Pseudoalteromonas Sp. NC201, Un Probiotique Isolé En Nouvelle

Total Page:16

File Type:pdf, Size:1020Kb

Pseudoalteromonas Sp. NC201, Un Probiotique Isolé En Nouvelle Pseudoalteromonas sp. NC201, un probiotique isolé en Nouvelle-Calédonie pour l’élevage de la crevette Litopenaeus stylirostris : Caractérisation et impact sur l’état physiologique de la crevette Louis Sorieul To cite this version: Louis Sorieul. Pseudoalteromonas sp. NC201, un probiotique isolé en Nouvelle-Calédonie pour l’élevage de la crevette Litopenaeus stylirostris : Caractérisation et impact sur l’état physiologique de la crevette. Interactions entre organismes. Université de la Nouvelle-Calédonie, 2017. Français. NNT : 2017NCAL0009. tel-02934098 HAL Id: tel-02934098 https://hal-unc.archives-ouvertes.fr/tel-02934098 Submitted on 9 Sep 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THESE pour obtenir le grade de Docteur de L’école doctorale du Pacifique (ED469) Spécialité : Microbiologie Biologie Marine Louis SORIEUL Le 28 novembre 2017 Pseudoalteromonas sp. NC201, un probiotique isolé en Nouvelle-Calédonie pour l'élevage de la crevette Litopenaeus stylirostris : Caractérisation et impact sur l’état physiologique de la crevette Travail réalisé au LEAD/NC, IFREMER et au LIVE, UNC Devant le jury composé de : Christine PAILLARD Directeur de recherche, CNRS Brest Rapporteur Pascal FAVREL Professeur, Université de Caen Rapporteur Claude PAYRI Directeur de recherche, IRD Nouméa Examinateur Mariko MATSUI Cadre de recherche, IPNC Examinateur Linda GUENTAS Maître de conférence, UNC Examinateur Jörn KALINOWSKI Professeur, Université de Bielefeld Examinateur Viviane BOULO Cadre de recherche, Ifremer Directrice Hamid AMIR Professeur, UNC Co-directeur 1 Remerciements Je tiens à remercier toutes les personnes qui ont été impliquées de près ou de loin dans l’aboutissement de cette thèse. Je remercie Madame Christine Paillard et Monsieur Pascal Favrel pour m’avoir fait l’honneur d’être rapporteurs de cette thèse. Je remercie également Mesdames Claude Payri, Mariko Matsui et Linda Guentas ainsi que Monsieur Jörn Kalinowski pour avoir accepté d’être membres du jury de thèse. Je remercie également le professeur Hamid Amir ainsi que Monsieur André Carpentier pour m’avoir simultanément accueilli au sein du Laboratoire Insulaire du Vivant et de l’Environnement (LIVE) de l’Université de Nouvelle-Calédonie et de l’unité de recherche Lagons, Écosystèmes et Aquaculture Durable (LEAD) de la délégation IFREMER en Nouvelle- Calédonie. Je tiens particulièrement à remercier ma directrice de thèse, Viviane Boulo, pour sa disponibilité et sa rigueur scientifique ainsi que mes co-encadrants de thèse, Nelly Wabete et Dominique Pham. Merci pour vos conseils et le partage de vos connaissances dans vos domaines respectifs, sans vous ce travail transversal de thèse n’aurait pas été possible. Merci également à mon co-directeur de thèse, Hamid Amir, pour sa disponibilité et son soutien. Merci aux membres des équipes qui m’ont soutenu. Coté Ifremer, je remercie l’équipe PIE, Viviane, Domi et Cécile pour l’aide fournie lors des infections expérimentales et des analyses biomoléculaires. Merci à l’équipe EcoPhy, Nelly, Marie-Mad et Marie, pour l’aide fournie lors des dissections et des analyses biochimiques. Merci à l’équipe ZooTech, Tathan, JR et Matéheau pour les crevettes et l’aide à la mise en place des expérimentations animales. Merci à l’équipe du LIVE de l’UNC, en particulier Valérie Médevielle et Cyril Antheaume, pour l’aide matérielle et technique tout au cours de ces trois dernières années. Ich danke vielmals den Kollegen vom CeBiTec, mit euch arbeiten gehörte zu den besten Momente meiner Doktorarbeit und ich hoffe wir werden auch später kollaborieren können. Je remercie tout le personnel, Ifremer et CTA, de la Station Aquacole de Saint Vincent. Vous avez été des collègues « chocs ». Merci aux thésards et ex-thésards de l’UNC, Charlotte, Thomas, Laurent, Simon, Alex, Left et Ben pour de m’avoir rappelé lors de mes passages qu’on était plusieurs dans le même bateau. Un grand merci à ceux qui m’auront fait découvrir la Calédonie et permis de décompresser. Flav, JP et toute la bande merci pour les coups de chasse, de pêche et de fête. Je tiens à remercier ma famille pour leur soutien et leur compréhension, cela fait trop d’années que je suis loin. Terima kasih Sayang, saya telah terlalu jauh terlalu panjang. Akhirnya selesai, saya tidak sabar untuk kembali kepada anda. Sayang kamu. 2 Table des matières Introduction ............................................................................................................................................. 5 Chapitre I : Rappels bibliographiques ............................................................................................ 7 1. Probiotique ...................................................................................................................................... 9 1.1. Définition ................................................................................................................................. 9 1.2. Modes d’action des probiotiques ............................................................................................ 9 1.2.1. Compétition avec la flore néfaste et/ou stabilisation de la flore bénéfique .................. 9 1.2.2. Atténuation de virulence des pathogènes .................................................................... 10 1.2.3. Stimulation du système immunitaire ............................................................................ 11 1.2.4. Amélioration de la nutrition .......................................................................................... 11 1.2.5. Amélioration de la qualité de l’eau ............................................................................... 12 1.3. Application en crevetticulture ............................................................................................... 12 1.3.1. Historique ...................................................................................................................... 12 1.3.2. Utilisation de probiotiques d’origine terrestre ............................................................. 13 1.3.3. Utilisation de probiotiques issus d’animaux sains......................................................... 14 1.3.4. Utilisation de probiotique environnementaux .............................................................. 14 1.4. La crevetticulture en Nouvelle-Calédonie ............................................................................. 15 1.4.1. Pathologies en grossissement ....................................................................................... 15 1.4.2. Utilisation de probiotiques en Nouvelle-Calédonie ...................................................... 17 1.4.3. La souche NC201 : un probiotique potentiel ................................................................. 17 2. Le genre Pseudoalteromonas ........................................................................................................ 18 2.1. Caractéristiques générales .................................................................................................... 18 2.1.1. Classification, morphologie et propriétés métaboliques .............................................. 18 2.1.2. Etat de la phylogénie : émergence de 2 sous-genres .................................................... 18 2.1.3. Un symbiote récurrent .................................................................................................. 19 2.2. Activité antimicrobienne ....................................................................................................... 19 2.2.1. Alcaloïdes ....................................................................................................................... 20 2.2.2. Polykétides .................................................................................................................... 20 2.2.3. Peptides antimicrobiens ................................................................................................ 20 2.3. Espèces de Pseudoalteromonas pathogènes pour les élevages marins ............................... 21 3. La crevette bleue, Litopenaeus stylirostris .................................................................................... 21 3.1. Taxonomie ............................................................................................................................. 21 3.2. Cycle biologique .................................................................................................................... 22 3.3. Osmorégulation ..................................................................................................................... 24 3.4. Défense immunitaire chez les crevettes pénéides ................................................................ 25 3.4.1. Reconnaissance du non-soi ........................................................................................... 26 3 3.4.2. Réponse cellulaire ......................................................................................................... 27 3.4.3. Réponse humorale .......................................................................................................
Recommended publications
  • The Essentials of Marine Biotechnology. Frontiers in Marine Science [Online], 8, Article 629629
    ROTTER, A., BARBIER, M., BERTONI, F. et al. 2021. The essentials of marine biotechnology. Frontiers in marine science [online], 8, article 629629. Available from: https://doi.org/10.3389/fmars.2021.629629 The essentials of marine biotechnology. ROTTER, A., BARBIER, M., BERTONI, F. et al. 2021 Copyright © 2021 Rotter, Barbier, Bertoni, Bones, Cancela, Carlsson, Carvalho, Cegłowska, Chirivella-Martorell, Conk Dalay, Cueto, Dailianis, Deniz, Díaz-Marrero, Drakulovic, Dubnika, Edwards, Einarsson, Erdoˇgan, Eroldoˇgan, Ezra, Fazi, FitzGerald, Gargan, Gaudêncio, Gligora Udoviˇc, Ivoševi´c DeNardis, Jónsdóttir, Kataržyt˙e, Klun, Kotta, Ktari, Ljubeši´c, Luki´c Bilela, Mandalakis, Massa-Gallucci, Matijošyt˙e, Mazur-Marzec, Mehiri, Nielsen, Novoveská, Overling˙e, Perale, Ramasamy, Rebours, Reinsch, Reyes, Rinkevich, Robbens, Röttinger, Rudovica, Sabotiˇc, Safarik, Talve, Tasdemir, Theodotou Schneider, Thomas, Toru´nska-Sitarz, Varese and Vasquez.. This article was first published in Frontiers in Marine Science on 16.03.2021. This document was downloaded from https://openair.rgu.ac.uk fmars-08-629629 March 10, 2021 Time: 14:8 # 1 REVIEW published: 16 March 2021 doi: 10.3389/fmars.2021.629629 The Essentials of Marine Biotechnology Ana Rotter1*, Michéle Barbier2, Francesco Bertoni3,4, Atle M. Bones5, M. Leonor Cancela6,7, Jens Carlsson8, Maria F. Carvalho9, Marta Cegłowska10, Jerónimo Chirivella-Martorell11, Meltem Conk Dalay12, Mercedes Cueto13, 14 15 16 17 Edited by: Thanos Dailianis , Irem Deniz , Ana R. Díaz-Marrero , Dragana Drakulovic , 18 19
    [Show full text]
  • Biotechnological Potential of Cold Adapted Pseudoalteromonas Spp
    marine drugs Article Biotechnological Potential of Cold Adapted Pseudoalteromonas spp. Isolated from ‘Deep Sea’ Sponges Erik Borchert 1, Stephen Knobloch 2, Emilie Dwyer 1, Sinéad Flynn 1, Stephen A. Jackson 1, Ragnar Jóhannsson 2, Viggó T. Marteinsson 2, Fergal O’Gara 1,3,4 and Alan D. W. Dobson 1,* 1 School of Microbiology, University College Cork, National University of Ireland, Cork T12 YN60, Ireland; [email protected] (E.B.); [email protected] (E.D.); [email protected] (S.F.); [email protected] (S.A.J.); [email protected] (F.O.) 2 Department of Research and Innovation, Matís ohf., Reykjavik 113, Iceland; [email protected] (S.K.); [email protected] (R.J.); [email protected] (V.T.M.) 3 Biomerit Research Centre, University College Cork, National University of Ireland, Cork T12 YN60, Ireland 4 School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth 6102, WA, Australia * Correspondence: [email protected]; Tel.: +353-21-490-2743 Received: 22 February 2017; Accepted: 14 June 2017; Published: 19 June 2017 Abstract: The marine genus Pseudoalteromonas is known for its versatile biotechnological potential with respect to the production of antimicrobials and enzymes of industrial interest. We have sequenced the genomes of three Pseudoalteromonas sp. strains isolated from different deep sea sponges on the Illumina MiSeq platform. The isolates have been screened for various industrially important enzymes and comparative genomics has been applied to investigate potential relationships between the isolates and their host organisms, while comparing them to free-living Pseudoalteromonas spp. from shallow and deep sea environments.
    [Show full text]
  • Ecogenomics and Genome Landscapes of Marine Pseudoalteromonas Phage H105/1
    The ISME Journal (2010), 1–15 & 2010 International Society for Microbial Ecology All rights reserved 1751-7362/10 $32.00 www.nature.com/ismej ORIGINAL ARTICLE Ecogenomics and genome landscapes of marine Pseudoalteromonas phage H105/1 Melissa Beth Duhaime1,2, Antje Wichels3, Jost Waldmann1, Hanno Teeling1 and Frank Oliver Glo¨ckner1,2 1Microbial Genomics Group, Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, Bremen, Germany; 2School of Engineering and Sciences, Jacobs University, Bremen, Germany and 3Biosciences Division, Alfred Wegener Institute for Polar and Marine Research, BAH, Helgoland, Germany Marine phages have an astounding global abundance and ecological impact. However, little knowledge is derived from phage genomes, as most of the open reading frames in their small genomes are unknown, novel proteins. To infer potential functional and ecological relevance of sequenced marine Pseudoalteromonas phage H105/1, two strategies were used. First, similarity searches were extended to include six viral and bacterial metagenomes paired with their respective environmental contextual data. This approach revealed ‘ecogenomic’ patterns of Pseudoalteromo- nas phage H105/1, such as its estuarine origin. Second, intrinsic genome signatures (phylogenetic, codon adaptation and tetranucleotide (tetra) frequencies) were evaluated on a resolved intra- genomic level to shed light on the evolution of phage functional modules. On the basis of differential codon adaptation of Phage H105/1 proteins to the sequenced Pseudoalteromonas spp., regions of the phage genome with the most ‘host’-adapted proteins also have the strongest bacterial tetra signature, whereas the least ‘host’-adapted proteins have the strongest phage tetra signature. Such a pattern may reflect the evolutionary history of the respective phage proteins and functional modules.
    [Show full text]
  • Bioactivity, Chemical Profiling, and 16S Rrna-Based Phylogeny of Pseudoalteromonas Strains Collected on a Global Research Cruise
    Downloaded from orbit.dtu.dk on: Oct 04, 2021 Bioactivity, Chemical Profiling, and 16S rRNA-Based Phylogeny of Pseudoalteromonas Strains Collected on a Global Research Cruise Vynne, Nikolaj Grønnegaard; Månsson, Maria; Nielsen, Kristian Fog; Gram, Lone Published in: Marine Biotechnology Link to article, DOI: 10.1007/s10126-011-9369-4 Publication date: 2011 Link back to DTU Orbit Citation (APA): Vynne, N. G., Månsson, M., Nielsen, K. F., & Gram, L. (2011). Bioactivity, Chemical Profiling, and 16S rRNA- Based Phylogeny of Pseudoalteromonas Strains Collected on a Global Research Cruise. Marine Biotechnology, 13(6), 1062-1073. https://doi.org/10.1007/s10126-011-9369-4 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. 1 Bioactivity, chemical profiling and 16S rRNA based phylogeny of 2 Pseudoalteromonas strains collected on a global research cruise 3 4 Nikolaj G. Vynne1*, Maria Månsson2, Kristian F. Nielsen2 and Lone Gram1 5 6 1 Technical University of Denmark, National Food Institute, Søltofts Plads, bldg.
    [Show full text]
  • Chemical Interactions Between Marine Macroalgae and Bacteria
    Vol. 409: 267–300, 2010 MARINE ECOLOGY PROGRESS SERIES Published June 23 doi: 10.3354/meps08607 Mar Ecol Prog Ser REVIEW Chemical interactions between marine macroalgae and bacteria Franz Goecke, Antje Labes, Jutta Wiese, Johannes F. Imhoff* Kieler Wirkstoff-Zentrum at the Leibniz Institute of Marine Sciences (IFM-GEOMAR), Am Kiel-Kanal 44, Kiel 24106, Germany ABSTRACT: We review research from the last 40 yr on macroalgal–bacterial interactions. Marine macroalgae have been challenged throughout their evolution by microorganisms and have devel- oped in a world of microbes. Therefore, it is not surprising that a complex array of interactions has evolved between macroalgae and bacteria which basically depends on chemical interactions of vari- ous kinds. Bacteria specifically associate with particular macroalgal species and even to certain parts of the algal body. Although the mechanisms of this specificity have not yet been fully elucidated, eco- logical functions have been demonstrated for some of the associations. Though some of the chemical response mechanisms can be clearly attributed to either the alga or to its epibiont, in many cases the producers as well as the mechanisms triggering the biosynthesis of the biologically active compounds remain ambiguous. Positive macroalgal–bacterial interactions include phytohormone production, morphogenesis of macroalgae triggered by bacterial products, specific antibiotic activities affecting epibionts and elicitation of oxidative burst mechanisms. Some bacteria are able to prevent biofouling or pathogen invasion, or extend the defense mechanisms of the macroalgae itself. Deleterious macroalgal–bacterial interactions induce or generate algal diseases. To inhibit settlement, growth and biofilm formation by bacteria, macroalgae influence bacterial metabolism and quorum sensing, and produce antibiotic compounds.
    [Show full text]
  • Pseudoalteromonas Rhizosphaerae Sp. Nov., a Novel Plant Growth-­ Promoting Bacterium with Potential Use in Phytoremediation
    TAXONOMIC DESCRIPTION Navarro- Torre et al., Int. J. Syst. Evol. Microbiol. 2020;70:3287–3294 DOI 10.1099/ijsem.0.004167 Pseudoalteromonas rhizosphaerae sp. nov., a novel plant growth- promoting bacterium with potential use in phytoremediation Salvadora Navarro- Torre1, Lorena Carro2, Ignacio D. Rodríguez- Llorente1, Eloísa Pajuelo1, Miguel Ángel Caviedes1, José Mariano Igual3, Hans- Peter Klenk4 and Maria del Carmen Montero- Calasanz4,* Abstract Strain RA15T was isolated from the rhizosphere of the halophyte plant Arthrocnemum macrostachyum growing in the Odiel marshes (Huelva, Spain). RA15T cells were Gram stain- negative, non- spore- forming, aerobic rods and formed cream- coloured, opaque, mucoid, viscous, convex, irregular colonies with an undulate margin. Optimal growth conditions were observed on tryptic soy agar (TSA) plates supplemented with 2.5 % NaCl (w/v) at pH 7.0 and 28 °C, although it was able to grow at 4–32 °C and at pH values of 5.0–9.0. The NaCl tolerance range was from 0 to 15 %. The major respiratory quinone was Q8 but Q9 was also present. The most abundant fatty acids were summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), C17 : 1 ω8c and C16 : 0. The polar lipids profile comprised phosphatidylglycerol and phosphatidylethanolamine as the most abundant representatives. Phylogenetic analyses confirmed the well- supported affiliation of strain RA15T within the genus Pseudoalteromonas, close to the type strains of Pseudoalteromonas neustonica, Pseudoalteromonas prydzensis and Pseudoalteromonas mariniglutinosa. Results of compara- tive phylogenetic and phenotypic studies between strain RA15T and its closest related species suggest that RA15T could be a new representative of the genus Pseudoalteromonas, for which the name Pseudoalteromonas rhizosphaerae sp.
    [Show full text]
  • Bioactivity and Phylogeny of the Marine Bacterial Genus Pseudoalteromonas
    Downloaded from orbit.dtu.dk on: Sep 28, 2021 Bioactivity and phylogeny of the marine bacterial genus Pseudoalteromonas Vynne, Nikolaj Grønnegaard Publication date: 2011 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Vynne, N. G. (2011). Bioactivity and phylogeny of the marine bacterial genus Pseudoalteromonas. Technical University of Denmark. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Bioactivity and phylogeny of the marine bacterial genus Pseudoalteromonas Ph.D. thesis by Nikolaj Grønnegaard Vynne 2011 Technical University of Denmark National Food Institute Division of Industrial Food Research Cover illustrations: Map of the Galathea 3 route (www.galathea3.dk) Structure of the antibiotic indolmycin Excerpt of 16S rRNA phylogenetic tree P. luteoviolacea S4054 grown in MMM PREFACE The present Ph.D. study has been conducted at the National Food Institute (previously the National Institute for Aquatic Resources) at the Technical University of Denmark.
    [Show full text]
  • Microorganisms Associated with Ulva Grown in Abalone Effluent Water: Implications for Biosecurity
    MICROORGANISMS ASSOCIATED WITH ULVA GROWN IN ABALONE EFFLUENT WATER: IMPLICATIONS FOR BIOSECURITY DJGKRI001 KRISTIN DE JAGER Dissertation presented in the partial fulfilment of the requirements for the degree of Master of Science (BIO 5006W Applied Marine Science) Department of Biological Science University of Cape Town February 2019 Supervisor: Prof John J. Bolton (University of Cape Town) Co-supervisor: Dr Brett M. Macey University(Department of Agriculture, of Forestry Cape and Fisheries) Town The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town P a g e | 1 DECLARATION I know the meaning of plagiarism and declare that all of the work in the dissertation (or thesis), other than that which was carried out by the University of the Western Cape Next Generation Sequencing Facility and that which is properly acknowledged, is my own work as assisted by my supervisors. This thesis has not been submitted in this or any form to another university. Experimental work discussed in this thesis was carried out under the supervision of Prof. J. J. Bolton of the Department of Botany, University of Cape Town and Dr. B.M. Macey of the Department of Agriculture, Forestry and Fisheries. Mr Kristin de Jager Date: P a g e | 2 DEDICATIONS I dedicate this thesis to all things green, as without words they strive to answer questions we have never asked.
    [Show full text]
  • Defence on Surface of Rhodophyta Halymenia Floresii : Metabolomic Profile and Interactions with Its Surface-Associated Bacteria Shareen a Abdul Malik
    Defence on surface of Rhodophyta Halymenia floresii : metabolomic profile and interactions with its surface-associated bacteria Shareen a Abdul Malik To cite this version: Shareen a Abdul Malik. Defence on surface of Rhodophyta Halymenia floresii : metabolomic profile and interactions with its surface-associated bacteria. Agricultural sciences. Université de Bretagne Sud, 2020. English. NNT : 2020LORIS598. tel-03153270 HAL Id: tel-03153270 https://tel.archives-ouvertes.fr/tel-03153270 Submitted on 26 Feb 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THESE DE DOCTORAT DE UNIVERSITE BRETAGNE SUD ECOLE DOCTORALE N° 598 Sciences de la Mer et du littoral Spécialité : Biotechnologie Marine Par Shareen A ABDUL MALIK Defence on surface of Rhodophyta Halymenia floresii: metabolomic fingerprint and interactions with the surface-associated bacteria Thèse présentée et soutenue à « Vannes », le « 7 July 2020 » Unité de recherche : Laboratoire de Biotechnologie et Chimie Marines Thèse N°: Rapporteurs avant soutenance : Composition du Jury : Prof. Gérald Culioli Associate Professor Président : Université de Toulon (La Garde) Prof. Claire Gachon Professor Dr. Leila Tirichine Research Director (CNRS) Museum National d’Histoire Naturelle, Paris Université de Nantes Examinateur(s) : Prof. Gwenaëlle Le Blay Professor Université Bretagne Occidentale (UBO), Brest Dir.
    [Show full text]
  • Korean Journal of Environmental Biology
    Korean J. Environ. Biol. 37(4) : 592-599 (2019) Korean Journal of Environmental Biology Korean J. Environ. Biol. Original article 37(4) : 592-599 (2019) ISSN 1226-9999 (print) https://doi.org/10.11626/KJEB.2019.37.4.592 ISSN 2287-7851 (online) Description of ten unrecorded bacterial species isolated from Ostrea denselamellosa and Eriocheir japonica from the Seomjin River Ahyoung Choi*, Ji-Hey Han, Eui-Jin Kim, Ja Young Cho and Sun-I Hwang Microbial Research Department, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea * Corresponding author Abstract: Ostrea denselamellosa and Eriocheir japonica samples were collected from Ahyoung Choi the Seomjin River in 2019 as part of the “Research of Host-Associated Bacteria” research Tel. 054-530-0863 program. Almost 200 bacterial strains were isolated from the O. denselamellosa and E. E-mail. [email protected] japonica samples and subsequently identified by 16S rRNA gene sequencing. Among the bacterial isolates, ten strains possessed greater than 98.7% sequence similarity Received: 23 October 2019 with published bacterial species that had not previously been recorded in Korea. These Revised: 25 November 2019 species were phylogenetically diverse, belonging to three phyla, four classes, seven Revision accepted: 26 November 2019 orders, and eight genera. At the genus and class level, the previously unrecorded species belonged to Pseudoalteromonas, Aliivibrio, Rheinheimera, Leucothrix, and Shewanella of the class Gamma-proteobacteria, Olleya of the class Flavobacteriia, Algoriphagus of the class Cytophagia, and Lactococcus of the class Bacilli. The previously unrecorded species were further characterized by examining their Gram staining, colony and cell morphology, biochemical properties, and phylogenetic positions.
    [Show full text]
  • Halophilic Bacteria: Diversity and Biotechnological Applications Naïma Bou M’Handi
    Volume III N° 10 A1V3N10A2020 Revue de l’Entrepreneuriat et de l’Innovation Halophilic Bacteria: Diversity and Biotechnological Applications Naïma Bou m’handi Seafood Processing Technology Center (CSVTPM), National Research Institute of Marine Fisheries (INRH), BP: 1050, Agadir, Morocco [email protected] halophiles that grow oplimally in 3% (w/v) total Abstract- Hypersaline environments are extreme habitats on the salt, moderate halophiles with optimal growth at planet and have a diverse microbial population formed by halophilic microorganisms. They are considered to be actual or 3- 15% (w/v) salt and extreme halophiles that potential sources for discovery bioactive compounds, compatible grow optimally at 25% (w/v) salt [3]. The world solutes including novel and/or extraordinarily enzymes. To date, of halophilic microorganisms is highly diverse. a number of bioactive compounds for the use in various fields of biotechnology which show assorted biological activities ranging Halophilic and halotolerant from antioxidant, sunscreen and antibiotic actions have been microorganismsarefound in all three domains of reported. In addition, some halophilic microorganisms are life: Archaea, Bacteria and Eucarya. Saline and capable of producing massive amounts of compatible solutes that are useful as stabilizers for biomolecules or stress-protective hypersaline environments are found in wide agents. The present review will impart knowledge and discuss on variety of aquatic and terrestrial ecosystems. In diversity of halophilic bacteria and their use in various terms of marine environment, Morocco has biotechnological applications, including industrial, pharmaceutical, agricultural and environmental aspects. coastline of about 3500 Km. Morocco is know Culture dependent as well as culture independent methods for for its rich biodiversity especially in context with isolation of halophiles should go hand in hand to provide the halophiles because; it is surrounded by atlantic insight mechanisms of halophilic adaptation and their future applications.
    [Show full text]
  • Isolation and Characterization of a Sponge-Associated Actinomycete That Produces Manzamines
    ABSTRACT Title of Document: ISOLATION AND CHARACTERIZATION OF A SPONGE-ASSOCIATED ACTINOMYCETE THAT PRODUCES MANZAMINES Olivier Peraud, Doctor of Philosophy, 2006 Directed By: Professor Russell T. Hill Marine Estuarine Environmental Sciences Two Indonesian sponges, Acanthostrongylophora sp. Sponge 35 and Sponge 52, containing manzamine A were collected off the coast of Manado, Indonesia. Manzamines are a family of marine alkaloids that exhibit a complex molecular architecture and possess bioactivities including antitumour, antimicrobial, antiparasitic and insecticidal activities. Manzamines have been found in 17 different species of sponges with wide geographical distribution which has led to speculation that they may be produced by a microbial symbiont rather than by the sponges themselves. The sponges’ microbial communities were investigated using 16S rRNA gene analysis and a rational culture-based microbiology approach in which specific bacterial groups were targeted. The molecular analysis of these microbial communities revealed that they were complex and diverse. Microbiological analyses were conducted on Acanthostrongylophora sp. with a particular emphasis on the isolation of actinomycetes because of the high number of actinomycete sequences in this sponge 16S rRNA gene clone library and their excellent track record as bioactive compound producers. One of the isolated actinomycetes, Micromonospora sp. strain M42, produces manzamine A and 8-hydroxy-manzamine, compounds initially detected in the sponge. A detailed analysis of Micromonospora sp. strain M42 showed that it grew on a wide range of salt concentrations with an optimal growth at 0-1% NaCl. Cultures of Micromonospora sp. strain M42 consistently produced manzamine A with a maximum yield of 1 mg/l. The genome size of Micromonospora sp.
    [Show full text]