<<

Chirality and cosmology Marc Kamionkowski The gist

• Fundamental interactions are parity breaking • maybe parity breaking is manifest in new cosmological (, , dark energy, baryogenesis) as well? Elegant mathematics

Themes Proofs of principle

Some futuristic/academic New observables Some possibly observable Subjects

• Circular polarization of the CMB • From density perturbations • From gravitational waves • From chiral gravitational-wave background • Chiral gravitational waves • Pulsar timing arrays • Astrometry • 21-cm polarization collaborators

• CMB: Keisuke Inomata • PTAs/astrometry: Selim Hotinli, Kim Boddy, Wenzer Qin, Liang Dai, Andrew Jaffe, Enis Belgacem • 21-cm: Lingyuan Ji, Keisuke Inomata

• TAM formalism: Liang Dai, Donghui Jeong Cosmic microwave background Linearly polarized by anisotropic Thomson scattering Circular polarization of CMB

• Does not arise at linear order in cosmological perturbations • Linear polarization from scattering of anisotropic radiation field • Circular polarization arises at second order from photon-photon interactions

anisotropic CMB background gives rise to anisotropic index of refraction that a given CMB photon passes through (Sawyer 2014; Montero-Camacho & Hirata, 2018) But what about circular polarization

• Does not arise at linear order in cosmological perturbations (Thomson scattering induces only *linear* polarization) But can be induced by propagation of linearly polarized light through birefringent medium Primordial density perturbations Now suppose primordial polarization or index-of- refraction tensor due to primordial GWs • Polarization and index of refraction now have B (as well as E) modes: Probably far from detectable Chiral photons from chiral GWs Pulsar timing arrays and gravitational waves

Consider + polarized GW in +z direction

AAACNHicbVDJSgNBEO1xN25Rj14Kg6CXMCOKXgTRi+BFwSRCJoaenopp0rPQXSOGIR/lxQ/xIoIHRbz6DXYWcH3Q8N6rKqrrBamShlz3yRkbn5icmp6ZLczNLywuFZdXqibJtMCKSFSiLwNuUMkYKyRJ4WWqkUeBwlrQOe7XazeojUziC+qm2Ij4dSxbUnCyVrN46qdtuenfoIDbLTgA32RRMx/oTg98kipE+OrpbAFe5SBhqMAXYUJDcdtrFktu2R0A/hJvREpshLNm8cEPE5FFGJNQ3Ji656bUyLkmKRT2Cn5mMOWiw6+xbmnMIzSNfHB0DzasE0Ir0fbFBAP3+0TOI2O6UWA7I05t87vWN/+r1TNq7TdyGacZYSyGi1qZAkqgnyCEUqMg1bWECy3tX0G0ueaCbM4FG4L3++S/pLpd9nbKu+c7pcOjURwzbI2ts03msT12yE7YGaswwe7YI3thr8698+y8Oe/D1jFnNLPKfsD5+AQS86lN

AAACIHicbZDLSsNAFIYnXmu9RV26GSxC3ZREKnUjFN24rGAv0IQwmU7aoTNJmJkUS+ijuPFV3LhQRHf6NE7aFLT1wMDH/5/DmfP7MaNSWdaXsbK6tr6xWdgqbu/s7u2bB4ctGSUCkyaOWCQ6PpKE0ZA0FVWMdGJBEPcZafvDm8xvj4iQNArv1TgmLkf9kAYUI6Ulz6w58YCWnRHB8OEMXkFHJtxLh4xPYObMsSFznLd6ZsmqWNOCy2DnUAJ5NTzz0+lFOOEkVJghKbu2FSs3RUJRzMik6CSSxAgPUZ90NYaIE+mm0wMn8FQrPRhEQr9Qwan6eyJFXMox93UnR2ogF71M/M/rJiq4dFMaxokiIZ4tChIGVQSztGCPCoIVG2tAWFD9V4gHSCCsdKZFHYK9ePIytM4rdrVycVct1a/zOArgGJyAMrBBDdTBLWiAJsDgETyDV/BmPBkvxrvxMWtdMfKZI/CnjO8f9Uyi4A==

AAACHnicbVDLSsNAFJ34rPUVdelmsAjtpiTSohuh6MZlBfuQJobJdNKOmTyYmRRL6Je48VfcuFBEcKV/4zTNQlsPDBzOOZc797gxo0Iaxre2tLyyurZe2Chubm3v7Op7+20RJRyTFo5YxLsuEoTRkLQklYx0Y05Q4DLScf3Lqd8ZES5oFN7IcUzsAA1C6lGMpJIcvW41BXVSnwWTsjUiGD5U4DmsQSumkN4xeO+wss8r8NZJs8gQSRVx9JJRNTLARWLmpARyNB390+pHOAlIKDFDQvRMI5Z2irikmJFJ0UoEiRH20YD0FA1RQISdZudN4LFS+tCLuHqhhJn6eyJFgRDjwFXJAMmhmPem4n9eL5HemZ3SME4kCfFskZcwKCM47Qr2KSdYsrEiCHOq/grxEHGEpWq0qEow509eJO2Tqlmr1q9rpcZFXkcBHIIjUAYmOAUNcAWaoAUweATP4BW8aU/ai/aufcyiS1o+cwD+QPv6AdfFoHI=

Total angular momentum waves

• Standard approach i~k ~x (~x)= ˜(~k)e · X~k (~x)= klm klm(~x) Xklm l klm(~x)=4⇡i jl(kr)Ylm(ˆx) • Analogous expansions for vector fields in terms of three types (E, B, L) of vector TAM waves • Analogous expansions for STF tensor fields in terms of 5 types (L, VE, VB, TE, TB) of tensor TAM waves. Transverse-traceless are TE/TB

• TAM formalism far more powerful for vector/tensor fields (than for scalar) given the transformation properties (the “spin”) of these fields under rotations For PTA/astrometry

• Is trivial to consider contribution of any given TAM wave to PTA/astrometry observables

GW anisotropy with PTAs

Bottom line

• Isotropic signal must be established with high SNR before anisotropy can be detected, and then only if anisotropy amplitude is O(1). Back to chirality!!

• Anisotropy estimator easily modified to seek GW circular-polarization

• Anisotropy -à CP :: + à - • L+l+l’ = even à L+l+l’ = odd

• So estimators for intensity anisotropy become estimators for circular- polarization anisotropy by placing L+l+l’ even to L+l+l’ odd • One consequence: monopole (an overall GW chirality) not detectable

• Numerically, CP dipole detectable with high SNR and for CP dipole O(1) This is interesting!

• ~nHZ GW background from SMBH-binary mergers • Local signal may well be dominated by one, or a handful of sources, and if so, intensity should be anisotropic, and signal most generally circularly polarized to O(1) Circular polarization of 21-cm radiation from dark ages • Hirata, Mishra & Venumadhav (2017) calculated circular polarization from 21-cm line of neutral hydrogen from misalignment of 21-cm quadrupole and CMB quadrupole. Calculation performed with spherical tensors.

• Our work (in progress): reformulate in terms of Cartesian tensors and then use TAM to simplify calculation. Provide first numerical results on “standard model” prediction (that arises from 2nd order in density- perturbation amplitude) arXiv:2005.10250

Numerically….

• Signal far too big to be seen any time soon, but conceivably detectable with future lunar-based radio array • May be interesting cross-correlations with other observables (CMB B mode, weak lensing, etc.) Summary/conclusions

• Calculational tools from TAM formalism allow dramatic simplification of observables on a spherical sky, especially when vector/tensor modes are involved and/or observables are 2nd order in perturbation theory • CMB circular polarization in standard model • Imprint of chirality of GW background on CMB CP • Elegant/compact formalism for PTA/astrometry probes of ~nHZ GW background • CP of 21-cm radiation from dark ages