Introducing Aceon and Launching Our Virtual Power Plant
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
U.S. Energy in the 21St Century: a Primer
U.S. Energy in the 21st Century: A Primer March 16, 2021 Congressional Research Service https://crsreports.congress.gov R46723 SUMMARY R46723 U.S. Energy in the 21st Century: A Primer March 16, 2021 Since the start of the 21st century, the U.S. energy system has changed tremendously. Technological advances in energy production have driven changes in energy consumption, and Melissa N. Diaz, the United States has moved from being a net importer of most forms of energy to a declining Coordinator importer—and a net exporter in 2019. The United States remains the second largest producer and Analyst in Energy Policy consumer of energy in the world, behind China. Overall energy consumption in the United States has held relatively steady since 2000, while the mix of energy sources has changed. Between 2000 and 2019, consumption of natural gas and renewable energy increased, while oil and nuclear power were relatively flat and coal decreased. In the same period, production of oil, natural gas, and renewables increased, while nuclear power was relatively flat and coal decreased. Overall energy production increased by 42% over the same period. Increases in the production of oil and natural gas are due in part to technological improvements in hydraulic fracturing and horizontal drilling that have facilitated access to resources in unconventional formations (e.g., shale). U.S. oil production (including natural gas liquids and crude oil) and natural gas production hit record highs in 2019. The United States is the largest producer of natural gas, a net exporter, and the largest consumer. Oil, natural gas, and other liquid fuels depend on a network of over three million miles of pipeline infrastructure. -
Analiza Kretanja Cijene Nafte Obzirom Na Pandemiju COVID-A 19 I Usporedba S Povijesnim Kretanjem Na Svjetskom Tržištu
Analiza kretanja cijene nafte obzirom na pandemiju COVID-a 19 i usporedba s povijesnim kretanjem na svjetskom tržištu Njirić, Marin Undergraduate thesis / Završni rad 2020 Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Mining, Geology and Petroleum Engineering / Sveučilište u Zagrebu, Rudarsko-geološko-naftni fakultet Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:169:342279 Rights / Prava: In copyright Download date / Datum preuzimanja: 2021-09-26 Repository / Repozitorij: Faculty of Mining, Geology and Petroleum Engineering Repository, University of Zagreb SVEUČILIŠTE U ZAGREBU RUDARSKO-GEOLOŠKO-NAFTNI FAKULTET Preddiplomski studij naftnog rudarstva ANALIZA KRETANJA CIJENE NAFTE OBZIROM NA PANDEMIJU COVID-a 19 I USPOREDBA S POVIJESNIM KRETANJEM NA SVJETSKOM TRŽIŠTU Završni rad Marin Njirić N4350 Zagreb, 2020 Sveučilište u Zagrebu Završni rad Rudarsko-geološko-naftni fakultet ANALIZA KRETANJA CIJENE NAFTE OBZIROM NA PANDEMIJU COVID-a 19 I USPOREDBA S POVIJESNIM KRETANJEM NA SVJETSKOM TRŽIŠTU Marin Njirić Završni rad je izrađen: Sveučilište u Zagrebu Rudarsko-geološko-naftni fakultet Zavod za naftno-plinsko inženjerstvo i energetiku Pierottijeva 6, 10 000 Zagreb Sažetak U svjetskoj ekonomiji nafta zauzima jednu od najvažnijih uloga za gospodarski razvoj svake zemlje. S obzirom da je izuzetno bitna sirovina, njena cijena utječe na sve grane gospodarstva, kretanja svjetskih političkih i gospodarskih trendova, kretanje indeksa na burzama te stanje svjetskog gospodarstva općenito. Tijekom povijesti, događali su se razni preokreti cijena nafte, čime bi mnoge zemlje ili tvrtke profitirale ili upale u krizu. U razdoblju COVID-a, cijena je drastično potonula te se u ovom radu prati taj pad cijene u usporedbi s cijenama tijekom prijašnjih kriza u povijesti. -
Energy Storage Policy Best Practices from New England: Ten Lessons from Six States
Energy Storage Policy Best Practices from New England TEN LESSONS FROM SIX StATES AUGUST 2021 Todd Olinsky-Paul Clean Energy Group Clean Energy States Alliance Group Group ABOUT THIS REPORT this report, prepared by Clean energy group (Ceg) and the Clean energy states alliance (Cesa), presents energy storage policy best practices and examples of innovative policies from the new england states. the report describes what has worked best and provides a list of recommendations to guide states looking to expand energy storage markets with effective programs and policies. it is available online at https://www.cesa.org/resource-library/resource/energy-storage-policy-best- practices-from-new-england. ABOUT THE AUTHOR todd olinsky-paul is senior project director for Ceg and Cesa. He directs Cesa’s energy storage and technology advancement partnership (ESTAP), a federal-state funding and information sharing project that aims to accelerate the deployment of electrical energy storage technologies in the united states. todd also works on Ceg’s resilient power project, supporting solar+storage behind the meter for critical infrastructure energy resiliency, and leads Ceg and Cesa on energy storage policy and program development at the state level. todd has a M.s. in environmental policy from Bard College and a B.a. from Brown university. ACKNOWLEDGMENTS the author wishes to express his sincere thanks to representatives of the new england states for their input on this report; and to colleagues at Ceg and Cesa who made this a better report through their insightful review comments, including Warren leon, Maria Blais Costello, samantha Donalds, lew Milford, and seth Mullendore. -
Electrical Energy Storage
08 Fall BACKGROUND The Energy Systems Toolkit (the „Toolkit‟) is aimed at organisations, community groups or businesses, at different stages in the project development process, whether exploring ideas to develop into a project or additional options to include in a current project. The Toolkit aims to provide further information to organisations on energy systems topics that will help determining whether a project idea is viable or highlight alternative options that should be considered. The Toolkit also provides support through the development process to construction, highlighting any support available to them. This could include: Signposting businesses or communities to additional support (technical or financial) in developing their project, to potential project partners or to potential sources of funding; Provide detail on key considerations and barriers across different technology projects; or Highlight different technology projects and themes that have been developed successfully across Scotland. For each of the topics, the guidance provided will be informative and will indicate the actions to be taken and the next steps the organisations should take to progress. The Toolkit links to other relevant guidance documents, such as the CARES Toolkit, which can be used in parallel. INTRODUCTION TO ELECTRICAL ENERGY STORAGE Electrical energy storage can provide a range of grid support services that can help maintain a stable and reliable electricity supply. Working in tandem with smart grid technology, the functions that it can provide include: Enabling the integration of more renewables into the energy mix. Storing energy from renewables to smooth variable supply. Helping energy consumers to manage their energy demand. Stabilising voltage and frequency on power networks. -
Chapter 1: Energy Challenges September 2015 1 Energy Challenges
QUADRENNIAL TECHNOLOGY REVIEW AN ASSESSMENT OF ENERGY TECHNOLOGIES AND RESEARCH OPPORTUNITIES Chapter 1: Energy Challenges September 2015 1 Energy Challenges Energy is the Engine of the U.S. Economy Quadrennial Technology Review 1 1 Energy Challenges 1.1 Introduction The United States’ energy system, vast in size and increasingly complex, is the engine of the economy. The national energy enterprise has served us well, driving unprecedented economic growth and prosperity and supporting our national security. The U.S. energy system is entering a period of unprecedented change; new technologies, new requirements, and new vulnerabilities are transforming the system. The challenge is to transition to energy systems and technologies that simultaneously address the nation’s most fundamental needs—energy security, economic competitiveness, and environmental responsibility—while providing better energy services. Emerging advanced energy technologies can do much to address these challenges, but further improvements in cost and performance are important.1 Carefully targeted research, development, demonstration, and deployment (RDD&D) are essential to achieving these improvements and enabling us to meet our nation’s energy objectives. This report, the 2015 Quadrennial Technology Review (QTR 2015), examines science and technology RDD&D opportunities across the entire U.S. energy system. It focuses primarily on technologies with commercialization potential in the mid-term and beyond. It frames various tradeoffs that all energy technologies must balance, across such dimensions as diversity and security of supply, cost, environmental impacts, reliability, land use, and materials use. Finally, it provides data and analysis on RDD&D pathways to assist decision makers as they set priorities, subject to budget constraints, to develop more secure, affordable, and sustainable energy services. -
The Impacts of Storing Solar Energy in the Home to Reduce Reliance on the Utility
ARTICLES PUBLISHED: XX MONTH XXXX | VOLUME: 2 | ARTICLE NUMBER: 17001 The impacts of storing solar energy in the home to reduce reliance on the utility Robert L. Fares* and Michael E. Webber There has been growing interest in using energy storage to capture solar energy for later use in the home to reduce reliance on the traditional utility. However, few studies have critically assessed the trade-os associated with storing solar energy rather than sending it to the utility grid, as is typically done today. Here we show that a typical battery system could reduce peak power demand by 8–32% and reduce peak power injections by 5–42%, depending on how it operates. However, storage ineciencies increase annual energy consumption by 324–591 kWh per household on average. Furthermore, storage operation indirectly increases emissions by 153–303 kg CO2, 0.03–0.20 kg SO2 and 0.04–0.26 kg NOx per Texas household annually. Thus, home energy storage would not automatically reduce emissions or energy consumption unless it directly enables renewable energy. 1 n recent years, there has been growing interest in storing energy lead-acid batteries used with solar panels in the UK would increase 41 25 2 produced from rooftop photovoltaic panels in a home battery both primary energy consumption and carbon dioxide emissions . 42 1 3 Isystem to minimize reliance on the electric utility . A number In this paper we critically assess the trade-offs of using lithium- 43 4 of vendors have sought to capture this emerging market, including ion battery storage to capture solar energy and minimize reliance on 44 5 electric vehicle market leader Tesla and German home energy the utility. -
Slides from Sonoma Clean Power Residential Energy Storage
Residential Energy Storage Presentation Chris Calwell, Ecos Research 10/14/2020 Background • Ecos Research is a small consulting firm based in San Luis Obispo, CA focused on achieving breakthrough reductions in greenhouse gas emissions through technology and policy- driven improvements to consumer products. • Most of our work to date has focused on energy efficient consumer electronics and appliances, residential energy storage and PV, and electric vehicles. • I joined the research team at CSIRO in Newcastle, Australia to conduct testing and research on residential energy storage research efforts in Feb-March 2019 through Fulbright Specialist funding from the US State Department. • This presentation is a distillation of my findings from that research and our subsequent work for EPA ENERGY STAR, PG&E, Portland General Electric, and Arizona Public Service on the residential energy storage topic. Key Topics We’ll Cover • Market trends - what’s happening to sales? • Why residential battery sales are rising and how they're typically used • Key challenges in understanding their performance claims, specifications and warranties • The good, the bad and the ugly from early measurements of battery performance and efficiency • Safety considerations • Economics - Why it is challenging to get them to pay for themselves now, but won’t be in the future Australia is a post card from the future for us Percentage of homes with rooftop PV by post code Australian market conditions support one of the most robust residential battery markets in the world. Why? -
Introduction & Overview of Aceon's Virtual Power Plant Model
Building Resilience and Strengthening Communities Overview of AceOn’s Virtual Power Plant: RENEWERGY ® APSE CENTRAL REGION – 15 December 2020 AceOn Group +44 (0)1952 293 388 Unit 9B “Offering solutions today for [email protected] tomorrow’s world” Stafford Park 12 Telford www.aceongroup.com TF3 3BJ ACEON - WORKING IN PARTNERSHIP NATIONALLY & INTERNATIONALLY AceOn have a unique combination of a wealth of public and private experience as well as in-depth knowledge of the battery storage and energy sectors. AceOn have been chosen as the national partner of both the Association of Public Service Excellence and the National Housing Federation. We work in direct partnership with leading national and international manufacturers of Electric Vehicle Chargers, Domestic and Commercial Battery Storage Systems, Solar PV Panels, and Air Source Heat Pumps. Partners Association for Public Service Excellence - Exclusive Approved Energy Storage Partner to 114 member councils National Housing Federation - Exclusive Energy Storage Sector Supplier to 800 Housing Associations Microgeneration Certification Scheme (MCS) - Helped create and develop the Battery Storage Standard (MIS 3012) Solar Trade Association - Influential member and partner shaping government policy “The Telford Company Taking on Tesla” ACEON WORKING IN PARTNERSHIP – ONE STOP SOLUTION PROVIDER DOMESTIC BATTERY ENERGY STORAGE SYSTEMS – For New-Build & Retrofit VIRTUAL POWER PLANT – RENEWERGY Smart Energy Management Platform: Optimisation, Aggregation and Trading ROOF-INTEGRATED SOLAR PANEL -
Electrical Energy Storage – a Lexicon
January 2016 Technology Advisory Electrical Energy Storage – A Lexicon Electrical energy storage is an increasingly important topic in discussions about the future of the grid. The purpose of this document is to provide a common vocabulary for talking about electrical energy storage systems. It is focused on grid-connected systems, but many of the terms also apply to off-grid systems. Technical Terms Battery An electrochemical energy storage device which is usually DC. This is one part of an energy storage system. Battery Cell This is the smallest individual electrical component of a battery. It may be a separate physical device (such as an “18650” cell commonly used with lithium batteries), or it may be part of a larger package, yet electrically isolated (a 12V lead acid car battery actually has six two-volt cells connected via bus bars). Battery Management System This is a system which manages and monitors the battery to ensure even charging and discharging. This may be part of a system controller or may be a separate subsystem controller. Charge Rate The ratio of the charge power to the energy capacity of an energy storage system. For example, a 2 MWh system being recharged at 400 kW would have a charge rate of 0.2C (or C/5), while the same battery being charged at 8 MW would have a charge rate of 4C. There are often limits as to how fast a system can be charged / discharged. Copyright © 2016 by the National Rural Electric Cooperative Association. All Rights Reserved. January 2016 Depth of Discharge This is the inverse of Battery State-of-Charge (BSOC), and is usually abbreviated as DOD. -
Shared Solar and Battery Storage Configuration Effectiveness for Reducing the Grid Reliance of Apartment Complexes
energies Article Shared Solar and Battery Storage Configuration Effectiveness for Reducing the Grid Reliance of Apartment Complexes Moiz Masood Syed 1,*, Gregory M. Morrison 1 and James Darbyshire 2 1 School of Design and the Built Environment, Curtin University Sustainability Policy Institute, Curtin University, Perth 6102, Australia; [email protected] 2 Balance Utility Solutions, Tarlton Crescent, Perth Airport, WA 6105, Australia; [email protected] * Correspondence: [email protected]; Tel.: +61-416-500-270 Received: 15 August 2020; Accepted: 14 September 2020; Published: 15 September 2020 Abstract: More than 2 million houses in Australia have installed solar photovoltaic (PV) systems; however, apartment buildings have adopted a low percentage of solar PV and battery storage installations. Given that grid usage reduction through PV and battery storage is a primary objective in most residential buildings, apartments have not yet fully benefited from installations of such systems. This research presents shared microgrid configurations for three apartment buildings with PV and battery storage and evaluates the reduction in grid electricity usage by analyzing self-sufficiency. The results reveal that the three studied sites at White Gum Valley achieved an overall self-sufficiency of more than 60%. Owing to the infancy of the shared solar and battery storage market for apartment complexes and lack of available data, this study fills the research gap by presenting preliminary quantitative findings from implementation in apartment buildings. Keywords: solar PV; shared energy microgrid; battery storage; self-sufficiency; apartment complexes; empirical analysis; energy autonomy; shared PV storage 1. Introduction A combination of increasing costs of electricity bills along with the declining price of solar panels, concerns over global climate change, and favorable renewable uptake policies have led to a rapid increase in the solar installation capacity across Australia. -
Scaling Distributed Energy Storage for Grid Peak Reduction
Scaling Distributed Energy Storage for Grid Peak Reduction Aditya Mishra, David Irwin, Prashant Shenoy, and Ting Zhuz University of Massachusetts Amherst zBinghamton University {adityam,irwin,shenoy}@cs.umass.edu [email protected] ABSTRACT result from satisfying its peak power demands. For exam- Reducing peak demand is an important part of ongoing ple, recent work estimates that 10%-18% of North American smart grid research efforts. To reduce peak demand, util- CapEx, in terms of energy generation capacity, is idle and ities are introducing variable rate electricity prices. Recent wasted over 99% of the year [8]. Similarly, peak demand also efforts have shown how variable rate pricing can incentivize influences OpEx, by i) requiring utilities to operate high cost consumers to use energy storage to cut their electricity bill, and inefficient \peaking" generators to meet demand [1], ii) by storing energy during inexpensive off-peak periods and contributing to higher transmission charges, which are set using it during expensive peak periods. Unfortunately, vari- based on peak demand, and iii) forcing utilities to offset able rate pricing provides only a weak incentive for dis- supply shortages by purchasing electricity in the wholesale tributed energy storage and does not promote its adoption market at inopportune times, i.e., when it is most expen- at scale. In this paper, we present the storage adoption cycle sive. Thus, reducing peak demand and its impact on CapEx to describe the issues with incentivizing energy storage us- and OpEx is an important part of ongoing smart grid re- ing variable rates. We then propose a simple way to address search efforts. -
Using Four Different Online Media Sources to Forecast the Crude Oil Price
Using Four Different Online Media Sources to Forecast the Crude Oil Price Elshendy, M., Fronzetti Colladon, A., Battistoni, E. & Gloor, P. A. This is the accepted manuscript after the review process, but prior to final layout and copyediting. Please cite as: Elshendy, M., Fronzetti Colladon, A., Battistoni, E. & Gloor, P. A. (2018). Using Four Different Online Media Sources to Forecast the Crude Oil Price. Journal of Information Science, 44(3), 408-421. https://doi.org/10.1177/0165551517698298 This work is licensed under the Creative Commons Attribution- NonCommercial-NoDerivatives 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA. 2 Using Four Different Online Media Sources to Forecast the Crude Oil Price Mohammed Elshendy Department of Enterprise Engineering, University of Rome Tor Vergata, Italy. Andrea Fronzetti Colladon Department of Enterprise Engineering, University of Rome Tor Vergata, Italy. Elisa Battistoni Department of Enterprise Engineering, University of Rome Tor Vergata, Italy. Peter A. Gloor MIT Center for Collective Intelligence, Massachusetts Institute of Technology, US. Abstract This study looks for signals of economic awareness on online social media and tests their significance in economic predictions. The study analyses, over a period of two years, the relationship between the West Texas Intermediate daily crude oil price and multiple predictors extracted from Twitter, Google Trends, Wikipedia, and the Global Data on Events, Language, and Tone database (GDELT). Semantic Analysis is applied to study the sentiment, emotionality and complexity of the language used.