Valley Fever”

Total Page:16

File Type:pdf, Size:1020Kb

Valley Fever” COCCIDIOIDOMYCOSIS “Valley Fever” By: Pamela Galioto, Katie Olenick, and Troy Adamson Coccidioidomycosis • Also known as San Joaquin fever, valley fever, and desert rheumatism • Etiologic agents are ‐Coccidioides immitis ‐Coccidioides posadasii Coccidioidomycosis Classification • Kingdom: Fungi • Phylum: Ascomycota • Class: Euascomycetes • Order: Onygenales • Family: Onygenaceae • Genus: Coccidioides Coccidioides immitis/posadasii •California and Non‐California variants •Morphologically identical •Different rates of growth with high salt concentration ‐C. posadasii grows more slowly •Inhabits more alkaline soil •Truly pathogenic ‐ Causative agent of true endemic mycoses Geographical Distribution •High temperatures, dry, little rainfall, low altitude •C. immitis exclusive to San Joaquin valley (CA) •C. posadasii found in desert in southwestern US, Mexico, and South America •Approx. 10‐50% population exposure in endemic regions Life Cycle Phase 1 – Mycelial Arthrospore •Grow rapidly, but are less infectious •Soil dries, develop arthrospores •Disarticulate as a single arthroconidia •Become airborne when disturbed by wind or soil. Phase 2 – Spherule Endospore •After inhalation, in infected tissues •Thick‐walled spherule with endospores form •Release of endospores lead to new spherule formation •Proliferation of disease Epidemiology Risk Factors – •Live in endemic regions •Activities with exposure to dust and soil •Endemic regions with recent natural disasters •Laboratory work with fungus Prevention and Control – •Do not engage in activities •Proper handling of laboratory leading to exposure of dust and equipment soil or disturbed land in •Refrain from visiting endemic endemic regions areas Pathogenesis •Airborne fungal infection •Acquired by inhalation •Usually presents as pulmonary infection •Hematogenous spread causes infection in skin, bones, lymph nodes, adrenal glands, central nervous system •Most cases make full recovery within weeks or months, but some may develop chronic pulmonary infection •60% of cases will have no symptoms •Can also cause infection in animals Diagnosis • Blood – CBC w/ differential – Antibody titer • Imaging – Chest x‐ray or CT scan • Invasive Testing – Biopsy of lung or lymph node – Bronchoscopy Histopathology • Sputum microscopic analysis – Dimorphic fungus: filamentous in soil, but spherule in tissue – The spherule is filled with numerous spherical endospores – Special stains will enhance visualization • Silver stain • Periodic Acid Schiff (PAS) stain • KOH smear • Sputum culture – Gold standard of diagnosis – Coccidioides immitis Clinical Manifestations • Symptoms – Chest pain – Fever – Headache – Chest pain – Joint pain – Cough or hemoptysis – Erythema nodosum • Painful red, lumpy rash on legs • Can begin from a few days to a few weeks after exposure • Immunocompromised patients are susceptible to disseminated disease (spreads to skin, CNS or other organs) Treatment and Management • Pulmonary Coccidioidomycosis – Supportive measures are usually sufficient • Bed rest, fever reduction, symptomatic management – Antifungal medications usually not required • Disseminated Coccidiomycosis – Prevention is the best treatment! • Avoid AIDS and other causes of impaired immunity – Antifungal medications are a necessity • Itraconazole, Fluconazole – This form still caries a high mortality rate • Meningitis is most severe form of disseminated disease Case Report 1 • Immunocompetent patient, 9 months in Arizona • 28‐year‐old female • Inflammatory pain in thoracic and lumbar spine • Fever and severe weight loss • Spinal stiffness • MRI of spine disclosed lesions in vertebral bodies • Spinal tuberculosis suspected • Positive diagnosis on day 4 of Coccidioides immitis Case Report 2 • 58 year old Dutch male • Immunocompetent • Presented non productive coughing, fever, vomiting, and loss of appetite • Medical history revealed mitral valve prolapse and atrial fibrillation Case Report 2 (cont.) • A chest x‐ray, computer tomography and supraclavicular lymph node biopsy performed • Generally, healthy persons recover spontaneously • Immunocompromised patients need to continue with regular clinical visits Question #1 • What are the two life cycle phases of Coccidioides immitis called? – A. Mycelial Arthrospore and Spherule Exospore – B. Mycelial Arthrospore and Spherule Endospore – C. Vegetative hyphae and Spherule Endospore – D. Vegetative hyphae and Spherule Exospore Question #2 • All are risk factors of Coccidioides except: – A. Endemic regions with recent to natural disasters – B. Laboratory work with fungus – C. Animals – D. Activities with exposure to dust and soil Question #3 • Which person is least likely to experience disseminated Coccidioidomycosis? – A. Kidney transplant recipient – B. Leukemia patient – C. Patient with congestive heart failure – D. AIDS patient Question #4 • Which of the following is not used to diagnose Coccidioidomycosis? – A. Imaging studies – B. Skin test – C. Blood test – D. Sputum sample Question #5 • Which of the following stains is not used to visualize Coccidioidomycosis? – A. PAS stain – B. KOH smear – C. Silver stain – D. India ink References Choo, John, Guy Shoo Choo, Michael Peterson, Francisco Talavera, and Greg Anders. "Coccidiodomycosis in Pulmonology ." Medscape. N.p., 17 Sep 2009. Web. 24 Jul 2011. "Coccidioides Species." Doctor Fungus. N.p., n.d. Web. 24 Jul 2011. "Coccidiodomycosis: General Information." Center for Disease Control. USA.gov, 04 Mar 2010. Web. 24 Jul 2011. Reach P;Paugam A;Kahan A;Allanore Y;Wipff J. "Coccidioidomycosis of the spine in an immunocompetent patient." Joint, Bone, Spine: Revue Du Rhumatisme 77.6 (2010), 611‐3. Kok, Petra, et al. "Fungal disease of the Western hemisphere: A patient with coccidioidomycosis." European Journal of Internal Medicine 20.3 (2009), 319‐322. References (cont.) Cho M.D., John E. "Coccidioidomycosis in Pulmonology Workup." Medscape. Web. 20 July 2011. <http://emedicine.medscape.com/article/297976‐workup>. "Coccidioidomycosis ‐ Acute Pulmonary: MedlinePlus Medical Encyclopedia." National Library of Medicine ‐ National Institutes of Health. Web. 20 July 2011. <http://www.nlm.nih.gov/medlineplus/ency/article/000094.htm>. "DermAtlas: Online Dermatology Image Library Dermatology Image,folliculitis, Demodex,folliculitis, Demodex,coccidioidomycosis,fungal Infection, Deep,pemphigus Vulgaris,xanthogranuloma, Juvenile,xanthogranuloma, Juvenile,xanthogranuloma, Juvenile,xanthogranuloma, Juvenile." Dermatlas: Dermatology Image Atlas with 12474 Dermatology Images. Web. 20 July 2011. <http://dermatlas.med.jhmi.edu/derm/result.cfm?Author=434027 241>. Rosenthal, Ken S., and James S. Tan. Rapid Review Microbiology and Immunology. Philadelphia, PA: Mosby/Elsevier, 2007. Print. References (cont.) http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5805a1.htm http://www.medversation.com/medversation/hcp/section/PGL/S0716A4CD‐ 892E‐4BF7‐CC8C‐4435811AA9C9.html http://www.corbisimages.com/stock‐photo/rights‐managed/42‐ 26636219/spherule‐with‐endospores‐of‐the‐coccidioides‐immitis/?ext=1 http://www.nlm.nih.gov/medlineplus/mobileimages/ency/fullsize/17157_lafs.p ng http://www.valley‐can.org/fact_sheets_info/sjv_fact_sheet.php http://www.isradiology.org/tropical_deseases/tmcr/chapter6/clinical37.htm References (cont.) http://www.mayoclinicproceedings.com/content/83/3/343.full http://pathmicro.med.sc.edu/mycology/mycology‐6.htm http://www.flickr.com/photos/pulmonary_pathology/5286000370/ http://ohacmed.oxfordtextbookofmedicine.com/cgi/content/citation/3/1/me d‐9780199230921‐div1‐07002 http://findlaw.doereport.com/generateexhibit.php?ID=8899&ExhibitKeyword sRaw=&TL=&A=42409 http://www.cdc.gov/ncidod/eid/vol2no3/kirkland.htm.
Recommended publications
  • Phylogeny of the Genus Arachnomyces and Its Anamorphs and the Establishment of Arachnomycetales, a New Eurotiomycete Order in the Ascomycota
    STUDIES IN MYCOLOGY 47: 131-139, 2002 Phylogeny of the genus Arachnomyces and its anamorphs and the establishment of Arachnomycetales, a new eurotiomycete order in the Ascomycota 1, 2 1* 3 2 C. F. C. Gibas , L. Sigler , R. C. Summerbell and R. S. Currah 1University of Alberta Microfungus Collection and Herbarium, Edmonton, Alberta, Canada; 2Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada; 3Centraalbureau voor Schimmelcultures, Utrecht, The Netherlands Abstract: Arachnomyces is a genus of cleistothecial ascomycetes that has morphological similarities to the Onygenaceae and the Gymnoascaceae but is not accommodated well in either taxon. The phylogeny of the genus and its related anamorphs was studied using nuclear SSU rDNA gene sequences. Partial sequences were determined from ex-type cultures representing A. minimus, A. nodosetosus (anamorph Onychocola canadensis), A. kanei (anamorph O. kanei) and A. gracilis (anamorph Malbranchea sp.) and aligned together with published sequences of onygenalean and other ascomycetes. Phylogenetic analysis based on maximum parsimony showed that Arachnomyces is monophyletic, that it includes the hyphomycete Malbranchea sclerotica, and it forms a distinct lineage within the Eurotiomycetes. Based on molecular and morphological data, we propose the new order Arachnomycetales and a new family Arachnomycetaceae. All known anamorphs in this lineage are arthroconidial and have been placed either in Onychocola (A. nodosetosus, A. kanei) or in Malbranchea (A. gracilis). Onychocola is considered appropriate for disposition of the arthroconidial states of Arachnomyces and thus Malbranchea sclerotica and the unnamed anamorph of A. gracilis are redisposed as Onychocola sclerotica comb. nov. and O. gracilis sp. nov. Keywords: Eurotiomycetes, Arachnomycetales, Arachnomycetaceae, Arachnomyces, Onychocola, Malbranchea sclerotica, SSU rDNA, Ascomycota, phylogeny Introduction described from herbivore dung maintained in damp chambers (Singh & Mukerji, 1978; Mukerji, pers.
    [Show full text]
  • 25 Chrysosporium
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Universidade do Minho: RepositoriUM 25 Chrysosporium Dongyou Liu and R.R.M. Paterson contents 25.1 Introduction ..................................................................................................................................................................... 197 25.1.1 Classification and Morphology ............................................................................................................................ 197 25.1.2 Clinical Features .................................................................................................................................................. 198 25.1.3 Diagnosis ............................................................................................................................................................. 199 25.2 Methods ........................................................................................................................................................................... 199 25.2.1 Sample Preparation .............................................................................................................................................. 199 25.2.2 Detection Procedures ........................................................................................................................................... 199 25.3 Conclusion .......................................................................................................................................................................200
    [Show full text]
  • Aphanoascus Fulvescens (Cooke) Apinis
    The ultimate benchtool for diagnostics. Introduction Introduction of ATLAS Introduction CLINICAL FUNGI Introduction The ultimate benchtool for diagnostics Introduction Introduction Introduction Sample pages Introduction G.S. de Hoog, J. Guarro, J. Gené, S. Ahmed, Introduction A.M.S. Al-Hatmi, M.J. Figueras and R.G. Vitale 1 ATLAS of CLINICAL FUNGI The ultimate benchtool for diagnostics Overview of approximate effective application of comparative techniques in mycology Use Strain Variety Species Genus Family Order Class Keyref Cell wall Tax Kreger & Veenhuis (191) Pore Tax Moore (198) Karyology Tax Takeo & de Hoog (1991) Co- Tax Yamada et al. (198) Carbohydrate pattern Tax eijman & Golubev (198) Classical physiology Tax Yarrow (1998) API 32C Diag Guého et al. (1994b) API-Zym Diag Fromentin et al. (1981) mole% G+C Tax Guého et al. (1992b) SSU seq Tax Gargas et al. (1995) SSU-RFLP Tax Machouart et al. (2006) LSU Diag Kurtzman & Robnett (1998) ITS seq/RFLP Diag Lieckfeldt & Seifert (2000) IGS Epid Diaz & Fell (2000) Tubulin Tax Keeling et al. (2000) Actin Tax Donnelly et al. (1999) Chitin synthase Tax Karuppayil et al. (1996) Elongation factor Diag Helgason et al. (2003) NASBA Tax Compton (1991) nDNA homology Epid Voigt et al. (199) RCA Epid Barr et al. (199) LAMP Tax Guého et al. (199) MLPA Diag Sun et al. (2010) Isoenzymes (MLEE) Epid Pujol et al. (199) Maldi-tof Diag Schrödl et al. (2012) Fish Diag Rigby et al. (2002) RLB Diag Bergmans et al. (2008) PCR-ELISA Diag Beifuss et al. (2011) Secondary metabolites Tax/Diag Frisvad & Samson (2004) SSR Epid Karaoglu et al.
    [Show full text]
  • Coprophilous Fungal Community of Wild Rabbit in a Park of a Hospital (Chile): a Taxonomic Approach
    Boletín Micológico Vol. 21 : 1 - 17 2006 COPROPHILOUS FUNGAL COMMUNITY OF WILD RABBIT IN A PARK OF A HOSPITAL (CHILE): A TAXONOMIC APPROACH (Comunidades fúngicas coprófilas de conejos silvestres en un parque de un Hospital (Chile): un enfoque taxonómico) Eduardo Piontelli, L, Rodrigo Cruz, C & M. Alicia Toro .S.M. Universidad de Valparaíso, Escuela de Medicina Cátedra de micología, Casilla 92 V Valparaíso, Chile. e-mail <eduardo.piontelli@ uv.cl > Key words: Coprophilous microfungi,wild rabbit, hospital zone, Chile. Palabras clave: Microhongos coprófilos, conejos silvestres, zona de hospital, Chile ABSTRACT RESUMEN During year 2005-through 2006 a study on copro- Durante los años 2005-2006 se efectuó un estudio philous fungal communities present in wild rabbit dung de las comunidades fúngicas coprófilos en excementos de was carried out in the park of a regional hospital (V conejos silvestres en un parque de un hospital regional Region, Chile), 21 samples in seven months under two (V Región, Chile), colectándose 21 muestras en 7 meses seasonable periods (cold and warm) being collected. en 2 períodos estacionales (fríos y cálidos). Un total de Sixty species and 44 genera as a total were recorded in 60 especies y 44 géneros fueron detectados en el período the sampling period, 46 species in warm periods and 39 de muestreo, 46 especies en los períodos cálidos y 39 en in the cold ones. Major groups were arranged as follows: los fríos. La distribución de los grandes grupos fue: Zygomycota (11,6 %), Ascomycota (50 %), associated Zygomycota(11,6 %), Ascomycota (50 %), géneros mitos- mitosporic genera (36,8 %) and Basidiomycota (1,6 %).
    [Show full text]
  • Geophilic Dermatophytes and Other Keratinophilic Fungi in the Nests of Wetland Birds
    ACTA MyCoLoGICA Vol. 46 (1): 83–107 2011 Geophilic dermatophytes and other keratinophilic fungi in the nests of wetland birds Teresa KoRnIŁŁoWICz-Kowalska1, IGnacy KIToWSKI2 and HELEnA IGLIK1 1Department of Environmental Microbiology, Mycological Laboratory University of Life Sciences in Lublin Leszczyńskiego 7, PL-20-069 Lublin, [email protected] 2Department of zoology, University of Life Sciences in Lublin, Akademicka 13 PL-20-950 Lublin, [email protected] Korniłłowicz-Kowalska T., Kitowski I., Iglik H.: Geophilic dermatophytes and other keratinophilic fungi in the nests of wetland birds. Acta Mycol. 46 (1): 83–107, 2011. The frequency and species diversity of keratinophilic fungi in 38 nests of nine species of wetland birds were examined. nine species of geophilic dermatophytes and 13 Chrysosporium species were recorded. Ch. keratinophilum, which together with its teleomorph (Aphanoascus fulvescens) represented 53% of the keratinolytic mycobiota of the nests, was the most frequently observed species. Chrysosporium tropicum, Trichophyton terrestre and Microsporum gypseum populations were less widespread. The distribution of individual populations was not uniform and depended on physical and chemical properties of the nests (humidity, pH). Key words: Ascomycota, mitosporic fungi, Chrysosporium, occurrence, distribution INTRODUCTION Geophilic dermatophytes and species representing the Chrysosporium group (an arbitrary term) related to them are ecologically classified as keratinophilic fungi. Ke- ratinophilic fungi colonise keratin matter (feathers, hair, etc., animal remains) in the soil, on soil surface and in other natural environments. They are keratinolytic fungi physiologically specialised in decomposing native keratin. They fully solubilise na- tive keratin (chicken feathers) used as the only source of carbon and energy in liquid cultures after 70 to 126 days of growth (20°C) (Korniłłowicz-Kowalska 1997).
    [Show full text]
  • Phylogeny of Chrysosporia Infecting Reptiles: Proposal of the New Family Nannizziopsiaceae and Five New Species
    CORE Metadata, citation and similar papers at core.ac.uk Provided byPersoonia Diposit Digital 31, de Documents2013: 86–100 de la UAB www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE http://dx.doi.org/10.3767/003158513X669698 Phylogeny of chrysosporia infecting reptiles: proposal of the new family Nannizziopsiaceae and five new species A.M. Stchigel1, D.A. Sutton2, J.F. Cano-Lira1, F.J. Cabañes3, L. Abarca3, K. Tintelnot4, B.L. Wickes5, D. García1, J. Guarro1 Key words Abstract We have performed a phenotypic and phylogenetic study of a set of fungi, mostly of veterinary origin, morphologically similar to the Chrysosporium asexual morph of Nannizziopsis vriesii (Onygenales, Eurotiomycetidae, animal infections Eurotiomycetes, Ascomycota). The analysis of sequences of the D1-D2 domains of the 28S rDNA, including rep- ascomycetes resentatives of the different families of the Onygenales, revealed that N. vriesii and relatives form a distinct lineage Chrysosporium within that order, which is proposed as the new family Nannizziopsiaceae. The members of this family show the mycoses particular characteristic of causing skin infections in reptiles and producing hyaline, thin- and smooth-walled, small, Nannizziopsiaceae mostly sessile 1-celled conidia and colonies with a pungent skunk-like odour. The phenotypic and multigene study Nannizziopsis results, based on ribosomal ITS region, actin and β-tubulin sequences, demonstrated that some of the fungi included Onygenales in this study were different from the known species of Nannizziopsis and Chrysosporium and are described here as reptiles new. They are N. chlamydospora, N. draconii, N. arthrosporioides, N. pluriseptata and Chrysosporium longisporum. Nannizziopsis chlamydospora is distinguished by producing chlamydospores and by its ability to grow at 5 °C.
    [Show full text]
  • Complete Issue
    J. Fernholz and Q.E. Phelps – Influence of PIT tags on growth and survival of banded sculpin (Cottus carolinae): implications for endangered grotto sculpin (Cottus specus). Journal of Cave and Karst Studies, v. 78, no. 3, p. 139–143. DOI: 10.4311/2015LSC0145 INFLUENCE OF PIT TAGS ON GROWTH AND SURVIVAL OF BANDED SCULPIN (COTTUS CAROLINAE): IMPLICATIONS FOR ENDANGERED GROTTO SCULPIN (COTTUS SPECUS) 1 2 JACOB FERNHOLZ * AND QUINTON E. PHELPS Abstract: To make appropriate restoration decisions, fisheries scientists must be knowledgeable about life history, population dynamics, and ecological role of a species of interest. However, acquisition of such information is considerably more challenging for species with low abundance and that occupy difficult to sample habitats. One such species that inhabits areas that are difficult to sample is the recently listed endangered, cave-dwelling grotto sculpin, Cottus specus. To understand more about the grotto sculpin’s ecological function and quantify its population demographics, a mark-recapture study is warranted. However, the effects of PIT tagging on grotto sculpin are unknown, so a passive integrated transponder (PIT) tagging study was performed. Banded sculpin, Cottus carolinae, were used as a surrogate for grotto sculpin due to genetic and morphological similarities. Banded sculpin were implanted with 8.3 3 1.4 mm and 12.0 3 2.15 mm PIT tags to determine tag retention rates, growth, and mortality. Our results suggest sculpin species of the genus Cottus implanted with 8.3 3 1.4 mm tags exhibited higher growth, survival, and tag retention rates than those implanted with 12.0 3 2.15 mm tags.
    [Show full text]
  • Coccidioidomycosis in New York State
    Synopses Coccidioidomycosis in New York State Vishnu Chaturvedi,* Rama Ramani,* Sally Gromadzki,* Birgit Rodeghier,* Hwa-Gan Chang,† and Dale L. Morse*† New York State Department of Health, Albany, New York, USA; and †School of Public Health, University at Albany, SUNY, Albany, New York, USA Coccidioidomycosis, a systemic fungal disease caused by Coccidioides immitis, is endemic in the southwestern United States and in parts of Mexico and Central and South America. Only sporadic cases have been reported in areas (including New York) where the disease is not endemic. We used hospital discharge records and state mycology laboratory data to investigate the characteristics of C. immitis infections among New York State residents. From 1992 to 1997, 161 persons had hospital discharge diagnoses of coccidioidomycosis (ICD9 Code 114.0 - 114.5, 114.9). From 1989 to 1997, 49 cultures from patients were confirmed as C. immitis; 26 of these patients had traveled to disease-endemic areas. Fourteen of 16 isolates had multilocus genotypes similar to those of Arizona isolates, which corroborates the travel-related acquisition of the disease. Our results indicate that coccidioidomycosis may be more common in New York residents than previously recognized. Increased awareness among health-care providers should improve timely diagnosis of coccidioidomycosis and prevention of associated illnesses and deaths among patients in nondisease- endemic areas. Coccidioidomycosis, a systemic disease which fragment into endospores. When released caused by the dimorphic fungus Coccidioides from the spherule, each endospore can act as a immitis, is endemic in the southwestern United new infectious unit in vivo (1). C. immitis, one of States and parts of Mexico and in Central and the most virulent and infectious fungal South America (1,2).
    [Show full text]
  • Pathogenic Skin Fungi in Australian Reptiles Fact Sheet
    Pathogenic skin fungi in Australian reptiles Fact sheet Introductory statement Fungi belonging to the genera Nannizziopsis, Paranannizziopsis and Ophidiomyces (formerly members of the Chrysosporium anamorph of Nannizziopsis vriesii [CANV] complex) are the cause of skin diseases that may progress to systemic and sometimes fatal disease in a range of reptile species. The disease was formerly referred to as ‘yellow fungus disease’ due to coloration of the skin lesions. These disease conditions are relatively newly described, suggesting they are ‘emerging’, although much remains to be learnt about the aetiological agents, epidemiology, presence, and prevalence of these fungal diseases worldwide. The reasons for the apparent emergence of these infections in both free-living and captive reptiles are not understood, however it is likely that global human-assisted movement of reptiles (due to the reptile pet trade) may be a contributing factor (Paré et al. 2020). In Australia, pathogenic skin fungi have been reported in a range of captive reptile species and in free-living Agamids (dragon lizards) and shingleback lizards (Tiliqua rugosa). The focus of this fact sheet is on fungi of the genera Nannizziopsis, Paranannizziopsis and Ophidiomyces. Aetiology The genera Nannizziopsis, and Paranannizziopsis are classified in the family Nannizziopsidaceae of the order Onygenales1 (Stchigel et al. 2013) and Ophidiomyces is classified in the family Onygenaceae (Onygenales) (Sigler et al. 2013). Nine species of the genus Nannizziopsis are associated with skin disease in lizards globally (Sigler et al. 2013; Paré and Sigler 2016; Peterson et al. 2020). Nannizziopsis barbatae2 has 99% nucleotide similarity to N. crocodili and is also similar genetically to N.
    [Show full text]
  • Onygena Corvina
    © Miguel Ángel Ribes Ripoll [email protected] Condiciones de uso Onygena corvina Alb. & Schwein., Consp. fung. (Leipzig): 113 (1805) COROLOGíA Registro/Herbario Fecha Lugar Hábitat MAR-190609 31 19/06/2009 Barranco de Toledo. Lomo de Sobre restos en Leg.: Domingo Chávez, Manuel las Jaras. Aguagarcía (Tenerife) descomposición de Morales, Miguel Á. Ribes 879 m. 28R CS6248 plumas y hueso de Det.: Domingo Chávez, Miguel Á. mirlo (Turdus merula) Ribes TAXONOMíA • Citas en listas publicadas: Saccardo's Syll. fung. VIII: 861; X: 80; XII: 477, 869; XX: 229 • Posición en la clasificación: Onygenaceae, Onygenales, Eurotiomycetidae, Eurotiomycetes, Ascomycota, Fungi DESCRIPCIÓN MACRO Ascoma formado por un estípite estéril y una cabeza fértil de 2-3 mm de diámetro, globosa o subesférica, con peridio verrugoso, que pasa de color casi blanco a marrón al madurar. Estípite cilíndrico, en ocasiones incurvado, atenuado hacia el ápice, hasta de 10 mm de alto, liso y de color blanco a blanquecino-marrón. Onygena corvina 190609 31 Página 1 de 4 DESCRIPCIÓN MICRO 1. Ascas subglobosas a ovoidales, octospóricas y no amiloides. Al madurar, la pared del peridio de la cabeza apical se deshace, dejando en libertad las ascas, que posteriormente se disgregan liberando las esporas. Medidas ascas (1000x, en agua, material fresco) 8.3 [10 ; 10.5] 12.2 x 6.8 [8.3 ; 8.8] 10.4 N = 47 ; C = 95%; Me = 10.24 x 8.56 2. Esporas elipsoidales, lisas, hialinas, con 2 gútulas lipídicas situadas cerca de los extremos. Onygena corvina 190609 31 Página 2 de 4 Medidas esporales (1000x, en agua, material fresco) 4.6 [5.7 ; 5.9] 7 x 2.2 [2.6 ; 2.7] 3 Q = 1.6 [2.2 ; 2.3] 2.8 ; N = 92 ; C = 95% Me = 5.79 x 2.62 ; Qe = 2.22 3.
    [Show full text]
  • Phylogenetic Circumscription of Arthrographis (Eremomycetaceae, Dothideomycetes)
    Persoonia 32, 2014: 102–114 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE http://dx.doi.org/10.3767/003158514X680207 Phylogenetic circumscription of Arthrographis (Eremomycetaceae, Dothideomycetes) A. Giraldo1, J. Gené1, D.A. Sutton2, H. Madrid3, J. Cano1, P.W. Crous3, J. Guarro1 Key words Abstract Numerous members of Ascomycota and Basidiomycota produce only poorly differentiated arthroconidial asexual morphs in culture. These arthroconidial fungi are grouped in genera where the asexual-sexual connec- arthroconidial fungi tions and their taxonomic circumscription are poorly known. In the present study we explored the phylogenetic Arthrographis relationships of two of these ascomycetous genera, Arthrographis and Arthropsis. Analysis of D1/D2 sequences Arthropsis of all species of both genera revealed that both are polyphyletic, with species being accommodated in different Eremomyces orders and classes. Because genetic variability was detected among reference strains and fresh isolates resem- phylogeny bling the genus Arthrographis, we carried out a detailed phenotypic and phylogenetic analysis based on sequence taxonomy data of the ITS region, actin and chitin synthase genes. Based on these results, four new species are recognised, namely Arthrographis chlamydospora, A. curvata, A. globosa and A. longispora. Arthrographis chlamydospora is distinguished by its cerebriform colonies, branched conidiophores, cuboid arthroconidia and terminal or intercalary globose to subglobose chlamydospores. Arthrographis curvata produced both sexual and asexual morphs, and is characterised by navicular ascospores and dimorphic conidia, namely cylindrical arthroconidia and curved, cashew-nut-shaped conidia formed laterally on vegetative hyphae. Arthrographis globosa produced membranous colonies, but is mainly characterised by doliiform to globose arthroconidia. Arthrographis longispora also produces membranous colonies, but has poorly differentiated conidiophores and long arthroconidia.
    [Show full text]
  • SVAMPE 37 Er Korrekturlæst Af Steen A
    37 SVAMPE 1998 SVAMPE er medlemsblad for Foreningen til Svampekundskabens Fremme, hvis formål det er at udbrede kendskabet til svampe, både videnskabeligt og praktisk. Foreningen afholder hvert år en række ekskursioner, svampeudstillinger, foredrag og kurser. Indmeldelse sker ved at indsende 110 kr. (ved bopæl i udlandet 120 kr.) samt tydeligt navn og adresse til: Foreningen til Svampekundskabens Fremme Postboks 168 2670 Greve Giro 9 02 02 25 SVAMPE udkommer to gange årligt, næste gang til august. SVAMPE is issued twice a year. Subscription can be obtained by sending Dkr. 120 to: The Danish Mycological Society P.O. box 168 DK-2670 Greve, Denmark telephone/fax: +45 4369 9802 Please give name and address clearly. REDAKTIONEN Jørgen Albertsen Olsbæk Strandvej 71A, 2670 Greve tlf. & fax: 43 69 98 02; e-mail: [email protected] Jens H. Petersen Fuglesangsallé 88, 8210 Århus V. tlf.: 86 10 00 96; e-mail: [email protected] Jan Vesterholt Kærvænget 32B, Gl. Sole, 8722 Hedensted tlf.: 75 89 34 42; e-mail: [email protected] SVAMPE 37 er korrekturlæst af Steen A. Elborne & Mogens Holm, fotosat hos PR Grafisk og trykt hos Skive Offset, Oddense. Landsdelsrapporter En af sæsonens usædvanligt almindelige arter: Ege-Spejlporesvamp (Inonotus dryadeus). Foto Jens H. Petersen. Nordjylland sikre område er kirkegårdene. Hvorom alting er, For første gang havde vi rigtig held med betegnel- så er det velsmagende sager uanset findested, og sen for vor forårsekskursion. „Morkeltur“ har vi vi kan anbefale kombinationen kæmperejer, forsøgt nogle gange uden held, men i 1997 var der morkler og creme fraiche.
    [Show full text]