Functional Analysis of PIP2 Aquaporins in Arabidopsis Thaliana

Total Page:16

File Type:pdf, Size:1020Kb

Functional Analysis of PIP2 Aquaporins in Arabidopsis Thaliana Dissertation zur Erlangung des Doktorgrades der Fakultät für Chemie und Pharmazie der Ludwig-Maximilians-Universität München Functional analysis of PIP2 aquaporins in Arabidopsis thaliana Olivier Da Ines aus Mâcon, France 2008 Erklärung Diese Dissertation wurde im Sinne von § 13 Abs. 3 bzw. 4 der Promotionsordnung vom 29. Januar 1998 von PD Dr. Anton R. Schäffner betreut. Ehrenwörtliche Versicherung Diese Dissertation wurde selbstständig, ohne unerlaubte Hilfe erarbeitet. München, am 11.03.2008 Olivier Da Ines Dissertation eingereicht am 11.03.2008 1. Gutacher PD Dr. Anton Schäffner 2. Gutachter Prof. Karl-Peter Hopfner Mündliche Prüfung am 08.05.2008 3 ABSTRACT Plants harbor about 30 genes encoding major intrinsic proteins ( MIP ) which were named aquaporins because of the frequently observed water channel activity and their putative involvement in water relations. Plasma membrane intrinsic proteins (PIP) are subdivided into two groups with five PIP1 and eight PIP2 members in the model plant Arabidopsis thaliana . PIP2 genes are highly homologous to each other, which might indicate a redundant function. However, several lines of evidence argue for gene-specific and non-redundant functions. PIP2 genes exhibit overlapping, but differential expression patterns when assessed by promoter::GUS transgenic lines. Most PIP2 genes were expressed in the region of the vascular tissue, however with differential cellular patterns. PIP2;5 and PIP2;7 were more uniformly found in leaves. PIP2;4 was the only root-specific member and preferentially expressed in outer cell layers, whereas PIP2;6 and PIP2;8 were mostly found in young leaves with a distinct expression. PCA analyses based on publicly available stress-responsive expression patterns revealed distinct transcriptional responsiveness of PIP2 genes. No visible phenotypes were observed for pip2 knock-out lines under normal growth conditions. However, pip2;3 mutants specifically showed salt-sensitivity, although the duplicated gene PIP2;2 has only eight amino acids different from PIP2;3 that mostly cluster in the region of the extracellular loop C. Transcriptional analysis using a custom-made DNA array focusing on membrane proteins indicated that loss-of-function of distinct PIP2 genes did not interfere with major transport processes, at least at the transcriptional level. For several mutants of abundantly expressed PIP2 isoforms, root transcriptome analysis was extended to the whole genome using Affymetrix ATH1 GeneChip. Furthermore, PIP2 co-expression analyses revealed enrichment for different functional categories. Only PIP2;1 and PIP2;2 showed significant correlations with other PIP genes, however most PIP2 genes were also correlated to TIP isoforms, suggesting an functional relationship of plasma membrane and tonoplast permeabilities. Surprisingly, at the protein level, the loss of PIP2;1 or PIP2;2 specifically provoked a decrease in PIP1 proteins indicating a dependence of PIP1 stability on these PIP2 members. So far, direct evidence for a participation of single PIP aquaporins in water transport in planta is scarce. To study non-invasively the impact of PIP2 on water uptake, the kinetics of water translocation was analyzed by mass spectrometry of water extracted from in pip2;1 and pip2;2 mutants grown in D-enriched medium. Retarded deuterium transfer into leaves of the single mutants indicated a direct involvement of both PIP proteins in water relations, whereas surprisingly the corresponding double mutant had compensated this slower uptake. Contents 4 C O T E T S ABSTRACT .............................................................................................................................. 3 ABBREVIATIOS .................................................................................................................. 7 FIGURES AD TABLES ........................................................................................................ 8 1 ITRODUCTIO .............................................................................................. 10 1.1 Water uptake and transport across plant tissues ............................................ 10 1.2 Aquaporin water channels ................................................................................. 14 1.2.1 History and discovery of aquaporins .................................................................... 14 1.2.2 Classification of the plant MIP superfamily of proteins ...................................... 15 1.2.3 Structural features of aquaporins and transport selectivity .................................. 16 1.2.3.1 Common structural features of aquaporins .......................................................... 16 1.2.3.2 Water transport selectivity ................................................................................... 18 1.2.3.3 Additional transport specificities ......................................................................... 19 1.2.4 Plant aquaporins expression and localization ....................................................... 21 1.2.5 Regulation of plant aquaporins ............................................................................ 24 1.2.5.1 Phosphorylation .................................................................................................... 24 2+ 1.2.5.2 Regulation by pH and Ca .................................................................................. 25 1.2.5.3 Aquaporin interaction and trafficking .................................................................. 26 1.2.6 Integrated function of plant aquaporins inferred from transgenic plants ............. 28 1.3 Goals of the project ............................................................................................ 31 2 MATERIALS AD METHODS....................................................................... 32 2.1 Materials ............................................................................................................. 32 2.1.1 Plant materials ...................................................................................................... 32 2.1.2 Vectors and bacteria ............................................................................................. 33 2.1.3 Antibiotics ............................................................................................................ 34 2.1.4 Restriction enzymes and Modifying enzymes ..................................................... 34 2.1.5 Antibodies ............................................................................................................ 34 2.1.6 Isotopically labeled compounds ........................................................................... 35 2.1.7 Oligonucleotides and sequencing ......................................................................... 35 2.1.8 Chemicals ............................................................................................................. 35 2.1.9 Medium and solutions .......................................................................................... 35 2.1.10 Apparatus ............................................................................................................. 36 2.2 Methods ............................................................................................................... 36 2.2.1 Culture of Arabidopsis thaliana plants ................................................................ 36 2.2.1.1 Growth conditions ................................................................................................ 36 2.2.1.2 Growth in soil, crossing, seeds harvesting and storage ........................................ 36 2.2.1.3 Seed sterilization .................................................................................................. 37 2.2.1.4 In vitro culture on solid medium .......................................................................... 37 2.2.1.5 Hydroponic culture ............................................................................................... 38 2.2.1.6 Growth measurements on in vitro culture ............................................................ 39 2.2.1.7 Leaf water loss measurement using detached-rosette assay ................................. 39 2.2.1.8 Root bending assay (gravitropism response) ....................................................... 40 2.2.1.9 Analysis of deuterium (D) translocation in plant ................................................. 40 2.2.2 Microbiological methods ...................................................................................... 42 Contents 5 2.2.2.1 Preparation of competent cells ............................................................................. 42 2.2.2.2 Transformation of competent cells ....................................................................... 43 2.2.2.3 Transformation of Agrobacterium tumefaciens ................................................... 43 2.2.2.4 Agrobacterium tumefaciens -mediated plant transformation ................................ 44 2.2.3 Nucleic acid isolation ........................................................................................... 45 2.2.3.1 CTAB DNA Minipreparation from plant tissue ................................................... 45 2.2.3.2 Genomic DNA preparation for Southern blotting using DNeasy Plant Mini Kit 45 2.2.3.3 Plasmid DNA preparation .................................................................................... 45 2.2.3.4 Isolation of total RNA for RT-PCR ....................................................................
Recommended publications
  • Bioinformatic Analyses of Integral Membrane Transport Proteins Encoded Within the Genome of the Planctomycetes Species, Rhodopirellula Baltica
    UC San Diego UC San Diego Previously Published Works Title Bioinformatic analyses of integral membrane transport proteins encoded within the genome of the planctomycetes species, Rhodopirellula baltica. Permalink https://escholarship.org/uc/item/0f85q1z7 Journal Biochimica et biophysica acta, 1838(1 Pt B) ISSN 0006-3002 Authors Paparoditis, Philipp Västermark, Ake Le, Andrew J et al. Publication Date 2014 DOI 10.1016/j.bbamem.2013.08.007 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Biochimica et Biophysica Acta 1838 (2014) 193–215 Contents lists available at ScienceDirect Biochimica et Biophysica Acta journal homepage: www.elsevier.com/locate/bbamem Bioinformatic analyses of integral membrane transport proteins encoded within the genome of the planctomycetes species, Rhodopirellula baltica Philipp Paparoditis a, Åke Västermark a,AndrewJ.Lea, John A. Fuerst b, Milton H. Saier Jr. a,⁎ a Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA, 92093–0116, USA b School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, 9072, Australia article info abstract Article history: Rhodopirellula baltica (R. baltica) is a Planctomycete, known to have intracellular membranes. Because of its un- Received 12 April 2013 usual cell structure and ecological significance, we have conducted comprehensive analyses of its transmembrane Received in revised form 8 August 2013 transport proteins. The complete proteome of R. baltica was screened against the Transporter Classification Data- Accepted 9 August 2013 base (TCDB) to identify recognizable integral membrane transport proteins. 342 proteins were identified with a Available online 19 August 2013 high degree of confidence, and these fell into several different classes.
    [Show full text]
  • Slc1a3-2A-Creert2 Mice Reveal Unique Features of Bergmann Glia and Augment a Growing Collection of Cre Drivers and Effectors In
    www.nature.com/scientificreports OPEN Slc1a3‑2A‑CreERT2 mice reveal unique features of Bergmann glia and augment a growing collection of Cre drivers and efectors in the 129S4 genetic background Lech Kaczmarczyk1,2, Nicole Reichenbach2, Nelli Blank2, Maria Jonson1, Lars Dittrich2, Gabor C. Petzold2,3 & Walker S. Jackson1,2* Genetic variation is a primary determinant of phenotypic diversity. In laboratory mice, genetic variation can be a serious experimental confounder, and thus minimized through inbreeding. However, generalizations of results obtained with inbred strains must be made with caution, especially when working with complex phenotypes and disease models. Here we compared behavioral characteristics of C57Bl/6—the strain most widely used in biomedical research—with those of 129S4. In contrast to 129S4, C57Bl/6 demonstrated high within‑strain and intra‑litter behavioral hyperactivity. Although high consistency would be advantageous, the majority of disease models and transgenic tools are in C57Bl/6. We recently established six Cre driver lines and two Cre efector lines in 129S4. To augment this collection, we genetically engineered a Cre line to study astrocytes in 129S4. It was validated with two Cre efector lines: calcium indicator gCaMP5g‑tdTomato and RiboTag—a tool widely used to study cell type‑specifc translatomes. These reporters are in diferent genomic loci, and in both the Cre was functional and astrocyte‑specifc. We found that calcium signals lasted longer and had a higher amplitude in cortical compared to hippocampal astrocytes, genes linked to a single neurodegenerative disease have highly divergent expression patterns, and that ribosome proteins are non‑uniformly expressed across brain regions and cell types.
    [Show full text]
  • Cellular and Molecular Signatures in the Disease Tissue of Early
    Cellular and Molecular Signatures in the Disease Tissue of Early Rheumatoid Arthritis Stratify Clinical Response to csDMARD-Therapy and Predict Radiographic Progression Frances Humby1,* Myles Lewis1,* Nandhini Ramamoorthi2, Jason Hackney3, Michael Barnes1, Michele Bombardieri1, Francesca Setiadi2, Stephen Kelly1, Fabiola Bene1, Maria di Cicco1, Sudeh Riahi1, Vidalba Rocher-Ros1, Nora Ng1, Ilias Lazorou1, Rebecca E. Hands1, Desiree van der Heijde4, Robert Landewé5, Annette van der Helm-van Mil4, Alberto Cauli6, Iain B. McInnes7, Christopher D. Buckley8, Ernest Choy9, Peter Taylor10, Michael J. Townsend2 & Costantino Pitzalis1 1Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK. Departments of 2Biomarker Discovery OMNI, 3Bioinformatics and Computational Biology, Genentech Research and Early Development, South San Francisco, California 94080 USA 4Department of Rheumatology, Leiden University Medical Center, The Netherlands 5Department of Clinical Immunology & Rheumatology, Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands 6Rheumatology Unit, Department of Medical Sciences, Policlinico of the University of Cagliari, Cagliari, Italy 7Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK 8Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Birmingham B15 2WB, UK 9Institute of
    [Show full text]
  • Magnesium Is a Key Player in Neuronal Maturation and Neuropathology
    International Journal of Molecular Sciences Review Magnesium Is a Key Player in Neuronal Maturation and Neuropathology Ryu Yamanaka 1,2 , Yutaka Shindo 1 and Kotaro Oka 1,3,4,* 1 Center for Biosciences and Informatics, School of Fundamental Science and Technology Graduate School of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan 2 Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda, Yamaguchi 756-0884, Japan 3 Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan 4 Waseda Research Institute for Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku, Tokyo 162-8480, Japan * Correspondence: [email protected]; Tel.: +81-045-566-1789 Received: 16 June 2019; Accepted: 9 July 2019; Published: 12 July 2019 Abstract: Magnesium (Mg) is the second most abundant cation in mammalian cells, and it is essential for numerous cellular processes including enzymatic reactions, ion channel functions, metabolic cycles, cellular signaling, and DNA/RNA stabilities. Because of the versatile and universal nature of Mg2+, the homeostasis of intracellular Mg2+ is physiologically linked to growth, proliferation, differentiation, energy metabolism, and death of cells. On the cellular and tissue levels, maintaining Mg2+ within optimal levels according to the biological context, such as cell types, developmental stages, extracellular environments, and pathophysiological conditions, is crucial for development, normal functions, and diseases. Hence, Mg2+ is pathologically involved in cancers, diabetes, and neurodegenerative diseases, such as Parkinson’s disease, Alzheimer’s disease, and demyelination. In the research field regarding the roles and mechanisms of Mg2+ regulation, numerous controversies caused by its versatility and complexity still exist.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Figure S1. HAEC ROS Production and ML090 NOX5-Inhibition
    Figure S1. HAEC ROS production and ML090 NOX5-inhibition. (a) Extracellular H2O2 production in HAEC treated with ML090 at different concentrations and 24 h after being infected with GFP and NOX5-β adenoviruses (MOI 100). **p< 0.01, and ****p< 0.0001 vs control NOX5-β-infected cells (ML090, 0 nM). Results expressed as mean ± SEM. Fold increase vs GFP-infected cells with 0 nM of ML090. n= 6. (b) NOX5-β overexpression and DHE oxidation in HAEC. Representative images from three experiments are shown. Intracellular superoxide anion production of HAEC 24 h after infection with GFP and NOX5-β adenoviruses at different MOIs treated or not with ML090 (10 nM). MOI: Multiplicity of infection. Figure S2. Ontology analysis of HAEC infected with NOX5-β. Ontology analysis shows that the response to unfolded protein is the most relevant. Figure S3. UPR mRNA expression in heart of infarcted transgenic mice. n= 12-13. Results expressed as mean ± SEM. Table S1: Altered gene expression due to NOX5-β expression at 12 h (bold, highlighted in yellow). N12hvsG12h N18hvsG18h N24hvsG24h GeneName GeneDescription TranscriptID logFC p-value logFC p-value logFC p-value family with sequence similarity NM_052966 1.45 1.20E-17 2.44 3.27E-19 2.96 6.24E-21 FAM129A 129. member A DnaJ (Hsp40) homolog. NM_001130182 2.19 9.83E-20 2.94 2.90E-19 3.01 1.68E-19 DNAJA4 subfamily A. member 4 phorbol-12-myristate-13-acetate- NM_021127 0.93 1.84E-12 2.41 1.32E-17 2.69 1.43E-18 PMAIP1 induced protein 1 E2F7 E2F transcription factor 7 NM_203394 0.71 8.35E-11 2.20 2.21E-17 2.48 1.84E-18 DnaJ (Hsp40) homolog.
    [Show full text]
  • Effects of a Bacterial ACC Deaminase on Plant Growth
    Effects of a bacterial ACC deaminase on plant growth-promotion by Jennifer Claire Czarny A thesis presented to the University of Waterloo in fulfilment of the thesis requirement for the degree of Doctor of Philosophy in Biology Waterloo Ontario, Canada, 2008 c Jennifer Claire Czarny 2008 Author's declaration I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii Abstract Plants often live in association with growth-promoting bacteria, which provide them with several benefits. One such benefit is the lowering of plant ethylene levels through the action of the bacterial enzyme 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase that cleaves the immediate biosynthetic precursor of ethylene, ACC. The plant hormone ethylene is responsible for many aspects of plant growth and development but under stressful conditions ethylene exacerbates stress symptoms. The ACC deaminase-containing bacterium Pseudomonas putida UW4, isolated from the rhizosphere of reeds, is a potent plant growth- promoting strain and as such was used, along with an ACC deaminase minus mutant of this strain, to study the role of ACC deaminase in plant growth-promotion. Also, transgenic plants expressing a bacterial ACC deaminase gene were used to study the role of this enzyme in plant growth and stress tolerance in the presence and absence of nickel. Transcriptional changes occurring within plant tissues were investigated with the use of an Arabidopsis oligonucleotide microarray. The results showed that transcription of genes involved in hormone regulation, secondary metabolism and the stress response changed in all treatments.
    [Show full text]
  • List & Label Preview File
    L I N A R I S I n f o r m a t i o n B I O L O G I S C H E P R O D U K T E PRIMÄRANTIKÖRPER-Veterinär erkennen: Maus, verschiedene Labels alphabetisch geordnet Beschreibung Format Klon Wirt Isotyp Anwendung Menge ME Kat.Nr. Description Format Clone Host Isotype Application Quantity Cat.No. Mouse Anti-Cardiolipin Ig's -ve control for ELISA 1 ml ADI-5502 IgG Mouse 0,5 mg ADI-AMPT11-M-500 Anti-Cardiolipin Ig's +ve control for ELISA polyclonal Mouse 1 ml ADI-5503 CD27 PE (Armenian Hamster IgG1) Hamster 50 tests ADI-MCD027-PE Monoclonal Anti-VSV-G-Cy conjugate for Mouse 0,1 mg ADI-VSV11-Cy Immunofluorescence Interleukin-4 IgG Mouse 0,1 mg ADI-AB-10710 Anti-Myelin Oligodendrocyte Glycoprotein IgG Mouse 0,1 mg ADI-AB-19910 CD160 mAb, PE, , (mouse IgG2bk) Mouse 50 tests ADI-MCD160-PE CD81, Purified (mouse IgG1) Mouse 0,1 mg ADI-MCD081-UL Interleukin-2 receptor IgG Rat 0,1 mg ADI-AB-10310 Interleukin-2 IgG Rat 0,1 mg ADI-AB-10510 Interleukin-4 IgG Rat 0,1 mg ADI-AB-10810 Interleukin-10 IgG Rat 0,1 mg ADI-AB-11310 Interleukin-12p40 IgG Rat 0,1 mg ADI-AB-11410 CTLA-4 IgG Rat 0,1 mg ADI-AB-11610 CD80 IgG Rat 0,1 mg ADI-AB-13310 CD11a IgG Rat 0,1 mg ADI-AB-13510 CD11b-FITC IgG Rat 0,1 mg ADI-AB-13610 B220 IgG Rat 0,1 mg ADI-AB-13910 CD90 Thy-1.1 IgG Rat 0,1 mg ADI-AB-14010 CD90 Thy-1.2 IgG Rat 0,1 mg ADI-AB-14110 CD90 Thy-1 IgG Rat 0,1 mg ADI-AB-14210 CD4 IgG Rat 0,1 mg ADI-AB-16510 IFN-gamma IgG Rat 0,1 mg ADI-AB-16610 CD3 IgG Rat 0,1 mg ADI-AB-17510 Interleukin-12p75 IgG Rat 0,1 mg ADI-AB-20910 CD8b , PE-Cy5 (Clone CT-CD8b) (rat IgG2a) Rat 50 tests
    [Show full text]
  • Monoacylglycerol As a Metabolic Coupling Factor in Glucose-Stimulated Insulin Secretion
    Université de Montréal Monoacylglycerol as a metabolic coupling factor in glucose-stimulated insulin secretion par Shangang Zhao Département de Biochimie Faculté de Médecine Mémoire présentée à la Faculté des Etudes Supérieures en vue de l’obtention du grade de maître ès sciences en Biochimie Décembre 2010 © Shangang Zhao, 2010 Université de Montréal Faculté des études supérieures Ce mémoire intitulée : Monoacylglycerol as a metabolic coupling factor in glucose-stimulated insulin secretion Présenté par : Shangang Zhao a été évaluée par un jury composé des personnes suivantes: Dr Tony Antakly, président-rapporteur Dr Marc Prentki, directeur de recherche Dr Ashok K. Srivastava, membre du jury i Résumé Les cellules beta pancréatiques sécrètent l’insuline lors d’une augmentation post-prandiale du glucose dans le sang. Ce processus essentiel est contrôlé par des facteurs physiologiques, nutritionnels et pathologiques. D’autres sources d’énergie, comme les acides aminés (leucine et glutamine) ou les acides gras potentialisent la sécrétion d’insuline. Une sécrétion d’insuline insuffisante au besoin du corps déclanche le diabète. Le rôle que joue l’augmentation du calcium intracellulaire et les canaux K+/ATP dans la sécrétion d’insuline est bien connu. Bien que le mécanisme exact de la potentialisation de la sécrétion d’insuline par les lipides est inconnu, le cycle Glycérolipides/Acides gras (GL/FFA) et son segment lipolytique ont été reconnu comme un composant essentiel de la potentialisation lipidique de la sécrétion d’insuline. Le diacylglycérol, provenant de la lipolyse, a été proposé comme un signal lipidique important d’amplification. Cependant, l’hydrolyse des triglycérides et des diacylglycérides a été démontrée essentielle pour la sécrétion d’insuline stimulée par le glucose, en suggérant un rôle du monoacylglycérol (MAG) dans ce processus.
    [Show full text]
  • Supplemental Data
    Article TCF7L2 is a master regulator of insulin production and processing ZHOU, Yuedan, et al. Abstract Genome-wide association studies have revealed >60 loci associated with type 2 diabetes (T2D), but the underlying causal variants and functional mechanisms remain largely elusive. Although variants in TCF7L2 confer the strongest risk of T2D among common variants by presumed effects on islet function, the molecular mechanisms are not yet well understood. Using RNA-sequencing, we have identified a TCF7L2-regulated transcriptional network responsible for its effect on insulin secretion in rodent and human pancreatic islets. ISL1 is a primary target of TCF7L2 and regulates proinsulin production and processing via MAFA, PDX1, NKX6.1, PCSK1, PCSK2 and SLC30A8, thereby providing evidence for a coordinated regulation of insulin production and processing. The risk T-allele of rs7903146 was associated with increased TCF7L2 expression, and decreased insulin content and secretion. Using gene expression profiles of 66 human pancreatic islets donors', we also show that the identified TCF7L2-ISL1 transcriptional network is regulated in a genotype-dependent manner. Taken together, these results demonstrate that not only synthesis of [...] Reference ZHOU, Yuedan, et al. TCF7L2 is a master regulator of insulin production and processing. Human Molecular Genetics, 2014, vol. 23, no. 24, p. 6419-6431 DOI : 10.1093/hmg/ddu359 PMID : 25015099 Available at: http://archive-ouverte.unige.ch/unige:45177 Disclaimer: layout of this document may differ from the published
    [Show full text]
  • ANALYSIS of GENE PATHWAYS INVOLVED in DCIS PROGRESSION in RESPONSE to ACIDIC EXTRACELLULAR Ph Neha Aggarwal1, Jennifer Rothberg2, Robert J
    ANALYSIS OF GENE PATHWAYS INVOLVED IN DCIS PROGRESSION IN RESPONSE TO ACIDIC EXTRACELLULAR pH Neha Aggarwal1, Jennifer Rothberg2, Robert J. Gillies3 and Bonnie F. Sloane4 & Douglas Yingst 1Department of Physiology, 2Cancer Biology Program, and 4Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, 48201; 3H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33602 Breast cancer is the most commonly diagnosed cancer in women in USA and has a high mortality rate, second only to lung cancer. About 85% of total 63300 new cases of breast cancer are predicted to be ductal carcinoma in situ (DCIS) in 2012. We are interested in identifying markers that are predictive of changes that occur in the breast microenvironment as a result of the presence of premalignant lesions such as DCIS that are poised to develop into breast cancer. A critical barrier to cancer progression is its ability to survive in the acidic microenvironment characteristic of breast cancer. As the breast is comprised of different cell types, we performed gene expression analysis using Affymetrix gene chip HG U133 plus 2.0 array of 3 DCIS cell lines grown in 3D at neutral and acidic pH. We then computed the significantly changed genes at acidic pH for three DCIS cell lines and found 6 common and 121 similar genes. IPA core analysis of these genes revealed the interferon-signaling (IFN) pathway to be significantly altered. STAT1 was one key transcription factor that was upregulated and that might be driving downstream signaling as a response to acidic microenvironment. We are validating some of the downstream targets of the IFN pathway using qPCR.
    [Show full text]
  • Entwicklung Neuer Adenin- Und Adenosin-Rezeptorliganden Als Pharmakologische Werkzeuge Und Proteomik-Methoden Zur Identifizierung Des Humanen Adeninrezeptors
    Entwicklung neuer Adenin- und Adenosin-Rezeptorliganden als pharmakologische Werkzeuge und Proteomik-Methoden zur Identifizierung des humanen Adeninrezeptors Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn vorgelegt von Thomas Borrmann aus Aachen Bonn 2009 Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn 1. Referent: Prof. Dr. Christa E. Müller 2. Referent: Prof. Dr. Daniela Gündisch 3. Referent: Prof. Dr. Ulrich Jaehde 4. Referent: Prof. Dr. Ivar von Kügelgen Tag der Promotion: 27.8.2009 Diese Dissertation ist auf dem Hochschulserver der ULB Bonn http://hss.ulb.uni- bonn.de/diss-online elektronisch publiziert. Die vorliegende Arbeit wurde in der Zeit von Februar 2005 bis Mai 2009 am Pharmazeutischen Institut der Rheinischen Friedrich-Wilhelms-Universität Bonn unter der Leitung von Frau Prof. Dr. Christa E. Müller durchgeführt. Mein besonderer Dank gilt Frau Prof. Dr. Christa E. Müller für die Überlassung des interessanten und vielseitigen Promotionsthemas, ihre stete Diskussionsbereitschaft und ihre Unterstützung bei der Vorbereitung meines Forschungsaufenthalts am California Institute of Technology (Pasadena, CA, USA) und der Teilnahme an Kongressen. Frau Prof. Dr. Daniela Gündisch danke ich sehr herzlich für die freundliche Übernahme des Korreferats. Herrn Prof. Dr. Ulrich Jaehde und Herrn Prof. Dr. Ivar von Kügelgen danke ich für die Mitwirkung in meiner Promotionskommission. Ich danke dem Cusanuswerk für die finanzielle Unterstützung in Form eines Stipendiums, die Kostenübernahme bei meinem Forschungsaufenthalt am California Institute of Technology und die ideelle Förderung im Rahmen von Fachschafts- und Graduiertentagungen. Michaela und meiner Familie Zwei Dinge sind zu unserer Arbeit nötig: Unermüdliche Ausdauer und die Bereitschaft, etwas, in das man viel Zeit und Arbeit gesteckt hat, wieder wegzuwerfen.
    [Show full text]