In Vitro Ischemia-Induced Changes in the Transcriptome of Hippocampal Neurons

Total Page:16

File Type:pdf, Size:1020Kb

In Vitro Ischemia-Induced Changes in the Transcriptome of Hippocampal Neurons Joana Filipa Coelho Fernandes In vitro ischemia-induced changes in the transcriptome of hippocampal neurons Neuroprotective pathways in brain ischemia Tese de Doutoramento em Ciências e Tecnologias da Saúde, especialidade de Biologia Celular e Molecular orientada por Ana Luísa Carvalho e Armanda Emanuela Castro e Santos e apresentada à Faculdade de Farmácia da Universidade de Coimbra 2014 In vitro ischemia-induced changes in the transcriptome of hippocampal neurons Neuroprotective pathways in brain ischemia Alterações no transcriptoma de neurónios do hipocampo induzidas por isquémia in vitro Vias de neuroprotecção em isquémia cerebral Tese apresentada à Faculdade de Farmácia da Universidade de Coimbra para a prestação de provas de Doutoramento em Ciências e Tecnologias da Saúde, especialidade de Biologia Celular e Molecular Joana Filipa Coelho Fernandes Coimbra, 2014 ii Capa e projecto gráfico: Joana Fernandes e Ana Dias. “Microarray signals in the neurons of the hippocampus: implications for the study of the synapse and cell biology”. Agradeço ao Centro de Neurociências e Biologia Celular e à Universidade de Coimbra a oportunidade de trabalhar no seu espaço, e à Fundação para a Ciência e Tecnologia que financiou o meu trabalho (bolsa de doutoramento – SFRH/BD/62600/2009). Este trabalho foi financiado pela FEDER via Programa Operacional Factores de Competitividade – COMPETE e pela FCT no âmbito dos seguintes projectos: PTDC/SAU-NEU/099440/2008, PTDC/NEU-NMC/0750/2012, PTDC/SAU- NMC/12144/2010, PTDC/NEU-SCC/1351/2012 e PEst-C/SAU/LA0001/2013-2014. Os ensaios in vivo foram financiados pela Junta de Castilla y León (Ref. LE184A12-2). iii “It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, it was the epoch of belief, it was the epoch of incredulity, it was the season of light, it was the season of darkness, it was the spring of hope, it was the winter of despair.” Charles Dickens, A Tale of Two Cities "Nothing in this world can take the place of persistence. Talent will not: nothing is more common than unsuccessful men with talent. Genius will not: unrewarded genius is almost a proverb. Education will not: the world is full of educated derelicts. Persistence and determination alone are omnipotent." Calvin Coolidge “My experience is that there is, you know, surprisingly, always hope.” 11th Doctor, Vincent and the Doctor iv Agradecimentos Se vi mais longe foi porque estava aos ombros de gigantes, Isaac Newton O Professor Doutor Alexandre Quintanilha disse uma vez numa entrevista que é preciso ter-se uma determinada personalidade para se prosperar numa carreira científica. Nunca mais me esqueci das suas palavras e, durante muito tempo, achei que estava prestes a descobrir que não a tinha. Mais tarde percebi que estava no caminho normal: faz parte de um Doutoramento ter momentos em que sentimos que não estamos a prosperar e que seríamos mais eficientes numa cadeia de fast-food. Mas, muitas vezes é nesses momentos que, tendo vontade de viver e crescer, desenvolvemos essa determinada personalidade e lutamos ao máximo para fazer as coisas acontecer. É, no entanto, preciso uma outra coisa: estar rodeado das pessoas certas. Este é o momento de agradecer a essas pessoas que, ao longo dos últimos quatro anos, me ajudaram a desenvolver não apenas o trabalho do meu Doutoramento, mas também a minha capacidade, a minha personalidade e a minha independência. Aos vossos ombros vi melhor e mais longe. Em primeiro lugar, devo agradecer às minhas orientadoras, por me terem aceitado para Doutoramento e assim permitido que continuasse os estudos numa área que muito me interessa, mas cujos resultados nem sempre são fáceis de obter. Agradeço à Doutora Armanda Santos o interesse e o cuidado pelo pormenor durante o meu Doutoramento, bem como a contribuição para o produto final desta tese, sobretudo pelo esforço que fez durante a sua gravidez para garantir que nada faltaria chegando este momento final. Agradeço também à Professora Doutora Ana Luísa Carvalho, pela paixão contagiante com que veste a camisola e honra os seus compromissos. Por estar sempre disponível para falar com os seus alunos, mesmo estando terrivelmente atarefada, por nos dar as ferramentas e confiar na nossa capacidade para fazer o resto; por acreditar em nós e saber sempre o que dizer para nos voltar a pôr no caminho certo quando nos sentimos desapontados ou preocupados com o trabalho. Mas acima de tudo, agradeço-lhe por partilhar as suas ideias comigo, por me deixar falar, por me ouvir e perguntar sempre pela minha opinião, por aceitar as minhas iniciativas e discuti-las comigo, por me deixar tomar as rédeas do trabalho e assim permitir que esta tese tenha a minha marca em todo o lado. Por me fazer sentir capaz, responsável e profundamente envolvida no meu Doutoramento, e por me levantar tantos desafios que, se ao início pareciam assustadores, se revelaram passos dados no sentido de crescer, fortalecer e me ajudar a ver a Ciência de uma forma muito mais aprazível e gratificante. Obrigada por me ter ensinado tanto como investigadora, mas sobretudo por me ter dado espaço para crescer como pessoa. É um verdadeiro orgulho trabalhar consigo. Agradeço ao Professor Doutor Carlos Duarte, que foi quem primeiro desencadeou o meu interesse pela Neurobiologia, há cinco anos atrás. Agradeço também a sua disponibilidade para discussão de resultados e pela contribuição valiosa para o desenho de experiências no decorrer do trabalho, mas também pela maravilhosa cultura gastronómica que incute ao nosso laboratório, dentro ou fora de Portugal. Um agradecimento sentido também para a Dona Céu e a Elisabete que, movendo mundos e fundos, tornam possível o nosso trabalho durante a azáfama da semana e garantem que nada nos falta quando mais precisamos. v Agradeço a todos os membros, sem excepção, da minha maravilhosa, magnífica, brilhante e distinta família laboratorial, os melhores da Biotecnologia e Neurociências. No entanto, devo destacar os que me foram mais próximos: - Aos espectaculares Rui Cruz e Raquel Vinhas, de quem guardo uma permanente saudade, pela gargalhada constante que os define e que em tantos momentos nos deixou a todos mais alegres. Agradeço também à Ana Sofia “Aninhas” Lourenço, pelas conversas calorosas sobre gente em crescimento e por ser a mulher corajosa que é. É tão bom pensar que, quando nos encontramos todos, é como se nunca nos tivéssemos separado; - Às três meninas que considero uma espécie de “Michele Obama científica”: Ana Rita Santos, Susana Louros e Joana Ferreira, as verdadeiras mulheres modernas e independentes com o domínio total das rédeas do seu percurso. A vossa garra e espírito de luta, a forma desembaraçada e clara como encaram os problemas, a dedicação e cuidado para com a Ciência, tudo isso é verdadeiramente inspirador e deixou uma marca definitiva durante o meu crescimento. O vosso limite é a cadeira da presidência americana, tenho a certeza. Obrigada por terem estado a meu lado durante estes quatro últimos anos em que crescia como profissional, mas acima de tudo me definia enquanto pessoa; - Ao caríssimo João Costa, pela permanente boa-disposição e alegria, pelos discursos sentidos nos momentos solenes do laboratório e pelos momentos de canto e dancinhas tolas que partilhámos quando ninguém estava a ver (gosto muito de ti); ao Luís Martins, esse grande tolinho, por nunca deixar ninguém sossegado durante muito tempo e planear sempre uma nova partidinha, causando a gargalhada geral (muito importante!); ao gémeo Graciano Leal que, na sua postura calma e desembaraçada, é uma das pessoas de quem mais gosto e tem sempre a piada certa para o momento certo (és a verdadeira noção de compincha em pessoa); ao Ivan Lalanda que, apesar das inúmeras quezílias, nunca, em momento algum, deixou de me ajudar quando precisei (mas foi devidamente pago em chocolates e abracinhos à força) e ao ilustríssimo Pedro João Afonso que, se no princípio nos assombrou a todos com a sua forma muito sui generis de ver a vida, hoje tem lugar cativo no nosso gang; ao Michele Curcio, meu primeiro professor e amigo italiano, por todos os momentos italiano- portugueses passados entre pipetas e incubações, pelo carregamento de risotti que me encheu a dispensa, pelas conversas e partilha de preocupações sobre o nosso futuro enquanto investigadores, pelas palmadinhas dolorosas nas costas e pela vozinha que nos põe a rir de imediato, mesmo quando estamos mais tristes – tu sei il vero monstro dei biscotti! - À colega de carteira, Joana Pedro, pela amizade e pelos bons momentos que partilhámos, pela atenção e cuidado comigo quando mais precisei e pelos blind data mais curtidos da história da Ciência; - Ao Pedro Alves gostaria de agradecer pela simpatia e confiança com que sempre me tratou até chegarmos ao ponto de irmãos. I also have to thank Mohamed Edfawy Hussien, our illustrous Egyptian King. Thank you for sharing such an inspiring faith in Humanity and for being always so patient, kind and tolerant with us all, even when we look like children firing questions at you; vi - Ao Doutor Rui Miguel Oliveira da Costa, que não gosta que eu o diga, mas é realmente o meu irmão mais velho. Apesar das discussões que às vezes estalam entre nós e de eu nem sempre apreciar o tom paternalista nalgumas delas, agradeço a preocupação comigo e com o meu trabalho. Estou para sempre grata por me teres levado para Itália num momento tão difícil para mim e por me teres ensinado a nadar nas maravilhosas águas do Tirreno (tenho muita sorte). Gostaria sobretudo que soubesses que em muito admiro a solidez do teu carácter, o teu espírito empreendedor de quem sabe o que quer, a tua dedicação ao que é importante. Para mim, és em muitas coisas um exemplo de pessoa; - Ao Carlos Matos, que partilhou comigo os principais anos do meu crescimento e me ajudou a desenvolver a minha personalidade e a perceber o que eu queria e não queria para o meu futuro.
Recommended publications
  • Applying Screening Techniques to Two Orphan Gpcrs
    Universidade de Lisboa Faculdade de Farmácia Deorphanization of receptors: Applying screening techniques to two orphan GPCRs Ana Catarina Rufas da Silva Santos Mestrado Integrado em Ciências Farmacêuticas 2019 Universidade de Lisboa Faculdade de Farmácia Deorphanization of receptors: Applying screening techniques to two orphan GPCRs Ana Catarina Rufas da Silva Santos Monografia de Mestrado Integrado em Ciências Farmacêuticas apresentada à Universidade de Lisboa através da Faculdade de Farmácia Orientadora: Ghazl Al Hamwi, PhD Student Co-Orientadora: Professora Doutora Elsa Maria Ribeiro dos Santos Anes, Professora Associada com Agregação em Microbiologia 2019 Abstract G-Protein Coupled Receptors represent one of the largest families of cellular receptors discovered and one of the main sources of attractive drug targets. In contrast, it also has a large number of understudied or orphan receptors. Pharmacological assays such as β-Arrestin recruitment assays, are one of the possible approaches for deorphanization of receptors. In this work, I applied the assay system previously mentioned to screen compounds in two orphan receptors, GRP37 and MRGPRX3. GPR37 has been primarily associated with a form of early onset Parkinsonism due to its’ expression patterns, and physiological role as substrate to ubiquitin E3, parkin. Although extensive literature regarding this receptor is available, the identification of a universally recognized ligand has not yet been possible. Two compounds were proposed as ligands, but both were met with controversy. These receptor association with Autosomal Recessive Juvenile Parkinson positions it as a very attractive drug target, and as such its’ deorphanization is a prime objective for investigators in this area. Regarding MRGPRX3 information is much scarcer.
    [Show full text]
  • Universidade Estadual De Campinas Instituto De Biologia
    UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE BIOLOGIA VERÔNICA APARECIDA MONTEIRO SAIA CEREDA O PROTEOMA DO CORPO CALOSO DA ESQUIZOFRENIA THE PROTEOME OF THE CORPUS CALLOSUM IN SCHIZOPHRENIA CAMPINAS 2016 1 VERÔNICA APARECIDA MONTEIRO SAIA CEREDA O PROTEOMA DO CORPO CALOSO DA ESQUIZOFRENIA THE PROTEOME OF THE CORPUS CALLOSUM IN SCHIZOPHRENIA Dissertação apresentada ao Instituto de Biologia da Universidade Estadual de Campinas como parte dos requisitos exigidos para a obtenção do Título de Mestra em Biologia Funcional e Molecular na área de concentração de Bioquímica. Dissertation presented to the Institute of Biology of the University of Campinas in partial fulfillment of the requirements for the degree of Master in Functional and Molecular Biology, in the area of Biochemistry. ESTE ARQUIVO DIGITAL CORRESPONDE À VERSÃO FINAL DA DISSERTAÇÃO DEFENDIDA PELA ALUNA VERÔNICA APARECIDA MONTEIRO SAIA CEREDA E ORIENTADA PELO DANIEL MARTINS-DE-SOUZA. Orientador: Daniel Martins-de-Souza CAMPINAS 2016 2 Agência(s) de fomento e nº(s) de processo(s): CNPq, 151787/2F2014-0 Ficha catalográfica Universidade Estadual de Campinas Biblioteca do Instituto de Biologia Mara Janaina de Oliveira - CRB 8/6972 Saia-Cereda, Verônica Aparecida Monteiro, 1988- Sa21p O proteoma do corpo caloso da esquizofrenia / Verônica Aparecida Monteiro Saia Cereda. – Campinas, SP : [s.n.], 2016. Orientador: Daniel Martins de Souza. Dissertação (mestrado) – Universidade Estadual de Campinas, Instituto de Biologia. 1. Esquizofrenia. 2. Espectrometria de massas. 3. Corpo caloso.
    [Show full text]
  • Propranolol-Mediated Attenuation of MMP-9 Excretion in Infants with Hemangiomas
    Supplementary Online Content Thaivalappil S, Bauman N, Saieg A, Movius E, Brown KJ, Preciado D. Propranolol-mediated attenuation of MMP-9 excretion in infants with hemangiomas. JAMA Otolaryngol Head Neck Surg. doi:10.1001/jamaoto.2013.4773 eTable. List of All of the Proteins Identified by Proteomics This supplementary material has been provided by the authors to give readers additional information about their work. © 2013 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 10/01/2021 eTable. List of All of the Proteins Identified by Proteomics Protein Name Prop 12 mo/4 Pred 12 mo/4 Δ Prop to Pred mo mo Myeloperoxidase OS=Homo sapiens GN=MPO 26.00 143.00 ‐117.00 Lactotransferrin OS=Homo sapiens GN=LTF 114.00 205.50 ‐91.50 Matrix metalloproteinase‐9 OS=Homo sapiens GN=MMP9 5.00 36.00 ‐31.00 Neutrophil elastase OS=Homo sapiens GN=ELANE 24.00 48.00 ‐24.00 Bleomycin hydrolase OS=Homo sapiens GN=BLMH 3.00 25.00 ‐22.00 CAP7_HUMAN Azurocidin OS=Homo sapiens GN=AZU1 PE=1 SV=3 4.00 26.00 ‐22.00 S10A8_HUMAN Protein S100‐A8 OS=Homo sapiens GN=S100A8 PE=1 14.67 30.50 ‐15.83 SV=1 IL1F9_HUMAN Interleukin‐1 family member 9 OS=Homo sapiens 1.00 15.00 ‐14.00 GN=IL1F9 PE=1 SV=1 MUC5B_HUMAN Mucin‐5B OS=Homo sapiens GN=MUC5B PE=1 SV=3 2.00 14.00 ‐12.00 MUC4_HUMAN Mucin‐4 OS=Homo sapiens GN=MUC4 PE=1 SV=3 1.00 12.00 ‐11.00 HRG_HUMAN Histidine‐rich glycoprotein OS=Homo sapiens GN=HRG 1.00 12.00 ‐11.00 PE=1 SV=1 TKT_HUMAN Transketolase OS=Homo sapiens GN=TKT PE=1 SV=3 17.00 28.00 ‐11.00 CATG_HUMAN Cathepsin G OS=Homo
    [Show full text]
  • Edinburgh Research Explorer
    Edinburgh Research Explorer International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list Citation for published version: Davenport, AP, Alexander, SPH, Sharman, JL, Pawson, AJ, Benson, HE, Monaghan, AE, Liew, WC, Mpamhanga, CP, Bonner, TI, Neubig, RR, Pin, JP, Spedding, M & Harmar, AJ 2013, 'International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list: recommendations for new pairings with cognate ligands', Pharmacological reviews, vol. 65, no. 3, pp. 967-86. https://doi.org/10.1124/pr.112.007179 Digital Object Identifier (DOI): 10.1124/pr.112.007179 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Pharmacological reviews Publisher Rights Statement: U.S. Government work not protected by U.S. copyright General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 02. Oct. 2021 1521-0081/65/3/967–986$25.00 http://dx.doi.org/10.1124/pr.112.007179 PHARMACOLOGICAL REVIEWS Pharmacol Rev 65:967–986, July 2013 U.S.
    [Show full text]
  • Chapter 1 - Introduction
    Chapter 1 - Introduction 1 1.1 Epigenetic modifications and gene silencing The fact that a multicellular organism is able to undergo cellular differentiation, even though every cell contains the same genetic material, indicates the existence of an extra layer of phenotype-determining factors. Cellular differentiation is associated with the development of different patterns of gene expression in individual cells or groups of cells, and the way in which these patterns are established involves epigenetics. Epigenetics refers to the process by which transcriptional states are changed in a relatively permanent way in the absence of DNA mutation. Epigenetic gene silencing or activation results from modifications to the gene in question either by changing the methylation state of the DNA or by modifying the proteins that package the DNA. There is increasing evidence that in some cases RNA molecules are also involved. Epigenetic modifications are generally erased and reset between generations in order to provide the necessary pluripotent starting state from which to begin development in the next generation. 1.1.1 DNA methylation DNA methylation is the best studied epigenetic modification. In mammals DNA methylation is always associated with cytosine residues, generally occurring at CpG dinucleotides in a symmetrical fashion, where the cytosines on both strands are methylated. Methylation of cytosine involves the transfer of a methyl group from an S-adenosyl-L-methionine to the 5-position of cytosine, resulting in the modified base 5-methylcytosine (Jeltsch, 2002) (Figure 1.1). Estimates of methylation levels at CpGs in mammals range from 50-90% (Gruenbaum et al., 1981; Jeltsch, 2002). DNA 2 hypermethylation at promoters usually correlates with transcriptional repression and gene silencing.
    [Show full text]
  • Figure S1. Representative Report Generated by the Ion Torrent System Server for Each of the KCC71 Panel Analysis and Pcafusion Analysis
    Figure S1. Representative report generated by the Ion Torrent system server for each of the KCC71 panel analysis and PCaFusion analysis. (A) Details of the run summary report followed by the alignment summary report for the KCC71 panel analysis sequencing. (B) Details of the run summary report for the PCaFusion panel analysis. A Figure S1. Continued. Representative report generated by the Ion Torrent system server for each of the KCC71 panel analysis and PCaFusion analysis. (A) Details of the run summary report followed by the alignment summary report for the KCC71 panel analysis sequencing. (B) Details of the run summary report for the PCaFusion panel analysis. B Figure S2. Comparative analysis of the variant frequency found by the KCC71 panel and calculated from publicly available cBioPortal datasets. For each of the 71 genes in the KCC71 panel, the frequency of variants was calculated as the variant number found in the examined cases. Datasets marked with different colors and sample numbers of prostate cancer are presented in the upper right. *Significantly high in the present study. Figure S3. Seven subnetworks extracted from each of seven public prostate cancer gene networks in TCNG (Table SVI). Blue dots represent genes that include initial seed genes (parent nodes), and parent‑child and child‑grandchild genes in the network. Graphical representation of node‑to‑node associations and subnetwork structures that differed among and were unique to each of the seven subnetworks. TCNG, The Cancer Network Galaxy. Figure S4. REVIGO tree map showing the predicted biological processes of prostate cancer in the Japanese. Each rectangle represents a biological function in terms of a Gene Ontology (GO) term, with the size adjusted to represent the P‑value of the GO term in the underlying GO term database.
    [Show full text]
  • Cellular and Molecular Signatures in the Disease Tissue of Early
    Cellular and Molecular Signatures in the Disease Tissue of Early Rheumatoid Arthritis Stratify Clinical Response to csDMARD-Therapy and Predict Radiographic Progression Frances Humby1,* Myles Lewis1,* Nandhini Ramamoorthi2, Jason Hackney3, Michael Barnes1, Michele Bombardieri1, Francesca Setiadi2, Stephen Kelly1, Fabiola Bene1, Maria di Cicco1, Sudeh Riahi1, Vidalba Rocher-Ros1, Nora Ng1, Ilias Lazorou1, Rebecca E. Hands1, Desiree van der Heijde4, Robert Landewé5, Annette van der Helm-van Mil4, Alberto Cauli6, Iain B. McInnes7, Christopher D. Buckley8, Ernest Choy9, Peter Taylor10, Michael J. Townsend2 & Costantino Pitzalis1 1Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK. Departments of 2Biomarker Discovery OMNI, 3Bioinformatics and Computational Biology, Genentech Research and Early Development, South San Francisco, California 94080 USA 4Department of Rheumatology, Leiden University Medical Center, The Netherlands 5Department of Clinical Immunology & Rheumatology, Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands 6Rheumatology Unit, Department of Medical Sciences, Policlinico of the University of Cagliari, Cagliari, Italy 7Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK 8Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Birmingham B15 2WB, UK 9Institute of
    [Show full text]
  • A Database of Gene Regulatory Network Models Across Human Conditions
    bioRxiv preprint doi: https://doi.org/10.1101/2021.06.18.448997; this version posted June 18, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. GRAND: A database of gene regulatory network models across human conditions Marouen Ben Guebila1†, Camila M Lopes-Ramos1†, Deborah Weighill1,7, Abhijeet Rajendra Sonawane2, Rebekka Burkholz1, Behrouz Shamsaei3, John Platig4, Kimberly Glass1,4, Marieke L Kuijjer5,6, John Quackenbush1,4,*. 1Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA. 2Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA. 3Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA. 4Channing Division of Network Medicine, Department of Medicine, Harvard Medical School and Brigham and Women’s Hospital 5Center for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Norway 6Leiden University Medical Center, Leiden, the Netherlands 7Current address: UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA † Joint Authors. * To whom correspondence should be addressed. Email: [email protected]. 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.06.18.448997; this version posted June 18, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Downloaded from Genomic Data Common Website (GDC at Accessed on 2019)
    G C A T T A C G G C A T genes Article Molecular Pathways Associated with Kallikrein 6 Overexpression in Colorectal Cancer Ritu Pandey 1,2,*, Muhan Zhou 3, Yuliang Chen 3, Dalila Darmoul 4 , Conner C. Kisiel 2, Valentine N. Nfonsam 5 and Natalia A. Ignatenko 1,2 1 Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA; [email protected] 2 University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA; [email protected] 3 Bioinformatics Shared Resource, University of Arizona Cancer Center, Tucson, AZ 85724, USA; [email protected] (M.Z.); [email protected] (Y.C.) 4 Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Paris, Lariboisière Hospital, 75010 Paris, France; [email protected] 5 Department of Surgery, Section of Surgical Oncology, University of Arizona, Tucson, AZ 85724, USA; [email protected] * Correspondence: [email protected] Abstract: Colorectal cancer (CRC) remains one of the leading causes of cancer-related death world- wide. The high mortality of CRC is related to its ability to metastasize to distant organs. The kallikrein-related peptidase Kallikrein 6 (KLK6) is overexpressed in CRC and contributes to cancer cell invasion and metastasis. The goal of this study was to identify KLK6-associated markers for the CRC prognosis and treatment. Tumor Samples from the CRC patients with significantly elevated Citation: Pandey, R.; Zhou, M.; Chen, KLK6 transcript levels were identified in the RNA-Seq data from Cancer Genome Atlas (TCGA) Y.; Darmoul, D.; Kisiel, C.C.; and their expression profiles were evaluated using Gene Ontology (GO), Phenotype and Reactome Nfonsam, V.N.; Ignatenko, N.A.
    [Show full text]
  • Sexual Dimorphism in Brain Transcriptomes of Amami Spiny Rats (Tokudaia Osimensis): a Rodent Species Where Males Lack the Y Chromosome Madison T
    Ortega et al. BMC Genomics (2019) 20:87 https://doi.org/10.1186/s12864-019-5426-6 RESEARCHARTICLE Open Access Sexual dimorphism in brain transcriptomes of Amami spiny rats (Tokudaia osimensis): a rodent species where males lack the Y chromosome Madison T. Ortega1,2, Nathan J. Bivens3, Takamichi Jogahara4, Asato Kuroiwa5, Scott A. Givan1,6,7,8 and Cheryl S. Rosenfeld1,2,8,9* Abstract Background: Brain sexual differentiation is sculpted by precise coordination of steroid hormones during development. Programming of several brain regions in males depends upon aromatase conversion of testosterone to estrogen. However, it is not clear the direct contribution that Y chromosome associated genes, especially sex- determining region Y (Sry), might exert on brain sexual differentiation in therian mammals. Two species of spiny rats: Amami spiny rat (Tokudaia osimensis) and Tokunoshima spiny rat (T. tokunoshimensis) lack a Y chromosome/Sry, and these individuals possess an XO chromosome system in both sexes. Both Tokudaia species are highly endangered. To assess the neural transcriptome profile in male and female Amami spiny rats, RNA was isolated from brain samples of adult male and female spiny rats that had died accidentally and used for RNAseq analyses. Results: RNAseq analyses confirmed that several genes and individual transcripts were differentially expressed between males and females. In males, seminal vesicle secretory protein 5 (Svs5) and cytochrome P450 1B1 (Cyp1b1) genes were significantly elevated compared to females, whereas serine (or cysteine) peptidase inhibitor, clade A, member 3 N (Serpina3n) was upregulated in females. Many individual transcripts elevated in males included those encoding for zinc finger proteins, e.g.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Haploinsufficiency of Cardiac Myosin Binding Protein-C in the Development of Hypertrophic Cardiomyopathy
    Loyola University Chicago Loyola eCommons Dissertations Theses and Dissertations 2014 Haploinsufficiency of Cardiac Myosin Binding Protein-C in the Development of Hypertrophic Cardiomyopathy David Barefield Loyola University Chicago Follow this and additional works at: https://ecommons.luc.edu/luc_diss Part of the Physiology Commons Recommended Citation Barefield, David, "Haploinsufficiency of Cardiac Myosin Binding Protein-C in the Development of Hypertrophic Cardiomyopathy" (2014). Dissertations. 1249. https://ecommons.luc.edu/luc_diss/1249 This Dissertation is brought to you for free and open access by the Theses and Dissertations at Loyola eCommons. It has been accepted for inclusion in Dissertations by an authorized administrator of Loyola eCommons. For more information, please contact [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. Copyright © 2014 David Barefield LOYOLA UNIVERSITY CHICAGO HAPLOINSUFFICIENCY OF CARDIAC MYOSIN BINDING PROTEIN-C IN THE DEVELOPMENT OF HYPERTROPHIC CARDIOMYOPATHY A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL IN CANDIDACY FOR THE DEGREE OF DOCTOR OF PHILOSOPHY PROGRAM IN CELL AND MOLECULAR PHYSIOLOGY BY DAVID YEOMANS BAREFIELD CHICAGO, IL AUGUST 2014 Copyright by David Yeomans Barefield, 2014 All Rights Reserved. ii ACKNOWLEDGEMENTS The completion of this work would not have been possible without the support of excellent mentors, colleagues, friends, and family. I give tremendous thanks to my mentor, Dr. Sakthivel Sadayappan, who has facilitated my growth as a scientist and as a human being over the past five years. I would like to thank my dissertation committee: Drs. Pieter de Tombe, Kenneth Byron, Leanne Cribbs, Kyle Henderson, and Christine Seidman for their erudite guidance of my project and my development as a scientist.
    [Show full text]