Supplementary Material: Eappendix 1 Is Available at Who Had an Internet Access Would Have Rendered Our Study PSYCHIATRIST.COM
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
)&F1y3x PHARMACEUTICAL APPENDIX to THE
)&f1y3X PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE )&f1y3X PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 3 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. Product CAS No. Product CAS No. ABAMECTIN 65195-55-3 ACTODIGIN 36983-69-4 ABANOQUIL 90402-40-7 ADAFENOXATE 82168-26-1 ABCIXIMAB 143653-53-6 ADAMEXINE 54785-02-3 ABECARNIL 111841-85-1 ADAPALENE 106685-40-9 ABITESARTAN 137882-98-5 ADAPROLOL 101479-70-3 ABLUKAST 96566-25-5 ADATANSERIN 127266-56-2 ABUNIDAZOLE 91017-58-2 ADEFOVIR 106941-25-7 ACADESINE 2627-69-2 ADELMIDROL 1675-66-7 ACAMPROSATE 77337-76-9 ADEMETIONINE 17176-17-9 ACAPRAZINE 55485-20-6 ADENOSINE PHOSPHATE 61-19-8 ACARBOSE 56180-94-0 ADIBENDAN 100510-33-6 ACEBROCHOL 514-50-1 ADICILLIN 525-94-0 ACEBURIC ACID 26976-72-7 ADIMOLOL 78459-19-5 ACEBUTOLOL 37517-30-9 ADINAZOLAM 37115-32-5 ACECAINIDE 32795-44-1 ADIPHENINE 64-95-9 ACECARBROMAL 77-66-7 ADIPIODONE 606-17-7 ACECLIDINE 827-61-2 ADITEREN 56066-19-4 ACECLOFENAC 89796-99-6 ADITOPRIM 56066-63-8 ACEDAPSONE 77-46-3 ADOSOPINE 88124-26-9 ACEDIASULFONE SODIUM 127-60-6 ADOZELESIN 110314-48-2 ACEDOBEN 556-08-1 ADRAFINIL 63547-13-7 ACEFLURANOL 80595-73-9 ADRENALONE -
Analytical Methods for Determination of Benzodiazepines. a Short Review
Cent. Eur. J. Chem. • 12(10) • 2014 • 994-1007 DOI: 10.2478/s11532-014-0551-1 Central European Journal of Chemistry Analytical methods for determination of benzodiazepines. A short review Review Article Paulina Szatkowska1, Marcin Koba1*, Piotr Kośliński1, Jacek Wandas1, Tomasz Bączek2,3 1Department of Toxicology, Faculty of Pharmacy, Collegium Medicum of Nicolaus Copernicus University, 85-089 Bydgoszcz, Poland 2Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland 3Institute of Health Sciences, Division of Human Anatomy and Physiology, Pomeranian University of Słupsk, 76-200 Słupsk, Poland Received 16 July 2013; Accepted 6 February 2014 Abstract: Benzodiazepines (BDZs) are generally commonly used as anxiolytic and/or hypnotic drugs as a ligand of the GABAA-benzodiazepine receptor. Moreover, some of benzodiazepines are widely used as an anti-depressive and sedative drugs, and also as anti-epileptic drugs and in some cases can be useful as an adjunct treatment in refractory epilepsies or anti-alcoholic therapy. High-performance liquid chromatography (HPLC) methods, thin-layer chromatography (TLC) methods, gas chromatography (GC) methods, capillary electrophoresis (CE) methods and some of spectrophotometric and spectrofluorometric methods were developed and have been extensively applied to the analysis of number of benzodiazepine derivative drugs (BDZs) providing reliable and accurate results. The available chemical methods for the determination of BDZs in biological materials and pharmaceutical formulations are reviewed in this work. Keywords: Analytical methods • Benzodiazepines • Drugs analysis • Pharmaceutical formulations © Versita Sp. z o.o. 1. Introduction and long). For this reason, an application of these drugs became broader allowing their utility to a larger extent, Benzodiazepines have been first introduced into medical and at the same time, problems related to drug abuse practice in the 60s of the last century. -
Comparative Efficacy and Acceptability of Pharmacological Treatments for Insomnia in Adults: a Systematic Review and Network Meta-Analysis (Protocol)
Cochrane Database of Systematic Reviews Comparative efficacy and acceptability of pharmacological treatments for insomnia in adults: a systematic review and network meta-analysis (Protocol) De Crescenzo F, Foti F, Ciabattini M, Del Giovane C, Watanabe N, Sañé Schepisi M, Quested DJ, Cipriani A, Barbui C, Amato L De Crescenzo F, Foti F, Ciabattini M, Del Giovane C, Watanabe N, Sañé Schepisi M, Quested DJ, Cipriani A, Barbui C, Amato L. Comparative efficacy and acceptability of pharmacological treatments for insomnia in adults: a systematic review and network meta-anal- ysis. Cochrane Database of Systematic Reviews 2016, Issue 9. Art. No.: CD012364. DOI: 10.1002/14651858.CD012364. www.cochranelibrary.com Comparative efficacy and acceptability of pharmacological treatments for insomnia in adults: a systematic review and network meta- analysis (Protocol) Copyright © 2016 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd. TABLE OF CONTENTS HEADER....................................... 1 ABSTRACT ...................................... 1 BACKGROUND .................................... 1 OBJECTIVES ..................................... 4 METHODS ...................................... 4 Figure1. ..................................... 5 ACKNOWLEDGEMENTS . 9 REFERENCES ..................................... 10 APPENDICES ..................................... 14 WHAT’SNEW..................................... 18 CONTRIBUTIONSOFAUTHORS . 18 DECLARATIONSOFINTEREST . 18 Comparative efficacy and acceptability of pharmacological treatments for -
Statistical Analysis Plan Statistical Center for HIV/AIDS Research & SCHARP Prevention SD Standard Deviation SI International System of Units
67$7,67,&$/$1$/<6,63/$1 $:((.)/(;,%/('26(23(1/$%(/ 08/7,&(17(5(;7(16,21678'<72(9$/8$7(7+( /21*7(506$)(7<$1'())(&7,9(1(662) /85$6,'21(,13(',$75,&68%-(&76 /XUDVLGRQH60/DWXGD 6WXG\1R' 9HUVLRQ1XPEHU)LQDO 9HUVLRQ'DWH1RY $XWKRUL]DWLRQ6LJQDWXUH3DJH $:((.)/(;,%/('26(23(1/$%(/08/7,&(17(5(;7(16,21 678'<72(9$/8$7(7+(/21*7(506$)(7<$1'())(&7,9(1(662) /85$6,'21(,13(',$75,&68%-(&76 $XWKRU 1DPH 'DWH 3RVLWLRQ6HQLRU 'LUHFWRU%LRVWDWLVWLFV &RPSDQ\6XQRYLRQ3KDUPDFHXWLFDOV,QF $SSURYHGE\ 1DPH 'DWH 3RVLWLRQ 6HQLRU'LUHFWRU&OLQLFDO'HYHORSPHQW DQG0HGLFDO$IIDLUV&16 &RPSDQ\6XQRYLRQ3KDUPDFHXWLFDOV,QF 1DPH 'DWH 3RVLWLRQ([HFXWLYH'LUHFWRU%LRVWDWLVWLFV &RPSDQ\6XQRYLRQ3KDUPDFHXWLFDOV,QF Table of contents 1. INTRODUCTION ........................................................................................................9 1.1. Study Objectives ...........................................................................................................9 1.2. Study Design ...............................................................................................................10 1.2.1. Determination of Sample Size ....................................................................................11 1.2.2. Randomization and Blinding ......................................................................................11 2. ANALYSES PLANNED ............................................................................................12 2.1. General Analysis Definition .......................................................................................12 2.1.1. Logic -
(12) Patent Application Publication (10) Pub. No.: US 2009/0005722 A1 Jennings-Spring (43) Pub
US 20090005722A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2009/0005722 A1 Jennings-Spring (43) Pub. Date: Jan. 1, 2009 (54) SKIN-CONTACTING-ADHESIVE FREE Publication Classification DRESSING (51) Int. Cl. Inventor: Barbara Jennings-Spring, Jupiter, A61N L/30 (2006.01) (76) A6F I3/00 (2006.01) FL (US) A6IL I5/00 (2006.01) Correspondence Address: AOIG 7/06 (2006.01) Irving M. Fishman AOIG 7/04 (2006.01) c/o Cohen, Tauber, Spievack and Wagner (52) U.S. Cl. .................. 604/20: 602/43: 602/48; 4771.5; Suite 2400, 420 Lexington Avenue 47/13 New York, NY 10170 (US) (57) ABSTRACT (21) Appl. No.: 12/231,104 A dressing having a flexible sleeve shaped to accommodate a Substantially cylindrical body portion, the sleeve having a (22) Filed: Aug. 29, 2008 lining which is substantially non-adherent to the body part being bandaged and having a peripheral securement means Related U.S. Application Data which attaches two peripheral portions to each other without (63) Continuation-in-part of application No. 1 1/434,689, those portions being circumferentially adhered to the sleeve filed on May 16, 2006. portion. Patent Application Publication Jan. 1, 2009 Sheet 1 of 9 US 2009/0005722 A1 Patent Application Publication Jan. 1, 2009 Sheet 2 of 9 US 2009/0005722 A1 10 8 F.G. 5 Patent Application Publication Jan. 1, 2009 Sheet 3 of 9 US 2009/0005722 A1 13 FIG.6 2 - Y TIII Till "T fift 11 10 FIG.7 8 13 6 - 12 - Timir" "in "in "MINIII. -
Drug and Medication Classification Schedule
KENTUCKY HORSE RACING COMMISSION UNIFORM DRUG, MEDICATION, AND SUBSTANCE CLASSIFICATION SCHEDULE KHRC 8-020-1 (11/2018) Class A drugs, medications, and substances are those (1) that have the highest potential to influence performance in the equine athlete, regardless of their approval by the United States Food and Drug Administration, or (2) that lack approval by the United States Food and Drug Administration but have pharmacologic effects similar to certain Class B drugs, medications, or substances that are approved by the United States Food and Drug Administration. Acecarbromal Bolasterone Cimaterol Divalproex Fluanisone Acetophenazine Boldione Citalopram Dixyrazine Fludiazepam Adinazolam Brimondine Cllibucaine Donepezil Flunitrazepam Alcuronium Bromazepam Clobazam Dopamine Fluopromazine Alfentanil Bromfenac Clocapramine Doxacurium Fluoresone Almotriptan Bromisovalum Clomethiazole Doxapram Fluoxetine Alphaprodine Bromocriptine Clomipramine Doxazosin Flupenthixol Alpidem Bromperidol Clonazepam Doxefazepam Flupirtine Alprazolam Brotizolam Clorazepate Doxepin Flurazepam Alprenolol Bufexamac Clormecaine Droperidol Fluspirilene Althesin Bupivacaine Clostebol Duloxetine Flutoprazepam Aminorex Buprenorphine Clothiapine Eletriptan Fluvoxamine Amisulpride Buspirone Clotiazepam Enalapril Formebolone Amitriptyline Bupropion Cloxazolam Enciprazine Fosinopril Amobarbital Butabartital Clozapine Endorphins Furzabol Amoxapine Butacaine Cobratoxin Enkephalins Galantamine Amperozide Butalbital Cocaine Ephedrine Gallamine Amphetamine Butanilicaine Codeine -
Report on the Investigation Results
Pharmaceuticals and Medical Devices Agency This English version is intended to be a reference material to provide convenience for users. In the event of inconsistency between the Japanese original and this English translation, the former shall prevail. Report on the Investigation Results February 28, 2017 Pharmaceuticals and Medical Devices Agency I. Overview of Product [Non-proprietary name] See Attachment 1 [Brand name] See Attachment 1 [Approval holder] See Attachment 1 [Indications] See Attachment 1 [Dosage and administration] See Attachment 1 [Investigating office] Office of Safety II 1 Pharmaceuticals and Medical Devices Agency This English version is intended to be a reference material to provide convenience for users. In the event of inconsistency between the Japanese original and this English translation, the former shall prevail. II. Background of the investigation 1. Status in Japan Hypnotics and anxiolytics are prescribed by various specialties and widely used in clinical practice. In particular, benzodiazepine (BZ) receptor agonists, which act on BZ receptors, bind to gamma-aminobutyric acid (GABA)A-BZ receptor complex and enhance the function of GABAA receptors. This promotes neurotransmission of inhibitory systems and demonstrates hypnotic/sedative effects, anxiolytic effects, muscle relaxant effects, and antispasmodic effects. Since the approval of chlordiazepoxide in March 1961, many BZ receptor agonists have been approved as hypnotics and anxiolytics. Currently, hypnotics and anxiolytics are causative agents of drug-related disorders such as drug dependence in Japanese clinical practice. Hypnotics and anxiolitics that rank high in causative agents are BZ receptor agonists for which high frequencies of high doses and multidrug prescriptions have been reported (Japanese Journal of Clinical Psychopharmacology 2013; 16(6): 803-812, Modern Physician 2014; 34(6): 653-656, etc.). -
Bioanalytical Studies of Designer Benzodiazepines
From DEPARTMENT OF LABORATORY MEDICINE Karolinska Institutet, Stockholm, Sweden BIOANALYTICAL STUDIES OF DESIGNER BENZODIAZEPINES Madeleine Pettersson Bergstrand Stockholm 2018 All previously published papers were reproduced with permission from the publisher. Published by Karolinska Institutet. Printed by Eprint AB © Madeleine Pettersson Bergstrand, 2018 ISBN 978-91-7831-063-0 Front page illustration: Sandra Eriksson Bioanalytical studies of designer benzodiazepines THESIS FOR DOCTORAL DEGREE (Ph.D.) The thesis will be defended at 4X, Alfred Nobels allé 8, Huddinge Friday, May 25, 2018 at 09.00 a.m. By Madeleine Pettersson Bergstrand Principal Supervisor: Opponent: Prof. Anders Helander Ass. Prof. Elisabeth Leere Øiestad Karolinska Institutet Oslo University Hospital Department of Laboratory Medicine Department of Forensic Sciences Division of Clinical Chemistry Clinic for Laboratory medicine Co-supervisor: Examination Board: Prof. Olof Beck Prof. Åsa Emmer Karolinska Institutet KTH Royal Institute of Technology Department of Laboratory Medicine Department of Chemistry Division of Clinical Pharmacology Division of Applied Physical Chemistry Docent Stefan Borg Karolinska Institutet Department of Clinical Neuroscience Docent Pierre Lafolie Karolinska Institutet Department of Medicine Division of Clinical Epidemiology ABSTRACT The fast appearance of benzodiazepine analogues, referred to as new psychoactive substance (NPS) or designer benzodiazepines, requires the continuous update of detection methods in order to keep up with the latest drugs on the recreational drug market. Moreover, as usually only limited information on toxicity and excretion patterns of these new drugs exists, this needs to be evaluated to report on adverse effects and to determine suitable targets for drug testing. Urine drug testing usually involves screening using immunoassay followed by confirmation of positive screening results using mass spectrometric (MS) methods. -
A Review of the Evidence of Use and Harms of Novel Benzodiazepines
ACMD Advisory Council on the Misuse of Drugs Novel Benzodiazepines A review of the evidence of use and harms of Novel Benzodiazepines April 2020 1 Contents 1. Introduction ................................................................................................................................. 4 2. Legal control of benzodiazepines .......................................................................................... 4 3. Benzodiazepine chemistry and pharmacology .................................................................. 6 4. Benzodiazepine misuse............................................................................................................ 7 Benzodiazepine use with opioids ................................................................................................... 9 Social harms of benzodiazepine use .......................................................................................... 10 Suicide ............................................................................................................................................. 11 5. Prevalence and harm summaries of Novel Benzodiazepines ...................................... 11 1. Flualprazolam ......................................................................................................................... 11 2. Norfludiazepam ....................................................................................................................... 13 3. Flunitrazolam .......................................................................................................................... -
II.3.4 Benzodiazepines by Hiroshi Seno and Hideki Hattori
3.4 II.3.4 Benzodiazepines by Hiroshi Seno and Hideki Hattori Introduction Benzodiazepines show antianxiety, hypnotic, anticonvulsant and muscle-relaxant eff ects. Th is group of drugs has wide safety dose ranges; it means that the ratio of the LD50 to the ED50 (therapeutic index) is high. Because of its safety, benzodiazepines are being widely used in the world. Some of benzodiazepines are also being abused or used for so-called “ drug facilitated sexual assault”, and thus they are under the control of the Narcotics and Psychotropics Control Law; in Japan, triazolam abuse has become one of the serious social problems. In this chapter, a GC/MS method for simultaneous analysis of 22 kinds of benzodiazepines listed in > Table 4.1 is described. In addition, the LC/MS analysis of triazolam, and its metabolites 4-hydroxy- triazolam and α-hydroxytriazolam is also presented. GC/MS analysis of benzodiazepines in blood and urine Reagents and their preparation • Th e pure powder of the 22 kinds of benzodiazepines was donated by each pharmaceutical manufacturers according to the authors’ request a (some of benzodiazepines now obtaina- ble from Sigma, St. Louis, MO, USA). • 1 M Sodium bicarbonate solution: a 8.4-g aliquot of sodium bicarbonate is dissolved in distilled water to prepare 100 mL solution. • 2 M Sodium acetate solution: a 27.5-g aliquot of sodium acetate is dissolved in distilled water to prepare 100 mL solution. GC/MS conditions Column: a DB-5 fused silica capillary column (30 m × 0.25 mm i.d., fi lm thickness 0.25 µm, J & W Scientifi c, Folsom, CA, USA). -
Harmonized Tariff Schedule of the United States (2020) Revision 6 Annotated for Statistical Reporting Purposes
Harmonized Tariff Schedule of the United States (2020) Revision 6 Annotated for Statistical Reporting Purposes CHAPTER 29 ORGANIC CHEMICALS VI 29-1 Notes 1. Except where the context otherwise requires, the headings of this chapter apply only to: (a) Separate chemically defined organic compounds, whether or not containing impurities; (b) Mixtures of two or more isomers of the same organic compound (whether or not containing impurities), except mixtures of acyclic hydrocarbon isomers (other than stereoisomers), whether or not saturated (chapter 27); (c) The products of headings 2936 to 2939 or the sugar ethers, sugar acetals and sugar esters, and their salts, of heading 2940, or the products of heading 2941, whether or not chemically defined; (d) Products mentioned in (a), (b) or (c) above dissolved in water; (e) Products mentioned in (a), (b) or (c) above dissolved in other solvents provided that the solution constitutes a normal and necessary method of putting up these products adopted solely for reasons of safety or for transport and that the solvent does not render the product particularly suitable for specific use rather than for general use; (f) The products mentioned in (a), (b), (c), (d) or (e) above with an added stabilizer (including an anticaking agent) necessary for their preservation or transport; (g) The products mentioned in (a), (b), (c), (d), (e) or (f) above with an added antidusting agent or a coloring or odoriferous substance added to facilitate their identification or for safety reasons, provided that the additions do not render the product particularly suitable for specific use rather than for general use; (h) The following products, diluted to standard strengths, for the production of azo dyes: diazonium salts, couplers used for these salts and diazotizable amines and their salts. -
Study on Raffenetti's P File Format in Conventional Ab Initio Self-Consistent-Field Molecular Orbital Calculations in Parallel
J. Comput. Chem. Jpn., Vol. 7, No. 5, pp. 179–184 (2008) c Society of Computer Chemistry, Japan Study on Raffenetti’s P File Format in Conventional Ab Initio Self-Consistent-Field Molecular Orbital Calculations in Parallel Computational Environment Hiroyuki TERAMAEa* and Kazushige OHTAWARAb,c aDepartment of Chemistry, Faculty of Science, Josai University 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan bATR Adaptive Communication Research Laboratories 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0288, Japan c Present address: Technology Development Division, Victor Company of Japan, Ltd. 58-7 Shinmei-cho, Yokosuka, Kanagawa 239-8550, Japan *e-mail: [email protected] (Received: August 7, 2008; Accepted for publication: October 17, 2008; Advance publication: November 22, 2008) We compare the CPU time and the wall clock time of the Raffenetti’s P file algorithm with the usual algorithm on the two electron integrals storing with four suffixes of the ab initio Hartree-Fock calculations. The calculations are performed with the flutoprazepam, triazolam, clotiazepam, etizolam, and flutazolam molecules. These molecules are all minor-tranquilizers with the benzodiazepine or thienodiazepine backbone. The 3-21G basis sets are employed. Almost in all cases, P file algorithm gave slower speed than the usual algorithm. The number of two electron integrals increases almost two times larger than the usual algorithms. In a large molecule, the matrix of the two electron integrals becomes very sparse and the recombination of the integrals just increases the total number of the integrals. It is concluded that the P method sometimes calculates faster but sometimes does not. In a large scale calculation, it should be suggested to perform a test calculation to confirm which method is faster prior to the real calculations.