Abdominal Wall Anterior 98-108 Posterior 109-11 Abductor Digiti

Total Page:16

File Type:pdf, Size:1020Kb

Abdominal Wall Anterior 98-108 Posterior 109-11 Abductor Digiti Index Cambridge University Press 978-0-521-72809-6 - Atlas of Musculoskeletal Ultrasound Anatomy: Second Edition Dr Mike Bradley and Dr Paul O’Donnell Index More information Index abdominal wall brachialis 42 echogenicity xi anterior 98–108 – – brachioradialis 49 elbow 49 64 posterior 109 11 anterior 53–8 calcaneo-fibular – abductor digiti minimi 70, 87 ligament 193 lateral 49 52 abductor pollicis brevis 87 medial 60 calf 178–86 posterior 62–4 abductor pollicis longus 79 antero-lateral compartment – extensor carpi radialis brevis acromioclavicular joint 26–7 179 80 lateral compartment 181–2 49, 79 adductor brevis 134 posterior compartment extensor carpi radialis longus – adductor canal 151 183 6 49, 79 adductor longus 134 capsule echogenicity xi extensor carpi ulnaris 79 – adductor magnus 134, 137 carpal tunnel 70 3 extensor digiti minimi 79 air echogenicity xi cartilage echogenicity extensor digitorum 79 costal cartilage xi – extensor digitorum longus 178 anatomical snuffbox 76 7 fibrocartilage xi anisotropy ix hyaline cartilage xi extensor hallucis longus 178, 205, 218–19 ankle 187–205 chest wall 13–21 anterior 202–5 anterior 13 extensor indicis 79 – lateral 193–6 costal cartilages 13 16 extensor pollicis brevis 79 medial 197–201 lateral 17 posterior 187–92 posterior 18–21 extensor pollicis longus 79 ribs 13–16 annular ligament 52 extensor retinaculum 202 collateral ligament anterior cruciate ligament fascia echogenicity xi lateral 167 (ACL) 153–7 fat echogenicity xi medial 165 antero-lateral pelvis 127–30 ulnar (UCL) 61 femoral neck 123–4 arm 42–8 common extensor origin femoral nerve 119 – anterior 42 7 (CEO) 49 femoral sheath 113 posterior 48 commonflexororigin(CFO)60 see also elbow; forearm; femoral triangle 113–14 wrist common peroneal nerve fibrocartilage echogenicity xi – 171, 176 axilla 22 5 flexor digiti minimi brevis 87 conjoint tendon 114, 117 axillary artery 22, 24 flexor digitorum longus 183, coracoacromial ligament 36 axillary nerve 24 199 coracobrachialis 42 biceps 42, 58–9, 168–9 flexor hallucis brevis 210 – – long head of 28 9 costal cartilages 13 16 flexor hallicus longus 183, echogenicity xi biceps femoris 174 199, 209 insertion 174 cruciate ligament flexor pollicis brevis 87 anterior 153–7 bone echogenicity xi posterior 173 flexor retinaculum 70 brachial plexus 4 deep ring 118 foot 206–19 distal 5 dorsum 216–19 proximal 3 deltoid ligament 197 plantar surface 206–15 220 © in this web service Cambridge University Press www.cambridge.org Index Cambridge University Press 978-0-521-72809-6 - Atlas of Musculoskeletal Ultrasound Anatomy: Second Edition Dr Mike Bradley and Dr Paul O’Donnell Index More information Index forearm 65–9 lateral cutaneous nerve of the plantar muscles 215 – anterior 65 7 thigh 120 plantar nerve distal 68 lateral popliteal fossa 174–7 lateral 199 posterior 69 medial 199 see also wrist latissimus dorsi 18 plantaris 183 gas echogenicity xi levator scapulae 18 pleura echogenicity xi gastrocnemius 183, 185 ligament echogenicity xi linea alba 99 popliteal fossa 173 gluteus maximus 132 cyst space 175 gracilis 134 Lisfranc ligament 217 lateral 174–7 greater trochanter 132–3 Lister’s tubercle 79 popliteus 167–8, 174, 183 groin 112–22 lower limb see ankle; calf; foot; posterior cruciate ligament 173 femoral triangle 113–14 knee; thigh – quadriceps 143, 145, 152, 155 symphysis pubis 115 18 lumbar triangle 110 ’ radial nerve 43 Guyon s canal 70 manubriosternal joint 15 – rectus abdominis 100, 108 hamstring 140 1, 149 medial collateral ligament 165 insertion 16, 105–7, 114 – hand 86 97 medial meniscus 164 rectus femoris 129–30, 144 flexor tendons 89–97 palm 86–8 medial patellar retinaculum 160 rectus sheath 98, 104 high resolution ultrasound ix median nerve 65, 68 rhomboids 18 hip 123–4 metatarsal heads 207 ribs 13–16 anterior 131 movement ix rotator cuff 36 lateral 132–3 muscle echogenicity xi medial 134–9 saphenous nerve 159 posterior 140–2 nerve echogenicity xi sartorius 127–8, 143 hyaline cartilage echogenicity xi oblique muscles 102, 103 scalene muscles 2–10 ilio-inguinal nerve 122 obturator nerve 139 scalenus anterior 2 scalenus medius 2 ilio-hypogastric nerve 103, 121 opponens digiti minimi 87 scalenus posterior 2 – ilio-psoas 125 6 opponens pollicis 87 sciatic nerve 142, 149–50 – – ilio-tibial tract 170 2 palm 86 8 semi-membranosus 161–3 inferior epigastric vessels 116 palpation ix serratus anterior 17 – infraclavicular fossa 10 11 paratenon 192 sesamoids 210–11 – echogenicity xi infraspinatus 32 8 shoulder 26–41 patella tendon 152–4 inguinal canal 112 acromioclavicular pectineus 134 joint 26–7 inguinal ligament 112 infraspinatus 32–8 pelvis 127–30 intercostal muscles 13, 17, 21 long head of biceps 28–9 periosteum echogenicity xi – interosseous scapholunate posterior joint 39 41 subscapularis 28–31 ligament 85 peroneal nerve 172 – common 171, 176 supraspinatus 32 6 jugular vein 7 superficial 180 soleus 183 knee 152–77 peroneus brevis 181, 195–6 anterior 152–6 sternoclavicular joint 12 antero-medial 159–60 peroneus longus 181, 195–6 sternomastoid 2 – lateral 167 9 peroneus tertius 178 subscapularis 22, 28–31 medial 164–6 posterior 173 pes anserinus 159–63 superficial ring 117 lateral collateral ligament 167 plantar fascia 212–14 supraclavicular fossa 1–10 221 © in this web service Cambridge University Press www.cambridge.org Index Cambridge University Press 978-0-521-72809-6 - Atlas of Musculoskeletal Ultrasound Anatomy: Second Edition Dr Mike Bradley and Dr Paul O’Donnell Index More information Index supraspinatus 32–6 thoracolumbar fascia 109 trochlear groove 158 symmetry ix thumb carpometacarpal ulnar artery 70 symphysis pubis 107, 115–18 joint 78 ulnar collateral ligament synovium echogenicity xi tibial nerve 176 (UCL) 61 posterior 199 talo-fibular ligament 194–3 ulnar nerve 62, 64, 70 tibialis anterior 178, 180, tarsal tunnel 199 – upper limb see arm; elbow; 203 4, 218 forearm; hand; wrist tendo-achilles 187–91 tibialis posterior 183, 199, 201 wrist 70–85 tendon echogenicity xi tibio-navicular ligament 198 anterior 70–3 – teres minor 39 trapezius 18 lateral 70 8 posterior 79–85 thigh 143–51 triceps 48 anterior 143–8 xiphisternum 105 posterior 149–50 trochanteric bursa 132 222 © in this web service Cambridge University Press www.cambridge.org.
Recommended publications
  • Gross Anatomy
    www.BookOfLinks.com THE BIG PICTURE GROSS ANATOMY www.BookOfLinks.com Notice Medicine is an ever-changing science. As new research and clinical experience broaden our knowledge, changes in treatment and drug therapy are required. The authors and the publisher of this work have checked with sources believed to be reliable in their efforts to provide information that is complete and generally in accord with the standards accepted at the time of publication. However, in view of the possibility of human error or changes in medical sciences, neither the authors nor the publisher nor any other party who has been involved in the preparation or publication of this work warrants that the information contained herein is in every respect accurate or complete, and they disclaim all responsibility for any errors or omissions or for the results obtained from use of the information contained in this work. Readers are encouraged to confirm the infor- mation contained herein with other sources. For example and in particular, readers are advised to check the product information sheet included in the package of each drug they plan to administer to be certain that the information contained in this work is accurate and that changes have not been made in the recommended dose or in the contraindications for administration. This recommendation is of particular importance in connection with new or infrequently used drugs. www.BookOfLinks.com THE BIG PICTURE GROSS ANATOMY David A. Morton, PhD Associate Professor Anatomy Director Department of Neurobiology and Anatomy University of Utah School of Medicine Salt Lake City, Utah K. Bo Foreman, PhD, PT Assistant Professor Anatomy Director University of Utah College of Health Salt Lake City, Utah Kurt H.
    [Show full text]
  • Anatomical Snuffbox
    Anatomical snuffbox • Depression seen on the lateral aspect of the wrist immediately distal to the radial styloid process. • Bounded: laterally by tendons of the abductor pollicis longus, extensor pollicis brevis. Medially by tendon of the extensor pollicis longus. floor: scaphoid and trapezium bones Its clinical importance lies in the fact that the scaphoid bone is most easily palpated here and that the pulsations of the radial artery can be felt here Anatomical snuffbox Anatomical snuffbox • Contents: 2) Origin of the 1) The radial artery cephalic vein pass subcutaneously over the snuffbox. 3) Superficial branch of the radial nerve pass subcutaneously over the snuffbox. Blood supply of the hand Anastomoses occur between the radial and ulnar arteries via the superficial and deep palmar arches The Deep palmar arch is formed mainly by the radial artery while the superficial palmar arch is formed mainly by the ulnar artery 3-On entering the palm, it curves laterally behind (deep) the palmar 4-The arch is aponeurosis and in front completed on (superficial) of the long flexor the lateral side tendons forming by the the superficial palmar arch superficial branch of the radial artery. 2-Then it gives off its deep branch of which runs in front of the FR , and joins the radial artery to complete the deep palmar arch 1-Enters the hand anterior (superficial) to the Superficial flexor retinaculum palmar branch of radial artery through Guyon’s canal Radial artery 5-The superficial palmar arch gives off digital arteries from its convexity which pass to the fingers and supply them Superficial palmar arch Deep palmar branch of ulnar artery Superficial palmar branch of radial artery Ulnar artery Radial artery Radial Artery first dorsal interosseous muscle 1-From the floor of the anatomical snuff-box the radial artery leaves the dorsum of the hand by turning forward between the two heads of the first dorsal interosseous muscle.
    [Show full text]
  • Distal Radial Approach Through the Anatomical Snuff Box for Coronary Angiography and Percutaneous Coronary Intervention
    Korean Circ J. 2018 Dec;48(12):1131-1134 https://doi.org/10.4070/kcj.2018.0293 pISSN 1738-5520·eISSN 1738-5555 Editorial Distal Radial Approach through the Anatomical Snuff Box for Coronary Angiography and Percutaneous Coronary Intervention Jae-Hyung Roh, MD, PhD, and Jae-Hwan Lee , MD, PhD Division of Cardiology, Department of Internal Medicine, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, Korea ► See the article “Feasibility of Coronary Angiography and Percutaneous Coronary Intervention via Left Snuffbox Approach” in volume 48 on page 1120. Received: Aug 27, 2018 The anatomical snuffbox, also known as the radial fossa, is a triangular-shaped depression Accepted: Sep 17, 2018 on the radial, dorsal aspect of the hand at the level of the carpal bones. It is clearly observed Figure 1 1)2) Correspondence to when the thumb is extended ( ). The bottom of the snuffbox is supported by carpal Jae-Hwan Lee, MD, PhD bones composed of the scaphoid and trapezium. The medial and lateral borders are bounded Division of Cardiology, Department of Internal by tendons of the extensor pollicis longus and the extensor pollicis brevis, respectively. The Medicine, Chungnam National University proximal border is formed by the styloid process of the radius. Within this narrow triangular Hospital, Chungnam National University space, various structures are located, including the distal radial artery (RA), a branch of the School of Medicine, 282, Munhwa-ro, Jung-gu, radial nerve, and the cephalic vein. Daejeon 35015, Korea. E-mail: [email protected] The anatomy of the hand arteries is illustrated in Figure 2.
    [Show full text]
  • Ultrasound-Guided Access of the Distal Radial Artery at the Anatomical Snuffbox for Catheter-Based Vascular Interventions: a Technical Guide
    Title: Ultrasound-guided access of the distal radial artery at the anatomical snuffbox for catheter-based vascular interventions: A technical guide. Authors: Anastasia Hadjivassiliou, MBBS, BSc; Ferdinand Kiemeneij, M.D, PhD; Sandeep Nathan, M.D, MSc; Darren Klass, M.D, PhD DOI: 10.4244/EIJ-D-19-00555 Citation: Hadjivassiliou A, Kiemeneij F, Nathan S, Klass D. Ultrasound-guided access of the distal radial artery at the anatomical snuffbox for catheter-based vascular interventions: A technical guide. EuroIntervention 2019; Jaa-625 2019, doi: 10.4244/EIJ-D-19-00555 Manuscript submission date: 10 June 2019 Revisions received: 24 July 2019 Accepted date: 01 August 2019 Online publication date: 06 August 2019 Disclaimer: This is a PDF file of a "Just accepted article". This PDF has been published online early without copy editing/typesetting as a service to the Journal's readership (having early access to this data). Copy editing/typesetting will commence shortly. Unforeseen errors may arise during the proofing process and as such Europa Digital & Publishing exercise their legal rights concerning these potential circumstances. Ultrasound-guided access of the distal radial artery at the anatomical snuffbox for catheter-based vascular interventions: A technical guide Anastasia Hadjivassiliou, MBBS, BSc1; Ferdinand Kiemeneij, MD, PhD2; Sandeep Nathan, MD, MSc3; Darren Klass, MD, PhD1 1. Department of Interventional Radiology, Vancouver General Hospital, University of British Columbia, Canada 2. Department of Cardiology, Tergooi Hospital, Blaricum, the Netherlands 3. University of Chicago Medicine, Chicago, IL, USA Short title: Ultrasound guided distal radial artery access at the anatomical snuffbox Corresponding author: Dr Darren Klass Department of Radiology, Vancouver General Hospital 899 West 12th Avenue, V5Z 1M9, Vancouver, BC, Canada Email address: [email protected] Disclaimer : As a public service to our readership, this article -- peer reviewed by the Editors of EuroIntervention - has been published immediately upon acceptance as it was received.
    [Show full text]
  • Carpal Box and Open Cup Radiography
    .............................................................................................................. ON THE JOB Carpal Box and Open Cup Radiography Dan L. Hobbs, M.S.R.S., Scaphoid fractures of the wrist are will include a discussion of the blood R.T.(R)(CT)(MR), is an asso- common and account for 71% of all car- supply to this bone. Next, there will be ciate professor in the depart- pal bone fractures. In the United States, a brief discussion of the mechanism of ment of radiographic science approximately 345 000 new scaphoid frac- injury, and the article will conclude with at Idaho State University in tures occur each year.1 Additionally, sta- a review of 3 positioning techniques that Pocatello. tistics have shown that scaphoid fractures can be employed to help diagnose scaph- account for 2% to 7% of all orthopedic oid fractures. Acknowledgement: Joshua fractures; they are the most commonly Howard , a student in the undiagnosed fracture.2 If an undiag- Anatomy radiographic science program nosed fracture is left without proper The scaphoid is located on the radial at Idaho State University, con- immobilization, a portion of the scaphoid side of the wrist in the anatomical snuff tributed valuable research to may die; therefore, it is imperative that box, which is located between the extensor this article. proper diagnosis, radiographic evalua- pollicis brevis and extensor pollicis longus tion and therapeutic treatment begin as tendons. (See Fig. 1.) It is the largest bone soon as possible. in the proximal row of carpals and can be The purpose of this article is to described as being complex because of its acquaint the radiographer with a few non- twisted shape; some describe it as being traditional methods used to image this boat-shaped.3 It articulates with the radius, fracture.
    [Show full text]
  • Repair of a Grynfeltt-Lesshaft Hernia with the PROCEED
    Glatz et al. Surgical Case Reports (2018) 4:50 https://doi.org/10.1186/s40792-018-0456-x CASE REPORT Open Access Repair of a Grynfeltt-Lesshaft hernia with the PROCEED™ VENTRAL PATCH: a case report Torben Glatz* , Hannes Neeff, Philipp Holzner, Stefan Fichtner-Feigl and Oliver Thomusch Abstract Background: Primary hernias in the triangle of Grynfeltt are very rare and therefore pose a difficulty in diagnosis and treatment. Due to the lack of systematic studies, the surgical approach must be chosen individually for each patient. Here, we describe an easy and safe surgical approach. Case presentation: We report the case of a 53-year-old male patient with a history of mental disability and pronounced scoliosis, who presented with a Grynfeltt-Lesshaft hernia with protrusion of the ascending colon and the right ureter. The hernia was repaired via a dorsal, extraperitoneal approach. The hernia gap with a diameter of approximately 1 cm was closed with insertion of a 6.4 × 6.4 cm PROCEED™ VENTRAL PATCH (Ethicon, Norderstedt, Germany). The operating time was 33 min and the patient was discharged the next day and showed no signs of recurrence at 1-year follow up. Conclusion: The technique described here is favorable because it requires very little dissection of the surrounding tissue and no trans-/intraabdominal dissection. The technique was chosen in this particular case to guarantee a fast postoperative recovery and prompt hospital discharge. Keywords: Grynfeltt-Lesshaft hernia, Lumbar hernia, PROCEED™ VENTRAL PATCH Background incarceration and a right lumbar protrusion with the Lumbar hernias are a very rare cause of abdominal com- clinical appearance of a soft tissue mass.
    [Show full text]
  • Lumps and Bumps of the Abdominal Wall and Lumbar Region—Part 1: Hernias, What the Radiologist Should Know
    Published online: 2019-06-18 THIEME 12 Review Article Lumps and Bumps of the Abdominal Wall and Lumbar Region—Part 1: Hernias, What the Radiologist Should Know Sangoh Lee1 Sarah R. Hudson1 Catalin V. Ivan1 Tahir Hussain1 Ratan Verma1 Arumugam Rajesh1 James A. Stephenson1 1Gastrointestinal Imaging Group, Department of Radiology, Address for correspondence James A. Stephenson, MD, FRCR, University Hospitals of Leicester NHS Trust, Leicester General Gastrointestinal Imaging Group, Department of Radiology, Hospital, Leicester, United Kingdom University Hospitals of Leicester NHS Trust, Leicester General Hospital, Leicester LE5 4PW, United Kingdom (e-mail: [email protected]). J Gastrointestinal Abdominal Radiol ISGAR 2018;1:12–18 Abstract Abdominal hernias represent common conditions and occur when a structure of the abdominal cavity protrudes through a defect in the abdominal wall. Recently, there has Keywords been an increase in demand from the clinical teams to confirm the clinical suspicion ► abdominal wall of an abdominal wall hernia, and to assess preoperatively large or complex hernias ► hernias through imaging. This pictorial review aims to present the different appearances of ► lumbar region abdominal wall and lumbar region hernias on imaging. however, many surgeons now prefer to have confirmatory Introduction imaging prior to invasive corrective surgery. Moreover, Abdominal hernias occur when part of or an organ of a body imaging can be particularly useful in assessing large abdom- 1 cavity protrudes through a defect in the wall of that cavity. inal wall defects with involvement of different abdominal It is a common condition with lifetime risk of developing a anatomical boundaries/walls (such as large incisional hernias 2 groin hernia estimated at 27% for men and 3% for women.
    [Show full text]
  • Hand Surgery: a Guide for Medical Students
    Hand Surgery: A Guide for Medical Students Trevor Carroll and Margaret Jain MD Table of Contents Trigger Finger 3 Carpal Tunnel Syndrome 13 Basal Joint Arthritis 23 Ganglion Cyst 36 Scaphoid Fracture 43 Cubital Tunnel Syndrome 54 Low Ulnar Nerve Injury 64 Trigger Finger (stenosing tenosynovitis) • Anatomy and Mechanism of Injury • Risk Factors • Symptoms • Physical Exam • Classification • Treatments Trigger Finger: Anatomy and MOI (Thompson and Netter, p191) • The flexor tendons run within the synovial tendinous sheath in the finger • During flexion, the tendons contract, running underneath the pulley system • Overtime, the flexor tendons and/or the A1 pulley can get inflamed during finger flexion. • Occassionally, the flexor tendons and/or the A1 pulley abnormally thicken. This decreases the normal space between these structures necessary for the tendon to smoothly glide • In more severe cases, patients can have their fingers momentarily or permanently locked in flexion usually at the PIP joint (Trigger Finger‐OrthoInfo ) Trigger Finger: Risk Factors • Age: 40‐60 • Female > Male • Repetitive tasks may be related – Computers, machinery • Gout • Rheumatoid arthritis • Diabetes (poor prognostic sign) • Carpal tunnel syndrome (often concurrently) Trigger Finger: Subjective • C/O focal distal palm pain • Pain can radiate proximally in the palm and distally in finger • C/O finger locking, clicking, sticking—often worse during sleep or in the early morning • Sometimes “snapping” during flexion • Can improve throughout the day Trigger Finger:
    [Show full text]
  • Ana Tomical Triangles J
    43 ANA TOMICAL TRIANGLES J. LESLIE PACE, M.D. Department of Anatomy, Royal University of Malta Anatomical description is given of certain areas in the human hody which have :.l triangular sha!)e and which are of anatomical or surgical importance. There are at lea;,t 30 describe,d ,anatomical triangles, many of which receive eponymous names. Some are of nUlrked importance and well known e.g. Scarpa's femoral triangle, Hesselbach's inguinal triangle, H!ld Petit '5 lumbar triangle; others arc of relative1y minor importance and n.ot so well-known e.g. Elau's, Friteau's and Assezat's triangles. Anatomical trianlfles are described in various regions .of the body e.g. Macewen's ana Trautmann's in the head regiml, Beclaud's and PirDgoff's in the neck region, He'lSelbach '5, Henke '5, Petit's amI Grynfeltt's in the ,abdominal wall region and Searpa's Hnd Weber's in the lower limb Tf~gion. Their size varies, some being large e.g. Scarpa's triangle, others being very small e.g. Macewen's triangle. The bDundaries of these triangular areas may cDnsist of muscle borders e.g. the triangle .of Lannier and the variDUS tria,ngles of the neck; of n111sc1e borders and· bony cn1"fac(1,~ e.g. P(~lit'.~l tri,f)ng]c, t]1(' tria11['1]" ,C)f M'll"('ille J;lIlfl t1H~ tl"i[J11~le of Auscultation; of muscle borders and blood ves,ds e.g. Uesselbach's; of imaginary line, clrawn hetween fixed bony points e.g.
    [Show full text]
  • Causes and Assessment of Subacute and Chronic Wrist Pain
    Singapore Med J 2013; 54(10): 592-598 P ictorial E ssay doi:10.11622/smedj.2013205 CMEARTICLE Causes and assessment of subacute and chronic wrist pain Janice Chin-Yi Liao1, MBBS, MRCS, Alphonsus Khin Sze Chong1,2, MBBS, FAMS, David Meng Kiat Tan1 , MBBS, MMed ABSTRACT Wrist pain is a common presentation to the general practitioner and emergency department. Most cases are simple to treat, and pain frequently resolves with conservative treatment. However, there are certain conditions, such as scaphoid nonunion and Kienböck’s disease, where delayed diagnosis and treatment can result in long-term deformity or disability. This article covers the various causes of wrist pain, recommendations on how wrist pain should be assessed, as well as details some of the common conditions that warrant specialist referral. Keywords: chronic wrist pain, physical examination, wrist injuries, wrist pain INTRODUCTION in the scapholunate interval or ulnar fossa may indicate Wrist pain is a common clinical problem.(1) Many acute cases scapholunate ligament injuries or triangular fibrocartilage are sprains or contusions following a minor injury, or tendinitis complex (TFCC) injuries, respectively. The wrist should following an episode of overuse. These problems generally then be assessed through passive and active range of motion resolve within weeks with rest, temporary immobilisation and exercises. Special tests (e.g. Finkelstein’s and Watson’s tests) symptomatic pain relief. to differentiate specific wrist conditions are described in Wrist pain that does not resolve after six weeks to three later sections. Ideally, patients with persistent swelling and months is a frequent diagnostic challenge to primary care tenderness, or a recent or remote history of trauma, should physicians.
    [Show full text]
  • Anterior Abdominal Wall
    Abdominal wall Borders of the Abdomen • Abdomen is the region of the trunk that lies between the diaphragm above and the inlet of the pelvis below • Borders Superior: Costal cartilages 7-12. Xiphoid process: • Inferior: Pubic bone and iliac crest: Level of L4. • Umbilicus: Level of IV disc L3-L4 Abdominal Quadrants Formed by two intersecting lines: Vertical & Horizontal Intersect at umbilicus. Quadrants: Upper left. Upper right. Lower left. Lower right Abdominal Regions Divided into 9 regions by two pairs of planes: 1- Vertical Planes: -Left and right lateral planes - Midclavicular planes -passes through the midpoint between the ant.sup.iliac spine and symphysis pupis 2- Horizontal Planes: -Subcostal plane - at level of L3 vertebra -Joins the lower end of costal cartilage on each side -Intertubercular plane: -- At the level of L5 vertebra - Through tubercles of iliac crests. Abdominal wall divided into:- Anterior abdominal wall Posterior abdominal wall What are the Layers of Anterior Skin Abdominal Wall Superficial Fascia - Above the umbilicus one layer - Below the umbilicus two layers . Camper's fascia - fatty superficial layer. Scarp's fascia - deep membranous layer. Deep fascia : . Thin layer of C.T covering the muscle may absent Muscular layer . External oblique muscle . Internal oblique muscle . Transverse abdominal muscle . Rectus abdominis Transversalis fascia Extraperitoneal fascia Parietal Peritoneum Superficial Fascia . Camper's fascia - fatty layer= dartos muscle in male . Scarpa's fascia - membranous layer. Attachment of scarpa’s fascia= membranous fascia INF: Fascia lata Sides: Pubic arch Post: Perineal body - Membranous layer in scrotum referred to as colle’s fascia - Rupture of penile urethra lead to extravasations of urine into(scrotum, perineum, penis &abdomen) Muscles .
    [Show full text]
  • Section 1 Upper Limb Anatomy 1) with Regard to the Pectoral Girdle
    Section 1 Upper Limb Anatomy 1) With regard to the pectoral girdle: a) contains three joints, the sternoclavicular, the acromioclavicular and the glenohumeral b) serratus anterior, the rhomboids and subclavius attach the scapula to the axial skeleton c) pectoralis major and deltoid are the only muscular attachments between the clavicle and the upper limb d) teres major provides attachment between the axial skeleton and the girdle 2) Choose the odd muscle out as regards insertion/origin: a) supraspinatus b) subscapularis c) biceps d) teres minor e) deltoid 3) Which muscle does not insert in or next to the intertubecular groove of the upper humerus? a) pectoralis major b) pectoralis minor c) latissimus dorsi d) teres major 4) Identify the incorrect pairing for testing muscles: a) latissimus dorsi – abduct to 60° and adduct against resistance b) trapezius – shrug shoulders against resistance c) rhomboids – place hands on hips and draw elbows back and scapulae together d) serratus anterior – push with arms outstretched against a wall 5) Identify the incorrect innervation: a) subclavius – own nerve from the brachial plexus b) serratus anterior – long thoracic nerve c) clavicular head of pectoralis major – medial pectoral nerve d) latissimus dorsi – dorsal scapular nerve e) trapezius – accessory nerve 6) Which muscle does not extend from the posterior surface of the scapula to the greater tubercle of the humerus? a) teres major b) infraspinatus c) supraspinatus d) teres minor 7) With regard to action, which muscle is the odd one out? a) teres
    [Show full text]