS My profound gratitude goes to Almighty God for making this study a reality.
    [Show full text]
  • Lists of Names in Aspergillus and Teleomorphs As Proposed by Pitt and Taylor, Mycologia, 106: 1051-1062, 2014 (Doi: 10.3852/14-0
    Lists of names in Aspergillus and teleomorphs as proposed by Pitt and Taylor, Mycologia, 106: 1051-1062, 2014 (doi: 10.3852/14-060), based on retypification of Aspergillus with A. niger as type species John I. Pitt and John W. Taylor, CSIRO Food and Nutrition, North Ryde, NSW 2113, Australia and Dept of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA Preamble The lists below set out the nomenclature of Aspergillus and its teleomorphs as they would become on acceptance of a proposal published by Pitt and Taylor (2014) to change the type species of Aspergillus from A. glaucus to A. niger. The central points of the proposal by Pitt and Taylor (2014) are that retypification of Aspergillus on A. niger will make the classification of fungi with Aspergillus anamorphs: i) reflect the great phenotypic diversity in sexual morphology, physiology and ecology of the clades whose species have Aspergillus anamorphs; ii) respect the phylogenetic relationship of these clades to each other and to Penicillium; and iii) preserve the name Aspergillus for the clade that contains the greatest number of economically important species. Specifically, of the 11 teleomorph genera associated with Aspergillus anamorphs, the proposal of Pitt and Taylor (2014) maintains the three major teleomorph genera – Eurotium, Neosartorya and Emericella – together with Chaetosartorya, Hemicarpenteles, Sclerocleista and Warcupiella. Aspergillus is maintained for the important species used industrially and for manufacture of fermented foods, together with all species producing major mycotoxins. The teleomorph genera Fennellia, Petromyces, Neocarpenteles and Neopetromyces are synonymised with Aspergillus. The lists below are based on the List of “Names in Current Use” developed by Pitt and Samson (1993) and those listed in MycoBank (www.MycoBank.org), plus extensive scrutiny of papers publishing new species of Aspergillus and associated teleomorph genera as collected in Index of Fungi (1992-2104).
    [Show full text]