Physiological and Genomic Features of a Novel Violacein-Producing Bacterium Isolated from Surface Seawater

Total Page:16

File Type:pdf, Size:1020Kb

Physiological and Genomic Features of a Novel Violacein-Producing Bacterium Isolated from Surface Seawater RESEARCH ARTICLE Physiological and genomic features of a novel violacein-producing bacterium isolated from surface seawater Yue-Hong Wu, Hong Cheng, Lin Xu, Xiong-Bin Jin, Chun-Sheng Wang, Xue-Wei Xu* Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, P. R. China * [email protected] a1111111111 a1111111111 Abstract a1111111111 a1111111111 Strains JW1T and JW3, isolated from surface seawater of the Arabian Sea, were subjected a1111111111 to polyphasic taxonomic analysis. Cells of both strains were Gram-stain-negative, aerobic, and rod-shaped. They formed violet pigment and produced violacein. On the basis of 16S rRNA gene sequence analysis, strains JW1T and JW3 showed high 16S rRNA gene sequence similarity with Pseudoalteromonas byunsanensis JCM12483T (98.2%), P. shioya- OPEN ACCESS sakiensis SE3T (97.8%), P. arabiensis JCM 17292T (97.3%), and P. gelatinilytica NH153T Citation: Wu Y-H, Cheng H, Xu L, Jin X-B, Wang C- (97.1%). The 16S rRNA gene sequence similarity between JW1T and JW3 was 100%. Phy- S, Xu X-W (2017) Physiological and genomic logenetic analyses revealed that both strains fell within the cluster of the genus Pseudoalter- features of a novel violacein-producing bacterium isolated from surface seawater. PLoS ONE 12(6): omonas and represented an independent lineage. The average nucleotide identity and in T e0179997. https://doi.org/10.1371/journal. silico DNA-DNA hybridization values between JW1 and type strains of the closely related pone.0179997 Pseudoalteromonas species were 70.9±83.3% and 20.0±26.4%, respectively. The sole Editor: Beom Seok Kim, Korea University, respiratory quinone in both strains is ubiquinone 8 (Q-8). The principal fatty acids are REPUBLIC OF KOREA summed feature 3 (C16:1ω7c and/or iso-C15:0 2OH), C18:1ω7c, and C16:0. The major polar Received: January 15, 2017 lipids are phosphatidylethanolamine, phosphatidylglycerol, one unidentified glycolipid, one Accepted: June 7, 2017 unidentified aminolipid, and one unidentified phospholipid. The DNA G+C content was 43.3 mol%. Differential phylogenetic distinctiveness, chemotaxonomic differences, and pheno- Published: June 22, 2017 typic properties indicated that strains JW1T and JW3 could be differentiated from the Pseu- Copyright: © 2017 Wu et al. This is an open access doalteromonas species with validly published names. Therefore, it is proposed that strains article distributed under the terms of the Creative T Commons Attribution License, which permits JW1 and JW3 represent a novel species of the genus Pseudoalteromonas, for which the T T unrestricted use, distribution, and reproduction in name Pseudoalteromonas amylolytica sp. nov. (type strain, JW1 = CGMCC 1.15681 = any medium, provided the original author and KCTC 52406T = MCCC 1K02162T) is proposed. source are credited. Data Availability Statement: The GenBank/EMBL/ DDBJ accession numbers for the 16S rRNA gene sequence of strains JW1T and JW3 are KU535632 and KU535631. The GenBank accession numbers for the whole genome sequences of strains JW1T, Introduction JW3 and P. byunsanensis JCM12483T are The genus Pseudoalteromonas, the type genus of the family Pseudoalteromonadaceae [1], was MKJU00000000, MKJT00000000 and MNAN00000000, respectively. Other relevant data proposed by Gauthier et al. (1995) [2]. Initially, the genus Pseudoalteromonas was differenti- are within the paper and its Supporting Information ated from the genus Alteromonas based on the phylogenetic analysis of 16S rRNA gene files. sequences [2]. Currently, the genus Pseudoalteromonas consists of 43 species with validly PLOS ONE | https://doi.org/10.1371/journal.pone.0179997 June 22, 2017 1 / 14 Novel violacein producer isolated from surface seawater Funding: This work was supported by the National published names (http://www.bacterio.net/p/pseudoalteromonas.html). Members of the genus Natural Science Foundation of China granted to YW Pseudoalteromonas are widespread in nature and have a great adaptability to marine environ- (no. 41406174, http://www.nsfc.gov.cn/publish/ ments, such as coastal, open, and deep seawaters, sediments, marine invertebrates, fish, and portal1/); the National Key Basic Research Program of China granted to XX (2014CB441503, http:// algae [3]. The genus Pseudoalteromonas is Gram-negative, aerobic or facultatively anaerobic, + most.gov.cn/); the Natural Science Foundation of and rod-shaped, it requires Na ions for growth, usually does not denitrify, and possesses ubi- Zhejiang Province granted to XX (LR17D060001, quinone-8 (Q8) as major respiratory quinone [3]. http://www.zjnsf.gov.cn/). The funders had no role Some Pseudoalteromonas species produce a variety of primary and secondary metabolites, in study design, data collection and analysis, including antibiotics [2], exopolymers [4, 5], hydrolytic enzymes [6, 7], and pigments [2, 8]. decision to publish, or preparation of the Violacein is a natural indolocarbazole compound formed by condensation of two molecules of manuscript. tryptophan [9]. It is a potential pharmaceutical agent owing to its extensive biological proper- Competing interests: The authors have declared ties, such as antibacterial, antiviral, antioxidant, and antitumor activities [10]. Pseudoalteromo- that no competing interests exist. nas luteoviolacea has been reported to produce violacein [11]. Here, we present a polyphasic study describing two novel violacein-producing strains, both of which were isolated from sur- face water of the Arabian Sea. Materials and methods Organisms and culture conditions Strains JW1T and JW3 were isolated from the surface seawater collected from the Arabian Sea (E67Ê N24Ê). The seawater samples were stored at 4ÊC until use. Natural seawater agar (pH 7.2±7.4) supplemented with 0.05% peptone (w/v; BD, Sparks, MD, USA) and 0.01% yeast extract (w/v; BD) was used for isolation. The seawater samples were diluted using the standard ten-fold dilution plating technique and spread on natural seawater agar. After ten days of aero- bic incubation at 30ÊC, two violet colonies, designated as JW1T and JW3, were picked from different samples and purified by repeated restreaking. The purity was confirmed by the uni- formity of cell morphology. The reference strains P. byunsanensis JCM 12483T, P. shioyasa- kiensis JCM 18891T, and P. arabiensis JCM 17292T were obtained from the JCM (Japan Collection of Microorganisms). The reference strain P. gelatinilytica NH153T was available in our lab [12]. Unless otherwise stated, the two strains were routinely cultured in marine broth 2216 (MB; BD) or on marine agar 2216 (MA; BD) at 30ÊC and stored at ±80ÊC with 30% (v/v) glycerol. 16S rRNA gene and genome sequence determination The 16S rRNA gene was amplified and analyzed as described previously [13]. PCR products were cloned into the vector pMD 19-T (TaKaRa, Dalian, China) and then sequenced to deter- mine the almost-complete sequence of the 16S rRNA gene. High-quality genomic DNA was extracted with the AxyPrep™ Bacterial Genomic DNA Miniprep Kit (Axygen Scientific, Inc., Union City, CA, USA). The genomes of strains JW1T, JW3, and P. byunsanensis JCM 12483T were sequenced using the Solexa paired-end sequencing technology with the Illumina HiSeq 2000 platform (Anoroad Gene Technology Co. Ltd, Beijing, China). One paired-end library was constructed with 500-bp insert size. The sequencing generated approx. 1 Gb of clean data (approx. 500-fold genome coverage). De novo assembly of the reads was carried out using SOAPdenovo (version 2.0.1) [14]. Assembly k-mer was tested from 57 to 64 for seeking the optimal value, using the abyss-pe script. Assembly quality was estimated using MUMmer [15]. Completeness of the genome sequence was addressed using the bioinformatics tool CheckM (http://ecogenomics.github.io/CheckM/) [16]. The complete sequence of the 16S rRNA gene was annotated via the RNAmmer 1.2 Server [17] and was compared with related sequences of reference organisms using the EzTaxon-e service [18]. PLOS ONE | https://doi.org/10.1371/journal.pone.0179997 June 22, 2017 2 / 14 Novel violacein producer isolated from surface seawater Phylogenetic status Phylogenetic analysis was carried out using ARB (release 6.0.2) [19] and the All-Species Living Tree Project database (LTPs123, September 2015) [20]. The 16S rRNA gene sequences of strains JW1T and JW3 were aligned with SILVA Incremental Aligner (SINA, version 1.2.11) (http://www.arb-silva.de) [21]. The alignment sequences were imported into the LTPs data- base and implemented in ARB. On the basis of the obtained All-Species Living Tree and the EzTaxon-e results, 24 species were selected and sequence data were aligned with ClustalW [22]. Phylogenetic trees were reconstructed using the MEGA 5 program package [23], using Algicola sagamiensis B-10-31T as the outgroup, by neighbor-joining [24], maximum-parsi- mony [25], and maximum-likelihood methods [26]. Tree topology was evaluated by bootstrap analysis using 1000 resample datasets. Kimura two-parameter model [27] was used to calculate evolutionary distances and reconstruct phylogeny (neighbor-joining and maximum-likelihood methods). The genomes of 20 type strains of Pseudoalteromonas species were retrieved from the Gen- Bank database (S1 Fig). Six housekeeping genes, atpD (beta subunit for ATP synthase), gyrB (DNA gyrase beta subunit), mreB (rod shape-determining protein), recA (RNA recombinase alpha subunit), rpoD (RNA polymerase), and topA (DNA topoisomerase I) were used for mul- tilocus sequence analysis (MLSA).
Recommended publications
  • Table 1. Overview of Reactions Examined in This Study. ΔG Values Were Obtained from Thauer Et Al., 1977
    Supplemental Information: Table 1. Overview of reactions examined in this study. ΔG values were obtained from Thauer et al., 1977. No. Equation ∆G°' (kJ/reaction)* Acetogenic reactions – – – + 1 Propionate + 3 H2O → Acetate + HCO3 + 3 H2 + H +76.1 Sulfate-reducing reactions – 2– – – – + 2 Propionate + 0.75 SO4 → Acetate + 0.75 HS + HCO3 + 0.25 H –37.8 2– + – 3 4 H2 + SO4 + H → HS + 4 H2O –151.9 – 2– – – 4 Acetate + SO4 → 2 HCO3 + HS –47.6 Methanogenic reactions – – + 5 4 H2 + HCO3 + H → CH4 + 3 H2O –135.6 – – 6 Acetate + H2O → CH4 + HCO3 –31.0 Syntrophic propionate conversion – – – + 1+5 Propionate + 0.75 H2O → Acetate + 0.75 CH4 + 0.25 HCO3 + 0.25 H –25.6 Complete propionate conversion by SRB – 2– – – + 2+4 Propionate + 1.75 SO4 → 1.75 HS + 3 HCO3 + 0.25 H –85.4 Complete propionate conversion by syntrophs and methanogens 1+5+6 Propionate– + 1.75 H O → 1.75 CH + 1.25 HCO – + 0.25 H+ –56.6 2 4 3 1 Table S2. Overview of all enrichment slurries fed with propionate and the total amounts of the reactants consumed and products formed during the enrichment period. The enrichment slurries consisted of sediment from either the sulfate zone (SZ), sulfate-methane transition zone (SMTZ) or methane zone (MZ) and were incubated at 25°C or 10°C, with 3 mM, 20 mM or without (-) sulfate amendments along the study. The slurries P1/P2, P3/P4, P5/P6, P7/P8 from each sediment zone are biological replicates. Slurries with * are presented in the propionate conversion graphs and used for molecular analysis.
    [Show full text]
  • The Essentials of Marine Biotechnology. Frontiers in Marine Science [Online], 8, Article 629629
    ROTTER, A., BARBIER, M., BERTONI, F. et al. 2021. The essentials of marine biotechnology. Frontiers in marine science [online], 8, article 629629. Available from: https://doi.org/10.3389/fmars.2021.629629 The essentials of marine biotechnology. ROTTER, A., BARBIER, M., BERTONI, F. et al. 2021 Copyright © 2021 Rotter, Barbier, Bertoni, Bones, Cancela, Carlsson, Carvalho, Cegłowska, Chirivella-Martorell, Conk Dalay, Cueto, Dailianis, Deniz, Díaz-Marrero, Drakulovic, Dubnika, Edwards, Einarsson, Erdoˇgan, Eroldoˇgan, Ezra, Fazi, FitzGerald, Gargan, Gaudêncio, Gligora Udoviˇc, Ivoševi´c DeNardis, Jónsdóttir, Kataržyt˙e, Klun, Kotta, Ktari, Ljubeši´c, Luki´c Bilela, Mandalakis, Massa-Gallucci, Matijošyt˙e, Mazur-Marzec, Mehiri, Nielsen, Novoveská, Overling˙e, Perale, Ramasamy, Rebours, Reinsch, Reyes, Rinkevich, Robbens, Röttinger, Rudovica, Sabotiˇc, Safarik, Talve, Tasdemir, Theodotou Schneider, Thomas, Toru´nska-Sitarz, Varese and Vasquez.. This article was first published in Frontiers in Marine Science on 16.03.2021. This document was downloaded from https://openair.rgu.ac.uk fmars-08-629629 March 10, 2021 Time: 14:8 # 1 REVIEW published: 16 March 2021 doi: 10.3389/fmars.2021.629629 The Essentials of Marine Biotechnology Ana Rotter1*, Michéle Barbier2, Francesco Bertoni3,4, Atle M. Bones5, M. Leonor Cancela6,7, Jens Carlsson8, Maria F. Carvalho9, Marta Cegłowska10, Jerónimo Chirivella-Martorell11, Meltem Conk Dalay12, Mercedes Cueto13, 14 15 16 17 Edited by: Thanos Dailianis , Irem Deniz , Ana R. Díaz-Marrero , Dragana Drakulovic , 18 19
    [Show full text]
  • Antimicrobial‐Producing Pseudoalteromonas From
    Received: 26 February 2018 | Revised: 11 May 2018 | Accepted: 2 June 2018 DOI: 10.1002/jobm.201800087 RESEARCH PAPER Antimicrobial-producing Pseudoalteromonas from the marine environment of Panama shows a high phylogenetic diversity and clonal structure Librada A. Atencio1,2 | Francesco Dal Grande3 | Giannina Ow Young1 | Ronnie Gavilán1,4,5 | Héctor M. Guzmán6 | Imke Schmitt3,7 | Luis C. Mejía1,6 | Marcelino Gutiérrez1 1 Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), City of Knowledge, Panama, Republic of Panama 2 Department of Biotechnology, Acharya Nagarjuna University, Guntur, India 3 Senckenberg Biodiversity and Climate Research Centre (BiK-F), Frankfurt am Main, Germany 4 National Center for Public Health, Instituto Nacional de Salud, Lima, Peru 5 Environmental Management Department, Universidad San Ignacio de Loyola, Lima, Peru 6 Smithsonian Tropical Research Institute, Ancon, Panama, Republic of Panama 7 Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Goethe Universität Frankfurt, Frankfurt, Germany Correspondence Pseudoalteromonas is a genus of marine bacteria often found in association with other Luis C. Mejía, Marcelino Gutiérrez, Centro de Biodiversidad y Descubrimiento de organisms. Although several studies have examined Pseudoalteromonas diversity and Drogas, INDICASAT-AIP, City of their antimicrobial activity, its diversity in tropical environments is largely unexplored. – Knowledge, PO 0843 01103, Panama, We investigated the diversity of Pseudoalteromonas in marine environments of Panama Republic of Panama. Email: [email protected] (L.C.M); using a multilocus phylogenetic approach. Furthermore we tested their antimicrobial [email protected] (M.G) capacity and evaluated the effect of recombination and mutation in shaping their phylogenetic relationships.
    [Show full text]
  • Biotechnological Potential of Cold Adapted Pseudoalteromonas Spp
    marine drugs Article Biotechnological Potential of Cold Adapted Pseudoalteromonas spp. Isolated from ‘Deep Sea’ Sponges Erik Borchert 1, Stephen Knobloch 2, Emilie Dwyer 1, Sinéad Flynn 1, Stephen A. Jackson 1, Ragnar Jóhannsson 2, Viggó T. Marteinsson 2, Fergal O’Gara 1,3,4 and Alan D. W. Dobson 1,* 1 School of Microbiology, University College Cork, National University of Ireland, Cork T12 YN60, Ireland; [email protected] (E.B.); [email protected] (E.D.); [email protected] (S.F.); [email protected] (S.A.J.); [email protected] (F.O.) 2 Department of Research and Innovation, Matís ohf., Reykjavik 113, Iceland; [email protected] (S.K.); [email protected] (R.J.); [email protected] (V.T.M.) 3 Biomerit Research Centre, University College Cork, National University of Ireland, Cork T12 YN60, Ireland 4 School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth 6102, WA, Australia * Correspondence: [email protected]; Tel.: +353-21-490-2743 Received: 22 February 2017; Accepted: 14 June 2017; Published: 19 June 2017 Abstract: The marine genus Pseudoalteromonas is known for its versatile biotechnological potential with respect to the production of antimicrobials and enzymes of industrial interest. We have sequenced the genomes of three Pseudoalteromonas sp. strains isolated from different deep sea sponges on the Illumina MiSeq platform. The isolates have been screened for various industrially important enzymes and comparative genomics has been applied to investigate potential relationships between the isolates and their host organisms, while comparing them to free-living Pseudoalteromonas spp. from shallow and deep sea environments.
    [Show full text]
  • Ecogenomics and Genome Landscapes of Marine Pseudoalteromonas Phage H105/1
    The ISME Journal (2010), 1–15 & 2010 International Society for Microbial Ecology All rights reserved 1751-7362/10 $32.00 www.nature.com/ismej ORIGINAL ARTICLE Ecogenomics and genome landscapes of marine Pseudoalteromonas phage H105/1 Melissa Beth Duhaime1,2, Antje Wichels3, Jost Waldmann1, Hanno Teeling1 and Frank Oliver Glo¨ckner1,2 1Microbial Genomics Group, Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, Bremen, Germany; 2School of Engineering and Sciences, Jacobs University, Bremen, Germany and 3Biosciences Division, Alfred Wegener Institute for Polar and Marine Research, BAH, Helgoland, Germany Marine phages have an astounding global abundance and ecological impact. However, little knowledge is derived from phage genomes, as most of the open reading frames in their small genomes are unknown, novel proteins. To infer potential functional and ecological relevance of sequenced marine Pseudoalteromonas phage H105/1, two strategies were used. First, similarity searches were extended to include six viral and bacterial metagenomes paired with their respective environmental contextual data. This approach revealed ‘ecogenomic’ patterns of Pseudoalteromo- nas phage H105/1, such as its estuarine origin. Second, intrinsic genome signatures (phylogenetic, codon adaptation and tetranucleotide (tetra) frequencies) were evaluated on a resolved intra- genomic level to shed light on the evolution of phage functional modules. On the basis of differential codon adaptation of Phage H105/1 proteins to the sequenced Pseudoalteromonas spp., regions of the phage genome with the most ‘host’-adapted proteins also have the strongest bacterial tetra signature, whereas the least ‘host’-adapted proteins have the strongest phage tetra signature. Such a pattern may reflect the evolutionary history of the respective phage proteins and functional modules.
    [Show full text]
  • Mono- and Multispecies Biofilms from a Crustose Coralline Alga Induce
    Coral Reefs (2021) 40:381–394 https://doi.org/10.1007/s00338-021-02062-5 REPORT Mono- and multispecies biofilms from a crustose coralline alga induce settlement in the scleractinian coral Leptastrea purpurea 1 1 1 1 Lars-Erik Petersen • Mareen Moeller • Dennis Versluis • Samuel Nietzer • 1 1,2 Matthias Y. Kellermann • Peter J. Schupp Received: 18 March 2020 / Accepted: 8 January 2021 / Published online: 18 February 2021 Ó The Author(s) 2021 Abstract Microorganisms have been reported to induce was dominated by Gammaproteobacteria, Alphapro- settlement in various marine invertebrate larvae but their teobacteria, and Flavobacteria. Furthermore, we found no specificity of inductive capacities for the settlement of correlation between inductive settlement capacities and coral larvae remains poorly understood. In this study, we phylogenetic relationships. Instead, settlement behavior of isolated 56 microbial strains from the crustose coralline L. purpurea larvae was induced by specific isolated spe- alga (CCA) Hydrolithon reinboldii using five different cies. Strains #1792 (Pseudovibrio denitrificans), #1678 media either with or without additional antibiotics and/or (Acinetobacter pittii), #1633 (Pseudoalteromonas pheno- spiked CCA extract. We tested the isolates for their lica), #1772 (Marine bacterium LMG1), #1721 (Microb- potential to induce settlement behavior in larvae of the ulbifer variabilis), and #1783 (Pseudoalteromonas rubra) brooding scleractinian coral Leptastrea purpurea. From induced settlement behavior in coral larvae at mostly high
    [Show full text]
  • Bacterial Diversity and Biogeography of the Cold-Water Gorgonian Primnoa Resedaeformis in Norfolk and Baltimore Canyons Christina A
    617 Bacterial diversity and biogeography of the cold-water gorgonian Primnoa resedaeformis in Norfolk and Baltimore canyons Christina A. Kellogg* and Michael A. Gray U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center, St. Petersburg, Florida 33701, USA Abstract Much attention has been paid to the bacterial associates of the cold-water reef- forming scleractinian coral, Lophelia pertusa. However, many other cold-water coral species remain microbiological terra incognita, including the locally abundant, habitat-forming Atlantic octocoral Primnoa resedaeformis. During research cruises in 2012 and 2013, we collected samples from 10 individual coral colonies in each of Baltimore and Norfolk Canyons in the western Atlantic Ocean. DNA was extracted from each sample and the V4-V5 variable regions of the 16S ribosomal RNA gene were amplified and then subjected to 454 pyrosequencing. Samples were dominated by Proteobacteria followed by smaller amounts of Firmicutes, Planctomycetes, Bacteroidetes and Actinobacteria. Bacterial community sequences were found to cluster based on submarine canyon of origin. Norfolk Canyon bacterial communities had much higher representation of Gammaproteobacteria, particularly the family Moraxellaceae, compared to Baltimore Canyon communities that were dominated by Alphaproteobacteria, particularly the family Kiloniellaceae. These data provide a first Figure 2. Primnoa resedaeformis, a cold-water octocoral Figure 3. A non-metric multidimensional scaling (NMDS) plot comparing the look at the biogeographic structuring of the bacterial associates of P. resedaeformis bacterial communities of Primnoa resedaeformis from Baltimore and Norfolk likely caused by physical barriers to dispersal imposed by submarine canyons. Canyons to those of P. pacifica collected in the Gulf of Alaska (Pacific Ocean).
    [Show full text]
  • The Bacterial Basis of Biofouling: a Case Study
    Indian Journal of Geo-Marine Sciences Vol. 43(11), November 2014, pp. 2075-2084 The Bacterial Basis of Biofouling: a Case Study Michael G. Hadfield*, Audrey Asahina, Shaun Hennings and Brian Nedved Kewalo Marine Laboratory, University of Hawaii at Manoa 41 Ahui St., Honolulu, Hawaii, 96813 USA *[E-mail: [email protected]] Received 07 March 2014; revised 14 September 2014 For billions of years bacteria have profusely colonized all parts of the oceans and formed biofilms on the benthos. Thus, from their onset, evolving marine animals adapted to the microbial world throughout their life cycles. One of the major adaptations is the use of bacterial products as signals for recruitment by larvae of many species in the seven invertebrate phyla that make up most of the biofouling community. We describe here investigations on the recruitment biology of one such species, the circum-tropical serpulid polychaete Hydroides elegans. Insights gained from in-depth studies on adults and larvae of H. elegans include: apparently constant transport of these biofouling worms on the hulls of ships maintains a globally panmictic population; larvae complete metamorphosis with little or no de novo gene transcription or translation; larvae of this tube-worm settle selectively in response to specific biofilm-dwelling bacterial species; and biofilms provide not only a cue for settlement sites, but also increase the adhesion strength of the settling worms’ tubes on a substratum. Although biofilm-bacterial species are critical to larval-settlement induction, not all biofilm elements are inductive. Because studies on chemoreception systems in the larvae failed to find evidence for the presence of common chemoreceptors, we focused on the bacterial cues themselves.
    [Show full text]
  • The Exploration of Novel Symbiotic Bacteria That May Have Influential Roles in Sponge Life History Brittany E
    University of Richmond UR Scholarship Repository Honors Theses Student Research 2008 The exploration of novel symbiotic bacteria that may have influential roles in sponge life history Brittany E. West Follow this and additional works at: https://scholarship.richmond.edu/honors-theses Part of the Biology Commons Recommended Citation West, Brittany E., "The exploration of novel symbiotic bacteria that may have influential roles in sponge life history" (2008). Honors Theses. 1082. https://scholarship.richmond.edu/honors-theses/1082 This Thesis is brought to you for free and open access by the Student Research at UR Scholarship Repository. It has been accepted for inclusion in Honors Theses by an authorized administrator of UR Scholarship Repository. For more information, please contact [email protected]. ts,,o West, B.E. lJ~s. The exploration of novel symbiotic bacteria that may have influential roles in sponge life history Brittany E. West Spring 2008 Advised by Dr. Malcolm S. Hill Department of Biology, University of Richmond This thesis has been accepted as part ofthe honors requirement in the Department of Biology. Submitted by: Approved by: Dr. Malcolm S. Hill, Honors Research Advisor 1 West, B.E. ABSTRACT: Sponges produce an impressive variety of secondary metabolites that perform a variety of ecological functions. Many marine sponges even harbor diverse carotenoid compounds, an unusual class of secondary metabolites that animals are incapable of producing. Furthermore, sponges serve as hosts to an astonishingly diverse microbial community that can occupy up to sixty percent of a sponge's biomass. Our research ultimately hopes to link microbial species to the production of secondary compounds, like carotenoids, and to assess the ecological role of such compounds and their effect on sponge life history strategy.
    [Show full text]
  • Dynamics of the Bacterial Community Associated with Phaeodactylum Tricornutum Cultures
    processes Article Dynamics of the Bacterial Community Associated with Phaeodactylum tricornutum Cultures Fiona Wanjiku Moejes 1 ID , Antonella Succurro 2,3,*,† ID , Ovidiu Popa 2,4,†, Julie Maguire 1 and Oliver Ebenhöh 2,4,* ID 1 Bantry Marine Research Station, Gearhies, Bantry P75 AX07, Co. Cork, Ireland; [email protected] (F.W.M.); [email protected] (J.M.) 2 Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany; [email protected] 3 Botanical Institute, University of Cologne, Zülpicher Strasse 47b, 50674 Cologne, Germany 4 Institute of Quantitative and Theoretical Biology, Heinrich-Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany * Correspondence: [email protected] (A.S.); [email protected] (O.E.) † These authors contributed equally to this work. Received: 17 October 2017; Accepted: 28 November 2017; Published: 7 December 2017 Abstract: The pennate diatom Phaeodactylum tricornutum is a model organism able to synthesize industrially-relevant molecules. Commercial-scale cultivation currently requires large monocultures, prone to bio-contamination. However, little is known about the identity of the invading organisms. To reduce the complexity of natural systems, we systematically investigated the microbiome of non-axenic P. tricornutum cultures from a culture collection in reproducible experiments. The results revealed a dynamic bacterial community that developed differently in “complete” and “minimal” media conditions. In complete media, we observed an accelerated “culture crash”, indicating a more stable culture in minimal media. The identification of only four bacterial families as major players within the microbiome suggests specific roles depending on environmental conditions. From our results we propose a network of putative interactions between P.
    [Show full text]
  • Bioactivity, Chemical Profiling, and 16S Rrna-Based Phylogeny of Pseudoalteromonas Strains Collected on a Global Research Cruise
    Downloaded from orbit.dtu.dk on: Oct 04, 2021 Bioactivity, Chemical Profiling, and 16S rRNA-Based Phylogeny of Pseudoalteromonas Strains Collected on a Global Research Cruise Vynne, Nikolaj Grønnegaard; Månsson, Maria; Nielsen, Kristian Fog; Gram, Lone Published in: Marine Biotechnology Link to article, DOI: 10.1007/s10126-011-9369-4 Publication date: 2011 Link back to DTU Orbit Citation (APA): Vynne, N. G., Månsson, M., Nielsen, K. F., & Gram, L. (2011). Bioactivity, Chemical Profiling, and 16S rRNA- Based Phylogeny of Pseudoalteromonas Strains Collected on a Global Research Cruise. Marine Biotechnology, 13(6), 1062-1073. https://doi.org/10.1007/s10126-011-9369-4 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. 1 Bioactivity, chemical profiling and 16S rRNA based phylogeny of 2 Pseudoalteromonas strains collected on a global research cruise 3 4 Nikolaj G. Vynne1*, Maria Månsson2, Kristian F. Nielsen2 and Lone Gram1 5 6 1 Technical University of Denmark, National Food Institute, Søltofts Plads, bldg.
    [Show full text]
  • Taxonomic Hierarchy of the Phylum Proteobacteria and Korean Indigenous Novel Proteobacteria Species
    Journal of Species Research 8(2):197-214, 2019 Taxonomic hierarchy of the phylum Proteobacteria and Korean indigenous novel Proteobacteria species Chi Nam Seong1,*, Mi Sun Kim1, Joo Won Kang1 and Hee-Moon Park2 1Department of Biology, College of Life Science and Natural Resources, Sunchon National University, Suncheon 57922, Republic of Korea 2Department of Microbiology & Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea *Correspondent: [email protected] The taxonomic hierarchy of the phylum Proteobacteria was assessed, after which the isolation and classification state of Proteobacteria species with valid names for Korean indigenous isolates were studied. The hierarchical taxonomic system of the phylum Proteobacteria began in 1809 when the genus Polyangium was first reported and has been generally adopted from 2001 based on the road map of Bergey’s Manual of Systematic Bacteriology. Until February 2018, the phylum Proteobacteria consisted of eight classes, 44 orders, 120 families, and more than 1,000 genera. Proteobacteria species isolated from various environments in Korea have been reported since 1999, and 644 species have been approved as of February 2018. In this study, all novel Proteobacteria species from Korean environments were affiliated with four classes, 25 orders, 65 families, and 261 genera. A total of 304 species belonged to the class Alphaproteobacteria, 257 species to the class Gammaproteobacteria, 82 species to the class Betaproteobacteria, and one species to the class Epsilonproteobacteria. The predominant orders were Rhodobacterales, Sphingomonadales, Burkholderiales, Lysobacterales and Alteromonadales. The most diverse and greatest number of novel Proteobacteria species were isolated from marine environments. Proteobacteria species were isolated from the whole territory of Korea, with especially large numbers from the regions of Chungnam/Daejeon, Gyeonggi/Seoul/Incheon, and Jeonnam/Gwangju.
    [Show full text]