Understanding Solar+Storage Answers to Commonly Asked Questions About Solar PV and Battery Storage
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Energy Storage Policy Best Practices from New England: Ten Lessons from Six States
Energy Storage Policy Best Practices from New England TEN LESSONS FROM SIX StATES AUGUST 2021 Todd Olinsky-Paul Clean Energy Group Clean Energy States Alliance Group Group ABOUT THIS REPORT this report, prepared by Clean energy group (Ceg) and the Clean energy states alliance (Cesa), presents energy storage policy best practices and examples of innovative policies from the new england states. the report describes what has worked best and provides a list of recommendations to guide states looking to expand energy storage markets with effective programs and policies. it is available online at https://www.cesa.org/resource-library/resource/energy-storage-policy-best- practices-from-new-england. ABOUT THE AUTHOR todd olinsky-paul is senior project director for Ceg and Cesa. He directs Cesa’s energy storage and technology advancement partnership (ESTAP), a federal-state funding and information sharing project that aims to accelerate the deployment of electrical energy storage technologies in the united states. todd also works on Ceg’s resilient power project, supporting solar+storage behind the meter for critical infrastructure energy resiliency, and leads Ceg and Cesa on energy storage policy and program development at the state level. todd has a M.s. in environmental policy from Bard College and a B.a. from Brown university. ACKNOWLEDGMENTS the author wishes to express his sincere thanks to representatives of the new england states for their input on this report; and to colleagues at Ceg and Cesa who made this a better report through their insightful review comments, including Warren leon, Maria Blais Costello, samantha Donalds, lew Milford, and seth Mullendore. -
Tesla Powerwall 2 Battery Storage POWERWALL 2 - AC
tesla powerwall 2 battery storage POWERWALL 2 - AC Tesla Powerwall 2 is the second generation Powerwall from Tesla. It is a fully-integrated AC battery system designed for residential and light commercial use. With rechargeable lithium-ion battery technology, Powerwall provides energy storage for increased solar self- consumption, load shifting and backup functionality. Solahart Tesla Powerwall Certified Installers offer a customised solar-plus-battery solution that enables you to access the free, abundant power of the sun and reduces your reliance on fossil fuels. With Powerwall you can store solar energy generated during the day for use anytime. During the day, the sun shines on your solar panels, charging your battery. At night, your home draws electricity from your battery, CAPTURES AND powering your home with clean and sustainable energy. STORES EXCESS SOLAR ENERGY for use at night how you benefit Solar self consumption Backup power lower your energy bills less grid reliance Powerwall stores solar energy Protect your home Access the free, abundant Combine solar and during the day for use at night. from a power outage power of the sun with Powerwall to power your with solar power and Powerwall and solar panels home with less reliance Powerwall. and lower your energy bills by from the grid. using more of your own solar generation. Technical Data MODEL Powerwall 2 - ac Performance Specifications AC Voltage (Nominal) 230 V Feed-in type Single phase Grid frequency 50 Hz Total energy(1) 14 kWh Usable energy(1) 13.5 kWh Real power, Max continuous -
Electrical Energy Storage
08 Fall BACKGROUND The Energy Systems Toolkit (the „Toolkit‟) is aimed at organisations, community groups or businesses, at different stages in the project development process, whether exploring ideas to develop into a project or additional options to include in a current project. The Toolkit aims to provide further information to organisations on energy systems topics that will help determining whether a project idea is viable or highlight alternative options that should be considered. The Toolkit also provides support through the development process to construction, highlighting any support available to them. This could include: Signposting businesses or communities to additional support (technical or financial) in developing their project, to potential project partners or to potential sources of funding; Provide detail on key considerations and barriers across different technology projects; or Highlight different technology projects and themes that have been developed successfully across Scotland. For each of the topics, the guidance provided will be informative and will indicate the actions to be taken and the next steps the organisations should take to progress. The Toolkit links to other relevant guidance documents, such as the CARES Toolkit, which can be used in parallel. INTRODUCTION TO ELECTRICAL ENERGY STORAGE Electrical energy storage can provide a range of grid support services that can help maintain a stable and reliable electricity supply. Working in tandem with smart grid technology, the functions that it can provide include: Enabling the integration of more renewables into the energy mix. Storing energy from renewables to smooth variable supply. Helping energy consumers to manage their energy demand. Stabilising voltage and frequency on power networks. -
Solar Inverters
Solar inverters Solar inverters Solar inverters, also called grid-tied inverters, convert the direct current (DC) electricity produced by your solar PV panels to alternating current (AC) electricity that can be used in your home and exported back to the grid. Solar invertors also: • ensure compliance with regulations about feeding electricity into the grid, for example by immediately disconnecting if there is a power cut • maximise electricity production by constantly varying its resistance (load). Solar inverters are very efficient, usually 93–96 per cent depending on the make and model - never 100 per cent because they use some of the input DC power to run, generally around 10-25W. Their efficiency can be improved by an electronic technique known as Maximum Power Point Tracking (MPPT). The point of maximum power output of a solar PV cell is dictated by a combination of current or voltage. Where it is will vary constantly according to light levels, shading, temperature and the characteristics of the solar PV panel. A MPPT system continually searches for this point to extract the maximum power available from the cell. Multiple MPPT systems can maximise yield even if part of the array is shaded. Find out more about MPPT at the YouGen blog. Inverter sizing There are many different makes and sizes of inverters on the market. The key characteristics are: • maximum amount of DC electricity (expressed as max DC power in Watts) the maximum number of watts the inverter has been designed to convert • maximum input voltage – this is the maximum voltage the inverter can manage before its electronics are damaged • initial input voltage (sometime called start-up voltage) – the minimum number of volts the solar PV panels need to produce for the inverter to start working • maximum power point (mpp) voltage rang - the voltage range at which the inverter is working most efficiently. -
The Case of Tesla's Powerwall
batteries Article Economics of Residential Photovoltaic Battery Systems in Germany: The Case of Tesla’s Powerwall Cong Nam Truong *, Maik Naumann, Ralph Ch. Karl, Marcus Müller, Andreas Jossen and Holger C. Hesse Institute for Electrical Energy Storage Technology, Technical University of Munich (TUM), Arcisstr. 21, 80333 Munich, Germany; [email protected] (M.N.); [email protected] (R.C.K.); [email protected] (M.M.); [email protected] (A.J.); [email protected] (H.C.H.) * Correspondence: [email protected]; Tel.: +49-89-289-26963; Fax: +49-89-289-26968 Academic Editor: Maciej Swierczynski Received: 8 February 2016; Accepted: 26 April 2016; Published: 11 May 2016 Abstract: Residential photovoltaic (PV) battery systems increase households’ electricity self-consumption using rooftop PV systems and thus reduce the electricity bill. High investment costs of battery systems, however, prevent positive financial returns for most present residential battery installations in Germany. Tesla Motors, Inc. (Palo Alto, CA, USA) announced a novel battery system—the Powerwall—for only about 25% of the current German average market price. According to Tesla’s CEO Elon Musk, Germany is one of the key markets for their product. He has, however, not given numbers to support his statement. In this paper, we analyze the economic benefit of the Powerwall for end-users with respect to various influencing parameters: electricity price, aging characteristics of the batteries, topology of battery system coupling, subsidy schemes, and retrofitting of existing PV systems. Simulations show that three key-factors strongly influence economics: the price gap between electricity price and remuneration rate, the battery system’s investment cost, and the usable battery capacity. -
Combining Solar Energy and UPS Systems
Combining Solar Energy and UPS Systems Tobias Bengtsson Håkan Hult Master of Science Thesis KTH School of Industrial Engineering and Management Energy Technology EGI-2014-067MSC Division of Applied Thermodynamics and Refrigeration SE-100 44 STOCKHOLM Master of Science Thesis EGI 2014:067 Combining Solar Energy and UPS Systems Tobias Bengtsson Håkan Hult Approved Examiner Supervisor Date Per Lundqvist Björn Palm Commissioner Contact person 2 ABSTRACT Solar Power and Uninterruptible Power Supply (UPS) are two technologies that are growing rapidly. The demand for solar energy is mainly driven by the trend towards cheaper solar cells, making it eco- nomically profitable for a larger range of applications. However, solar power has yet to reach grid pari- ty in many geographical areas, which makes ways to reduce the cost of solar power systems important. This thesis investigates the possibility and potential economic synergies of combining solar power with UPS systems, which have been previously researched only from a purely technical point of view. This thesis instead evaluates the hypothesis that a combined solar and UPS system might save additional costs compared to regular grid-tied systems, even in a stable power grid. The primary reason is that on- line UPS systems rectifies and inverts all electricity, which means that solar energy can be delivered to the DC part of the UPS system instead of an AC grid, avoiding the installation of additional inverters in the solar power system. The study is divided into three parts. The first part is a computer simulation using MATLAB, which has an explorative method and aims to simulate a combined system before experimenting physically with it. -
Eaton's Power Electronics Portfolio
Eaton’s Power Electronics Portfolio • Bob Yanniello • June 27, 2017 © 2015 Eaton. All Rights Reserved.. © 2015 Eaton. All Rights Reserved.. 2 © 2015 Eaton. All Rights Reserved.. 3 © 2015 Eaton. All Rights Reserved.. 4 Power Xpert Inverter – 1.0 – 2.5 MW Inverter Throat – direct Step-up coupling Transformer Tracker (or AC) power and controls © 2015 Eaton. All Rights Reserved.. 5 Power module design • Latest generation of Semikron Skiip 4 IGBT – integrated driver & heat sink • Rated for 175°C and high cyclic duty applications • Vishay film capacitors • User replaceable modules © 2015 Eaton. All Rights Reserved.. 6 Power Xpert Utility-Scale Solar Inverter 1500Vdc – 98.5% efficiency DC Power Conversion AC Compartment Compartments Compartment Up to 21x 350A contactors with fuses AC Line Filter 3200A Main Breaker with MO and Close LOTO coupled to DC Feeders . Transformer AC Line From . Filter Combiner . boxes Open / 20A with LOTO Close AC Line Contactor Filter opens Positive and UPS Negative DC LOTO SEL Inverter poles 751 Control Relay Power © 2015 Eaton. All Rights Reserved.. 7 Power Xpert™ Energy Storage Inverter 1250 V max • Battery Types • LG Chem (LMO) • Kokam (LTO) • Enerdel (LTO) • Altair Nano (LTO) • ZBB (flow) 500kW outdoor Inverter • Xtreme (ALA) 3MW site (indoor Inverters) • Mitsubishi (LMO) • JCI (NCA) • Samsung (LMO) • SPS/Lischen • Powin • Primus 500kW Compact Pad Mount © 2015 Eaton. All Rights Reserved.. 8 Power Xpert® Energy Storage Inverter Power Xpert Inverter 60A @ 480 Inverter DC VAC connection AC Line Filter To Battery container for aux power To Transformer From Battery AC Line container Filter AC Line Filter Inverter Controls Power Inverter Controller 15A @ 3A @ 120VAC F.O. -
Central and Micro Inverters for Solar Photovoltaic Integration in AC Grid
Central and Micro Inverters for Solar Photovoltaic Integration in AC grid D. Pal, Student Member, IEEE, H. Koniki, P. Bajpai, Senior Member, IEEE Department of Electrical Engineering, IIT Kharagpur, India Abstract—This paper presents detailed modeling of central hence the size of inverter is reduced. As each PV panel and inverter and micro inverter for solar photovoltaic (PV) integration micro inverter form individual system, malfunction of one in AC grid. Data of a 100 kW solar PV plant installed in IIT micro inverter does not hamper whole solar farm operation [3]. Kharagpur is used to validate these models and their performance In case of partial shading, micro inverters also outperforms on sunny, cloudy and partially shaded days are compared. Models central inverters in terms of power generation. of 5 kW grid tie central inverter and 250 W micro inverter are developed with polycrystalline solar PV in MATLAB/Simulink. There are a number of publications available on solar Solar irradiance and PV module temperature data are taken from inverter modeling and their performance study. A thorough SCADA system from that actual solar PV plant as inputs to the study is performed to model a photovoltaic array in [1]. simulation models. Comparative results are captured in terms of Photovoltaic module/array modeling and different techniques inverter AC power output under different operating conditions of maximum power point tracking are discussed in [4]. Impact and the solar PV system with micro inverters have illustrated of grid connected PV system is observed in [2]. Photovoltaic better performance compared to central inverter in all types of system works as a current source and it is integrated with grid operating conditions. -
The Impacts of Storing Solar Energy in the Home to Reduce Reliance on the Utility
ARTICLES PUBLISHED: XX MONTH XXXX | VOLUME: 2 | ARTICLE NUMBER: 17001 The impacts of storing solar energy in the home to reduce reliance on the utility Robert L. Fares* and Michael E. Webber There has been growing interest in using energy storage to capture solar energy for later use in the home to reduce reliance on the traditional utility. However, few studies have critically assessed the trade-os associated with storing solar energy rather than sending it to the utility grid, as is typically done today. Here we show that a typical battery system could reduce peak power demand by 8–32% and reduce peak power injections by 5–42%, depending on how it operates. However, storage ineciencies increase annual energy consumption by 324–591 kWh per household on average. Furthermore, storage operation indirectly increases emissions by 153–303 kg CO2, 0.03–0.20 kg SO2 and 0.04–0.26 kg NOx per Texas household annually. Thus, home energy storage would not automatically reduce emissions or energy consumption unless it directly enables renewable energy. 1 n recent years, there has been growing interest in storing energy lead-acid batteries used with solar panels in the UK would increase 41 25 2 produced from rooftop photovoltaic panels in a home battery both primary energy consumption and carbon dioxide emissions . 42 1 3 Isystem to minimize reliance on the electric utility . A number In this paper we critically assess the trade-offs of using lithium- 43 4 of vendors have sought to capture this emerging market, including ion battery storage to capture solar energy and minimize reliance on 44 5 electric vehicle market leader Tesla and German home energy the utility. -
Slides from Sonoma Clean Power Residential Energy Storage
Residential Energy Storage Presentation Chris Calwell, Ecos Research 10/14/2020 Background • Ecos Research is a small consulting firm based in San Luis Obispo, CA focused on achieving breakthrough reductions in greenhouse gas emissions through technology and policy- driven improvements to consumer products. • Most of our work to date has focused on energy efficient consumer electronics and appliances, residential energy storage and PV, and electric vehicles. • I joined the research team at CSIRO in Newcastle, Australia to conduct testing and research on residential energy storage research efforts in Feb-March 2019 through Fulbright Specialist funding from the US State Department. • This presentation is a distillation of my findings from that research and our subsequent work for EPA ENERGY STAR, PG&E, Portland General Electric, and Arizona Public Service on the residential energy storage topic. Key Topics We’ll Cover • Market trends - what’s happening to sales? • Why residential battery sales are rising and how they're typically used • Key challenges in understanding their performance claims, specifications and warranties • The good, the bad and the ugly from early measurements of battery performance and efficiency • Safety considerations • Economics - Why it is challenging to get them to pay for themselves now, but won’t be in the future Australia is a post card from the future for us Percentage of homes with rooftop PV by post code Australian market conditions support one of the most robust residential battery markets in the world. Why? -
Introduction & Overview of Aceon's Virtual Power Plant Model
Building Resilience and Strengthening Communities Overview of AceOn’s Virtual Power Plant: RENEWERGY ® APSE CENTRAL REGION – 15 December 2020 AceOn Group +44 (0)1952 293 388 Unit 9B “Offering solutions today for [email protected] tomorrow’s world” Stafford Park 12 Telford www.aceongroup.com TF3 3BJ ACEON - WORKING IN PARTNERSHIP NATIONALLY & INTERNATIONALLY AceOn have a unique combination of a wealth of public and private experience as well as in-depth knowledge of the battery storage and energy sectors. AceOn have been chosen as the national partner of both the Association of Public Service Excellence and the National Housing Federation. We work in direct partnership with leading national and international manufacturers of Electric Vehicle Chargers, Domestic and Commercial Battery Storage Systems, Solar PV Panels, and Air Source Heat Pumps. Partners Association for Public Service Excellence - Exclusive Approved Energy Storage Partner to 114 member councils National Housing Federation - Exclusive Energy Storage Sector Supplier to 800 Housing Associations Microgeneration Certification Scheme (MCS) - Helped create and develop the Battery Storage Standard (MIS 3012) Solar Trade Association - Influential member and partner shaping government policy “The Telford Company Taking on Tesla” ACEON WORKING IN PARTNERSHIP – ONE STOP SOLUTION PROVIDER DOMESTIC BATTERY ENERGY STORAGE SYSTEMS – For New-Build & Retrofit VIRTUAL POWER PLANT – RENEWERGY Smart Energy Management Platform: Optimisation, Aggregation and Trading ROOF-INTEGRATED SOLAR PANEL -
Electrical Energy Storage – a Lexicon
January 2016 Technology Advisory Electrical Energy Storage – A Lexicon Electrical energy storage is an increasingly important topic in discussions about the future of the grid. The purpose of this document is to provide a common vocabulary for talking about electrical energy storage systems. It is focused on grid-connected systems, but many of the terms also apply to off-grid systems. Technical Terms Battery An electrochemical energy storage device which is usually DC. This is one part of an energy storage system. Battery Cell This is the smallest individual electrical component of a battery. It may be a separate physical device (such as an “18650” cell commonly used with lithium batteries), or it may be part of a larger package, yet electrically isolated (a 12V lead acid car battery actually has six two-volt cells connected via bus bars). Battery Management System This is a system which manages and monitors the battery to ensure even charging and discharging. This may be part of a system controller or may be a separate subsystem controller. Charge Rate The ratio of the charge power to the energy capacity of an energy storage system. For example, a 2 MWh system being recharged at 400 kW would have a charge rate of 0.2C (or C/5), while the same battery being charged at 8 MW would have a charge rate of 4C. There are often limits as to how fast a system can be charged / discharged. Copyright © 2016 by the National Rural Electric Cooperative Association. All Rights Reserved. January 2016 Depth of Discharge This is the inverse of Battery State-of-Charge (BSOC), and is usually abbreviated as DOD.