Vascular Plants of Edgeøya, Svalbard
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Novaya Zemlya Archipelago (Russian Arctic)
This is a repository copy of First records of testate amoebae from the Novaya Zemlya archipelago (Russian Arctic). White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/127196/ Version: Accepted Version Article: Mazei, Yuri, Tsyganov, Andrey N, Chernyshov, Viktor et al. (2 more authors) (2018) First records of testate amoebae from the Novaya Zemlya archipelago (Russian Arctic). Polar Biology. ISSN 0722-4060 https://doi.org/10.1007/s00300-018-2273-x Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ 1 First records of testate amoebae from the Novaya Zemlya archipelago (Russian Arctic) 2 Yuri A. Mazei1,2, Andrey N. Tsyganov1, Viktor A. Chernyshov1, Alexander A. Ivanovsky2, Richard J. 3 Payne1,3* 4 1. Penza State University, Krasnaya str., 40, Penza 440026, Russia. 5 2. Lomonosov Moscow State University, Leninskiye Gory, 1, Moscow 119991, Russia. 6 3. University of York, Heslington, York YO10 5DD, United Kingdom. -
Climate in Svalbard 2100
M-1242 | 2018 Climate in Svalbard 2100 – a knowledge base for climate adaptation NCCS report no. 1/2019 Photo: Ketil Isaksen, MET Norway Editors I.Hanssen-Bauer, E.J.Førland, H.Hisdal, S.Mayer, A.B.Sandø, A.Sorteberg CLIMATE IN SVALBARD 2100 CLIMATE IN SVALBARD 2100 Commissioned by Title: Date Climate in Svalbard 2100 January 2019 – a knowledge base for climate adaptation ISSN nr. Rapport nr. 2387-3027 1/2019 Authors Classification Editors: I.Hanssen-Bauer1,12, E.J.Førland1,12, H.Hisdal2,12, Free S.Mayer3,12,13, A.B.Sandø5,13, A.Sorteberg4,13 Clients Authors: M.Adakudlu3,13, J.Andresen2, J.Bakke4,13, S.Beldring2,12, R.Benestad1, W. Bilt4,13, J.Bogen2, C.Borstad6, Norwegian Environment Agency (Miljødirektoratet) K.Breili9, Ø.Breivik1,4, K.Y.Børsheim5,13, H.H.Christiansen6, A.Dobler1, R.Engeset2, R.Frauenfelder7, S.Gerland10, H.M.Gjelten1, J.Gundersen2, K.Isaksen1,12, C.Jaedicke7, H.Kierulf9, J.Kohler10, H.Li2,12, J.Lutz1,12, K.Melvold2,12, Client’s reference 1,12 4,6 2,12 5,8,13 A.Mezghani , F.Nilsen , I.B.Nilsen , J.E.Ø.Nilsen , http://www.miljodirektoratet.no/M1242 O. Pavlova10, O.Ravndal9, B.Risebrobakken3,13, T.Saloranta2, S.Sandven6,8,13, T.V.Schuler6,11, M.J.R.Simpson9, M.Skogen5,13, L.H.Smedsrud4,6,13, M.Sund2, D. Vikhamar-Schuler1,2,12, S.Westermann11, W.K.Wong2,12 Affiliations: See Acknowledgements! Abstract The Norwegian Centre for Climate Services (NCCS) is collaboration between the Norwegian Meteorological In- This report was commissioned by the Norwegian Environment Agency in order to provide basic information for use stitute, the Norwegian Water Resources and Energy Directorate, Norwegian Research Centre and the Bjerknes in climate change adaptation in Svalbard. -
Satellite Ice Extent, Sea Surface Temperature, and Atmospheric 2 Methane Trends in the Barents and Kara Seas
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-237 Manuscript under review for journal The Cryosphere Discussion started: 22 November 2018 c Author(s) 2018. CC BY 4.0 License. 1 Satellite ice extent, sea surface temperature, and atmospheric 2 methane trends in the Barents and Kara Seas 1 2 3 2 4 3 Ira Leifer , F. Robert Chen , Thomas McClimans , Frank Muller Karger , Leonid Yurganov 1 4 Bubbleology Research International, Inc., Solvang, CA, USA 2 5 University of Southern Florida, USA 3 6 SINTEF Ocean, Trondheim, Norway 4 7 University of Maryland, Baltimore, USA 8 Correspondence to: Ira Leifer ([email protected]) 9 10 Abstract. Over a decade (2003-2015) of satellite data of sea-ice extent, sea surface temperature (SST), and methane 11 (CH4) concentrations in lower troposphere over 10 focus areas within the Barents and Kara Seas (BKS) were 12 analyzed for anomalies and trends relative to the Barents Sea. Large positive CH4 anomalies were discovered around 13 Franz Josef Land (FJL) and offshore west Novaya Zemlya in early fall. Far smaller CH4 enhancement was found 14 around Svalbard, downstream and north of known seabed seepage. SST increased in all focus areas at rates from 15 0.0018 to 0.15 °C yr-1, CH4 growth spanned 3.06 to 3.49 ppb yr-1. 16 The strongest SST increase was observed each year in the southeast Barents Sea in June due to strengthening of 17 the warm Murman Current (MC), and in the south Kara Sea in September. The southeast Barents Sea, the south 18 Kara Sea and coastal areas around FJL exhibited the strongest CH4 growth over the observation period. -
Green Leaf Perennial Catalog.Pdf
Green Leaf Plants® A Division of Aris Horticulture, Inc. Perennials & Herbs 2013/2014 Visit us @ Green Leaf Plants® GLplants.com Green Leaf Plants® Perennial Management Teams Green Leaf Plants® Lancaster, Pennsylvania Green Leaf Plants® Bogotá, Colombia (Pictured Left to Right) Rich Hollenbach, Grower Manager and Production Planning/Inventory Control (Pictured Left to Right) Silvia Guzman, Farm Manager I Isabel Naranjo, Lab Manager I Juan Camilo Manager I Andrew Bishop, Managing Director I Sara Bushong, Customer Service Manager and Herrera, Manager of Latin American Operations & Sales Logistics Manager Cindy Myers, Human Resources and Administration Manager I Nancy Parr, Product Manager Customer Service Glenda Bradley Emma Bishop Jenny Cady Wendy Fromm Janis Miller Diane Lemke Yvonne McCauley [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] Ext. 229 Ext. 227 Ext. 245 Ext. 223 Ext. 221 Ext. 231 Ext. 237 Management, Tech Support and New Product Development Brad Smith Sarah Rasch Sara Bushong, Nancy Parr, Product Mgr. Julie Knauer, Prod. Mgr. Asst Susan Shelly, Tech Support Melanie Neff, New Product Development [email protected] [email protected] C.S. Mgr. & Logistics Mgr. [email protected] [email protected] [email protected] [email protected] Ext. 228 800.232.9557 Ext. 5007 [email protected] Ext. 270 Ext. 288 Ext. 238 Ext. 273 Ext. 250 Varieties Pictured: Arctotis Peachy Mango™ Aster Blue Autumn® Colocasia Royal Hawaiian® DID YOU KNOW? ‘Blue Hawaii’ Customer service means more than answering the phone and Delphinium ‘Diamonds Blue’ Echinacea ‘Supreme Elegance’ taking orders. -
Atlas of Rare Endemic Vascular Plants of the Arctic
Atlas of Rare Endemic Vascular Plants of the Arctic Technical Report No. 3 About CAFF Theprogram for the Conservation of Arctic Flora and Fauna (CAFF) of the Arctic Council was established lo address the special needs of Arctic ecosystems, species and thcir habitats in the rapid ly developing Arctic region. Itwas initiated as one of'four programs of the Arctic Environmental Protcction Strategy (AEPS) which was adopted by Canada, Denmark/Greenland, Finland, lceland, Norway, Russia, Swcdcn and the United States through a Ministeria! Declaration at Rovaniemi, Finland in 1991. Other programs initi ated under the AEPS and overlaken hy the Are.tie Council are the ArcticMonitoring and assessment Programme (AMAP), the program for Emergency Prevention, Preparcd ness and Response (EPPR) and the program for Protection of the Arctic Marine Envi ronment (PAME). Sinceits inaugural mccti.ng in Ottawa, Canada in 1992, the CAFF program has provided scientists, conscrvation managers and groups, and indigenous people of the north with a distinct forum in which lo tackle a wide range of Arctic conservation issues at the cir cumpolar level. CAFF's main goals, which are achieved in keeping with the concepts of sustainable developrnertt and utilisation, are: • to conserve Arctic Jlora and fauna, thcir diversity and thcir habitats; • to protect the Arctic ecosystems from threats; • to improve conservation management laws, reg ulations and practices for the Arclic; • to integrale Arctic interests into global conservation fora. CAFF operates rhrough a system of Designated Agencies and National Representatives responsible for CAFF in thcir rcspcctivc countries. CAFF also has an International Work ing Group wh.ith has met annually to assess progrcss and to develop Annual WorkPlans. -
Exceptional Retreat of Novaya Zemlya's Marine
The Cryosphere, 11, 2149–2174, 2017 https://doi.org/10.5194/tc-11-2149-2017 © Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License. Exceptional retreat of Novaya Zemlya’s marine-terminating outlet glaciers between 2000 and 2013 J. Rachel Carr1, Heather Bell2, Rebecca Killick3, and Tom Holt4 1School of Geography, Politics and Sociology, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK 2Department of Geography, Durham University, Durham, DH13TQ, UK 3Department of Mathematics & Statistics, Lancaster University, Lancaster, LA1 4YF, UK 4Centre for Glaciology, Department of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, SY23 4RQ, UK Correspondence to: J. Rachel Carr ([email protected]) Received: 7 March 2017 – Discussion started: 15 May 2017 Revised: 20 July 2017 – Accepted: 24 July 2017 – Published: 8 September 2017 Abstract. Novaya Zemlya (NVZ) has experienced rapid ice al., 2013). This ice loss is predicted to continue during loss and accelerated marine-terminating glacier retreat dur- the 21st century (Meier et al., 2007; Radic´ et al., 2014), ing the past 2 decades. However, it is unknown whether and changes are expected to be particularly marked in the this retreat is exceptional longer term and/or whether it has Arctic, where warming of up to 8 ◦C is forecast (IPCC, persisted since 2010. Investigating this is vital, as dynamic 2013). Outside of the Greenland Ice Sheet, the Russian high thinning may contribute substantially to ice loss from NVZ, Arctic (RHA) accounts for approximately 20 % of Arctic but is not currently included in sea level rise predictions. glacier ice (Dowdeswell and Williams, 1997; Radic´ et al., Here, we use remotely sensed data to assess controls on NVZ 2014) and is, therefore, a major ice reservoir. -
The Origins and Development of Shore-Based Commercial Whaling at Spitsbergen During the 17Th Century: a Resource Utilization Assessment
The Origins and Development of Shore-Based Commercial Whaling at Spitsbergen during the 17th Century: A Resource Utilization Assessment Chesley W. Sanger On s'entend généralement pour dire qu 'au cours du 12* siècle, c 'étaient les Basques habitant sur la côte espagnole et la côte française de la Baie de Biscaye qui furent les premiers Européens à pratiquer la pêche à la baleine à grande échelle. Selon la documentation, la surexploitation de la baleine franche du Groenland constitue la principale raison du déclin de la troisième phase de la pêche à la baleine à des fins commerciales (après le Labrador au 16e' siècle), l'opération côtière du 17e siècle à Spitzberg. Cet article démontre que la baleine franche noire était bel et bien une cible secondaire importante. Le fait que l'on péchait deux différentes espèces de baleines franche à Spitzberg réfute l'hypothèse fréquemment soutenue que la surexploitation des provisions de baleines noires de la région à l'est de l'Atlantique nord dans la Baie de Biscaye entre le 12e et le 16e siècle est la raison pour laquelle les Basques pratiquèrent plus fréquemment la chasse à la baleine au Labrador. Although the origins of whale hunting are lost in antiquity, the very first Europeans generally credited with whaling on a large-scale, commercial basis were the Basque inhabitants of the French and Spanish Bay of Biscay coasts during the 12th century (Fig. 1 : Phase 1 ).1 They subsequently expanded their operations overseas to the Labrador side of the 1 For a full description of the likely origins of European-based commercial whaling see Sanger, C. -
The Effect of Disturbance on Plant Com Unities in Tundra Regio S of the Soviet Union
The Effect of Disturbance on Plant Communities in Tundra Regions of the Soviet Union Item Type Technical Report Authors Yurtsev, B.A.; Korobkov, A.A.; Matveyeva, N.V.; Druzhinina, O.A.; Zharkova, Yu. G. Publisher University of Alaska. Institute of Arctic Biology Download date 05/10/2021 11:09:08 Link to Item http://hdl.handle.net/11122/1496 THE EFFECT OF DISTURBANCE ON PLANT COM UNITIES IN TUNDRA REGIO S OF THE SOVIET UNION Three Papers with Annotated Lists BIOLOGICAL PAPERS OF THE UNIVERSITY OF ALASKA Number20 June 1979 HE EFFECT OF DISTURBA CE ON PLANT COMMUNITIES IN TUNDRA REGIONS OF THE SOVIET UNION Three Papers with Annotated Lists BIOLOGICAL PAPERS OF THE UNIVERSITY OF ALASKA Number20 June 1979 Editor GEORGE C. WEST Division of Life Science University of Alaska Fairbanks, Alaska Price of this issue $3.00 Printed by Ken Wray's Prine Shop, lnc. Anchorage, Alaska TABLE OF CO TE TS An Annotated List of Plants Inhabiting Sires of Natural and A thr pogenic Disturbances ofTun dra Cover: South astern most Chukchi Peninsula -B.A. Yurtsev and A.A. Korobkov page l An Annotated List of Plants Inhabiting Sites of Natural and Anthropogenic Disturbances of Tundra Cover in Western Taimyr: The Settlement of Kresty- N.V. Maweyeva page 18 A Study of Plant Communities of Anthropogenic Habitats in rhe Area of the Vorkuta Industrial Center - O .A. Druz;hinina and Yu. G. Zharkova page 30 Editor's NoLe The original Russtan language manuscrtpts were translated hy 00ris Love and Barbara Murray. Funding for translation and preparation of camera ready copy for thts tssue of the Btological Papers was provided through the U.S. -
Arctic National Wildlife Refuge Volume 2
Appendix F Species List Appendix F: Species List F. Species List F.1 Lists The following list and three tables denote the bird, mammal, fish, and plant species known to occur in Arctic National Wildlife Refuge (Arctic Refuge, Refuge). F.1.1 Birds of Arctic Refuge A total of 201 bird species have been recorded on Arctic Refuge. This list describes their status and abundance. Many birds migrate outside of the Refuge in the winter, so unless otherwise noted, the information is for spring, summer, or fall. Bird names and taxonomic classification follow American Ornithologists' Union (1998). F.1.1.1 Definitions of classifications used Regions of the Refuge . Coastal Plain – The area between the coast and the Brooks Range. This area is sometimes split into coastal areas (lagoons, barrier islands, and Beaufort Sea) and inland areas (uplands near the foothills of the Brooks Range). Brooks Range – The mountains, valleys, and foothills north and south of the Continental Divide. South Side – The foothills, taiga, and boreal forest south of the Brooks Range. Status . Permanent Resident – Present throughout the year and breeds in the area. Summer Resident – Only present from May to September. Migrant – Travels through on the way to wintering or breeding areas. Breeder – Documented as a breeding species. Visitor – Present as a non-breeding species. * – Not documented. Abundance . Abundant – Very numerous in suitable habitats. Common – Very likely to be seen or heard in suitable habitats. Fairly Common – Numerous but not always present in suitable habitats. Uncommon – Occurs regularly but not always observed because of lower abundance or secretive behaviors. -
Botany Orary
TAXONOMY AND CULTIVAR DEVELOPMENT OF POA PRATENSIS L. David P. Byres 1 13 BOTANY ORARY PhD. University of Edinburgh 1984 1) Declaration. This thesis was composed by myself, and the work described herein is my own. David P. Byres CONTENTS Acknowledgements . • I \/ Abstract . Section A . Taxonomy. Chapter 1. Introduction. 1.1 Introduction ..........................................1 1.2 Taxonomy .............................................1 1.3 Cultivar Development ............................... 4 Chapter 2. Literature Review : Taxonomy 2.1 Introduction ............. .............................7 2.2 History of the Taxonomic Treatment of of Poa pratensis L. s.1............ ....... 10 2.3 Taxonomic Characters used by previous workers .........14 Chapter 3. Materials and Methods. 3.1 Environmental Variation .................... 20 3.2 Population and Herbarium Studies .......... ............26 3.3 Taxonomic Analysis of Biotypes and Cultivars... ... ... 36 3.4 Statistical Analysis ..................................37 Chapter 4. Effect of Environmental Variation on Morphology. 4.1 Introduction .......................................... 38 4.2 Results ........................................ .......38 Chapter 5. Study of Poa pratensis Populations. 5.1 Introduction .......................................... 49 5.2 Results ........................ 49 Chapter 6. Study of Herbarium Material. 6.1 Introduction ......................................... 60 6.2 Results ....................... 60 Chapter 7. Morphological Examination of Biotypes and -
Spitsbergen-Bear Island
SPITSBERGEN-BEAR ISLAND A voyage to Bear Island and returning to Longyeabyen, in search of seals and bears. The land of the midnight sun, of snow and ice, offers some of the finest scenery and wildlife experiences in the world. Bear Island, or Bjørnøya in Norwegian, is the southernmost island of the Spitsbergen archipelago. ITINERARY Day 1: Departure from Longyearbyen Arrive in Longyearbyen, the administrative capital of the Spitsbergen archipelago of which West Spitsbergen is the largest island. Before embarking there is an opportunity to stroll around this former mining town, whose parish church and Polar Museum are well worth visiting. In the early evening the ship will sail out of Isfjorden. Day 2: Cruising the fjords of Hornshund 01432 507 280 (within UK) [email protected] | small-cruise-ships.com We start the day quietly cruising the side fjords of the amphitheatre of glacier fronts. spectacular Hornsund area of southern Spitsbergen, enjoying the scenery of towering mountain peaks. Hornsundtind rises to Day 7: Stormbukta 1,431m, while Bautaen shows why early Dutch explorers gave If ice conditions allow we will land at Stormbukta with an easily the name ‘Spitsbergen’ - pointed mountains - to the island. accessible Kittiwake colony in a canyon and warm springs, There are also 14 magnificent glaciers in the area and very which do not freeze during winter. Alternatively we land at good chances of encounters with seals and Polar Bear. Palfylodden a Walrus haul out place with the remains of thousands of walruses slaughtered in previous centuries. We Day 3: Hvalrossbukta sail northward along the Spitsbergen banks, looking for Finn At the south side of Bear Island we sail by the largest bird cliffs Whales. -
Svalbard's Risk of Russian Annexation
The Coldest War: Svalbard's Risk of Russian Annexation The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Vlasman, Savannah. 2019. The Coldest War: Svalbard's Risk of Russian Annexation. Master's thesis, Harvard Extension School. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:42004069 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA The Coldest War: Svalbard’s Risk of Russian Annexation Savannah Vlasman A Thesis In the Field of International Relations for the Degree of Master of Liberal Arts in Extension Studies Harvard University 2018 Savannah Vlasman Copyright 2018 Abstract Svalbard is a remote Norwegian archipelago in the Arctic Ocean, home to the northernmost permanent human settlement. This paper investigates Russia’s imperialistic interest in Svalbard and examines the likelihood of Russia annexing Svalbard in the near future. The examination reveals Svalbard is particularly vulnerable at present due to melting sea ice, rising oil prices, and escalating tension between Russia and the West. Through analyzing the past and present of Svalbard, Russia’s interests in the territory, and the details of the Svalbard Treaty, it became evident that a Russian annexation is plausible if not probable. An assessment of Russia’s actions in annexing Crimea, as well as their legal justifications, reveals that these same arguments could be used in annexing Svalbard.