Copernicus and His Islamic Predecessors: Some Historical Remarks
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
General Index
General Index Italic page numbers refer to illustrations. Authors are listed in ical Index. Manuscripts, maps, and charts are usually listed by this index only when their ideas or works are discussed; full title and author; occasionally they are listed under the city and listings of works as cited in this volume are in the Bibliograph- institution in which they are held. CAbbas I, Shah, 47, 63, 65, 67, 409 on South Asian world maps, 393 and Kacba, 191 "Jahangir Embracing Shah (Abbas" Abywn (Abiyun) al-Batriq (Apion the in Kitab-i balJriye, 232-33, 278-79 (painting), 408, 410, 515 Patriarch), 26 in Kitab ~urat ai-arc!, 169 cAbd ai-Karim al-Mi~ri, 54, 65 Accuracy in Nuzhat al-mushtaq, 169 cAbd al-Rabman Efendi, 68 of Arabic measurements of length of on Piri Re)is's world map, 270, 271 cAbd al-Rabman ibn Burhan al-Maw~ili, 54 degree, 181 in Ptolemy's Geography, 169 cAbdolazlz ibn CAbdolgani el-Erzincani, 225 of Bharat Kala Bhavan globe, 397 al-Qazwlni's world maps, 144 Abdur Rahim, map by, 411, 412, 413 of al-BlrunI's calculation of Ghazna's on South Asian world maps, 393, 394, 400 Abraham ben Meir ibn Ezra, 60 longitude, 188 in view of world landmass as bird, 90-91 Abu, Mount, Rajasthan of al-BlrunI's celestial mapping, 37 in Walters Deniz atlast, pl.23 on Jain triptych, 460 of globes in paintings, 409 n.36 Agapius (Mabbub) religious map of, 482-83 of al-Idrisi's sectional maps, 163 Kitab al- ~nwan, 17 Abo al-cAbbas Abmad ibn Abi cAbdallah of Islamic celestial globes, 46-47 Agnese, Battista, 279, 280, 282, 282-83 Mu\:lammad of Kitab-i ba/Jriye, 231, 233 Agnicayana, 308-9, 309 Kitab al-durar wa-al-yawaqft fi 11m of map of north-central India, 421, 422 Agra, 378 n.145, 403, 436, 448, 476-77 al-ra~d wa-al-mawaqft (Book of of maps in Gentil's atlas of Mughal Agrawala, V. -
In. ^Ifil Fiegree in PNILOSOPNY
ISLAMIC PHILOSOPHY OF SCIENCE: A CRITICAL STUDY O F HOSSAIN NASR Dis««rtation Submitted TO THE Aiigarh Muslim University, Aligarh for the a^ar d of in. ^Ifil fiegree IN PNILOSOPNY BY SHBIKH ARJBD Abl Under the Kind Supervision of PROF. S. WAHEED AKHTAR Cbiimwa, D«ptt. ol PhiloMphy. DEPARTMENT OF PHILOSOPHY ALIGARH IWIUSLIIM UNIVERSITY ALIGARH 1993 nmiH DS2464 gg®g@eg^^@@@g@@€'@@@@gl| " 0 3 9 H ^ ? S f I O ( D .'^ ••• ¥4 H ,. f f 3« K &^: 3 * 9 m H m «< K t c * - ft .1 D i f m e Q > i j 8"' r E > H I > 5 C I- 115m Vi\ ?- 2 S? 1 i' C £ O H Tl < ACKNOWLEDGEMENT In the name of Allah« the Merciful and the Compassionate. It gives me great pleasure to thanks my kind hearted supervisor Prof. S. Waheed Akhtar, Chairman, Department of Philosophy, who guided me to complete this work. In spite of his multifarious intellectual activities, he gave me valuable time and encouraged me from time to time for this work. Not only he is a philosopher but also a man of literature and sugge'sted me such kind of topic. Without his careful guidance this work could not be completed in proper time. I am indebted to my parents, SK Samser All and Mrs. AJema Khatun and also thankful to my uncle Dr. Sheikh Amjad Ali for encouraging me in research. I am also thankful to my teachers in the department of Philosophy, Dr. M. Rafique, Dr. Tasaduque Hussain, Mr. Naushad, Mr. Muquim and Dr. Sayed. -
Simon Stevin
II THE PRINCIPAL WORKS OF SIMON STEVIN E D IT E D BY ERNST CRONE, E. J. DIJKSTERHUIS, R. J. FORBES M. G. J. MINNAERT, A. PANNEKOEK A M ST E R D A M C. V. SW ETS & Z E IT L IN G E R J m THE PRINCIPAL WORKS OF SIMON STEVIN VOLUME II MATHEMATICS E D IT E D BY D. J. STRUIK PROFESSOR AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE (MASS.) A M S T E R D A M C. V. SW ETS & Z E IT L IN G E R 1958 The edition of this volume II of the principal works of SIMON STEVIN devoted to his mathematical publications, has been rendered possible through the financial aid of the Koninklijke. Nederlandse Akademie van Wetenschappen (Royal Netherlands Academy of Science) Printed by Jan de Lange, Deventer, Holland The following edition of the Principal Works of SIMON STEVIN has been brought about at the initiative of the Physics Section of the Koninklijke Nederlandse Akademie van Weten schappen (Royal Netherlands Academy of Sciences) by a committee consisting of the following members: ERNST CRONE, Chairman of the Netherlands Maritime Museum, Amsterdam E. J. DIJKSTERHUIS, Professor of the History of Science at the Universities of Leiden and Utrecht R. J. FORBES, Professor of the History of Science at the Municipal University of Amsterdam M. G. J. M INNAERT, Professor of Astronomy at the University of Utrecht A. PANNEKOEK, Former Professor of Astronomy at the Municipal University of Amsterdam The Dutch texts of STEVIN as well as the introductions and notes have been translated into English or revised by Miss C. -
The History of Arabic Sciences: a Selected Bibliography
THE HISTORY OF ARABIC SCIENCES: A SELECTED BIBLIOGRAPHY Mohamed ABATTOUY Fez University Max Planck Institut für Wissenschaftsgeschichte, Berlin A first version of this bibliography was presented to the Group Frühe Neuzeit (Max Planck Institute for History of Science, Berlin) in April 1996. I revised and expanded it during a stay of research in MPIWG during the summer 1996 and in Fez (november 1996). During the Workshop Experience and Knowledge Structures in Arabic and Latin Sciences, held in the Max Planck Institute for the History of Science in Berlin on December 16-17, 1996, a limited number of copies of the present Bibliography was already distributed. Finally, I express my gratitude to Paul Weinig (Berlin) for valuable advice and for proofreading. PREFACE The principal sources for the history of Arabic and Islamic sciences are of course original works written mainly in Arabic between the VIIIth and the XVIth centuries, for the most part. A great part of this scientific material is still in original manuscripts, but many texts had been edited since the XIXth century, and in many cases translated to European languages. In the case of sciences as astronomy and mechanics, instruments and mechanical devices still extant and preserved in museums throughout the world bring important informations. A total of several thousands of mathematical, astronomical, physical, alchemical, biologico-medical manuscripts survived. They are written mainly in Arabic, but some are in Persian and Turkish. The main libraries in which they are preserved are those in the Arabic World: Cairo, Damascus, Tunis, Algiers, Rabat ... as well as in private collections. Beside this material in the Arabic countries, the Deutsche Staatsbibliothek in Berlin, the Biblioteca del Escorial near Madrid, the British Museum and the Bodleian Library in England, the Bibliothèque Nationale in Paris, the Süleymaniye and Topkapi Libraries in Istanbul, the National Libraries in Iran, India, Pakistan.. -
The Persian-Toledan Astronomical Connection and the European Renaissance
Academia Europaea 19th Annual Conference in cooperation with: Sociedad Estatal de Conmemoraciones Culturales, Ministerio de Cultura (Spain) “The Dialogue of Three Cultures and our European Heritage” (Toledo Crucible of the Culture and the Dawn of the Renaissance) 2 - 5 September 2007, Toledo, Spain Chair, Organizing Committee: Prof. Manuel G. Velarde The Persian-Toledan Astronomical Connection and the European Renaissance M. Heydari-Malayeri Paris Observatory Summary This paper aims at presenting a brief overview of astronomical exchanges between the Eastern and Western parts of the Islamic world from the 8th to 14th century. These cultural interactions were in fact vaster involving Persian, Indian, Greek, and Chinese traditions. I will particularly focus on some interesting relations between the Persian astronomical heritage and the Andalusian (Spanish) achievements in that period. After a brief introduction dealing mainly with a couple of terminological remarks, I will present a glimpse of the historical context in which Muslim science developed. In Section 3, the origins of Muslim astronomy will be briefly examined. Section 4 will be concerned with Khwârizmi, the Persian astronomer/mathematician who wrote the first major astronomical work in the Muslim world. His influence on later Andalusian astronomy will be looked into in Section 5. Andalusian astronomy flourished in the 11th century, as will be studied in Section 6. Among its major achievements were the Toledan Tables and the Alfonsine Tables, which will be presented in Section 7. The Tables had a major position in European astronomy until the advent of Copernicus in the 16th century. Since Ptolemy’s models were not satisfactory, Muslim astronomers tried to improve them, as we will see in Section 8. -
Scandinavian Journal Byzantine Modern Greek
SCANDINAVIAN JOURNAL OF SCANDINAVIAN JOURNAL OF BYZANTINE AND MODERN GREEK STUDIES 4 • 2018 JOURNAL OF BYZANTINE SCANDINAVIAN BYZANTINE AND MODERN GREEK STUDIES Barbara Crostini 9 Greek Astronomical Manuscripts: New Perspectives from Swedish Collections Filippo Ronconi 19 Manuscripts as Stratified Social Objects Anne Weddigen 41 Cataloguing Scientific Miscellanies: the Case of Parisinus Graecus 2494 Alberto Bardi 65 Persian Astronomy in the Greek Manuscript Linköping kl. f. 10 Dmitry Afinogenov 89 Hellenistic Jewish texts in George the Monk: Slavonic Testimonies Alexandra Fiotaki & Marika Lekakou 99 The perfective non-past in Modern Greek: a corpus study Yannis Smarnakis 119 Thessaloniki during the Zealots’ Revolt (1342-1350): Power, Political Violence and the Transformation of the Urban Space David Wills 149 “The nobility of the sea and landscape”: John Craxton and Greece 175 Book Reviews ISSN 2002-0007 No 4 • 2018 Persian Astronomy in the Greek Manuscript Linköping kl. f. 10* Alberto Bardi his paper is a study of an astronomical text redacted in Greek, contained in the fifteenth-century manuscript Linköping kl. f. 10 T(henceforth F). This text consists of a coherent group of instruc- tions on how to use a structured set of astronomical tables stemming from Islamic tradition, redacted primarily in Persian in the thirteenth century, then translated by Byzantine scholars into Greek, and spread among Byzantine scholars from the beginning of the fourteenth century.1 2. Astronomical texts and tables between the Il-khanate and Byzantium In the thirteenth century, astronomical tables stemming from Persia were mostly produced by Islamic scholars. The area, stretched out today between Iran and Azerbaijan, was ruled by the Mongols of the Il-Kha- nids dynasty. -
An Unpublished Translator's Preface to a Brontologion (Petrop.Bibl.Publ
Natural Omens in Byzantine Literature: An Unpublished Translator’s Preface to a Brontologion (Petrop.Bibl.Publ. 575) Elizabeth A. Fisher YZANTINE AUTHORS reflect the popular belief that God communicated with man through natural events, if only B human understanding could discern the message. Several writers of the tenth century illustrate this attitude by presenting unusual natural events as a metaphor or as a predictive indicator of human events. Theophanes Continuatus, for example, de- scribes the appearance of a remarkable star or comet at the birth and death of Constantine the Porphyrogennetos.1 Similarly, at the beginning of his History Leo the Deacon notes the coinci- dence of disruptive events in both the natural and the political spheres. Astral portents, earthquakes, lightning, and torrential rain simultaneous with many wars and the abandonment of cities and whole regions motivated the popular inference that the Second Coming was imminent.2 In the Life of St. Basil the Younger, the narrator Gregory notes that the sun appeared to drip blood when the rebel followers of Constantine Doukas (d. 913) entered Constantinople, predicting great slaughter.3 Although Christian Byzantium scorned pagan superstition 1 Theoph. Cont. 6.48, in D. Sullivan, The Rise and Fall of Nikephoros II Phokas: Five Contemporary Texts in Annotated Translations (Leiden 2019) 49–51. I am grateful to Prof. Sullivan for this reference. 2 A.-M. Talbot and D. Sullivan with G. Dennis and S. McGrath, The His- tory of Leo the Deacon: Byzantine Military Expansion in the Tenth Century (Washington 2005) 55–56. Cf. Matt 4:6–8, Mk 13:7–8, Lk 21:10–11, and Acts 2:19–20. -
Beginnings of Trigonometry
Beginnings of Trigonometry Trigonometry is an area of mathematics used for determining geometric quantities. Its name, first published in 1595 by B. Pitiscus, means "the study of trigons (triangles)" in Latin. Ancient Greek Mathematicians first used trigonometric functions with the chords of a circle. The first to publish these chords in 140 BC was Hipparchus, who is now called the founder of trigonometry. In AD 100, Menelaus, another Greek mathematician, published six lost books of tables of chords. Ptolemy, a Babylonian, also wrote a book of chords. Using chords, Ptolemy knew that sin(xy+= ) sin x cos y + cos x sin y and abc = = sinABC sin sin In his great astronomical handbook, The Almagest, Ptolemy provided a table of chords for steps of °, from 0° to 180°, that is accurate to 1/3600 of a unit. Ptolemy's degree of accuracy is due in part because the Hellenistic Greeks had adopted the Babylonian base- 60 (sexagesimal) numeration system. He also explained his method for constructing his table of chords, and in the course of the book he gave many examples of how to use the table to find unknown parts of triangles from known parts. Ptolemy provided what is now known as Menelaus's theorem for solving spherical triangles, as well, and for several centuries his trigonometry was the primary introduction to the subject for any astronomer. Sine first appeared in the work of Aryabhata, a Hindu. He used the word jya for sine. He also published the first sine tables. Brahmagupta, in 628, also published a table of sines for any angle. -
To Save the Phenomena
To Save the Phenomena Prof. David Kaiser Thursday, June 23, 2011, STS.003 Heavens unit Overarching questions: Are representations of astronomical phenomena true or merely useful? How does scientific knowledge travel? I. Ptolemy and the Planets II. Medieval Islamic Astronomy III. Copernican Revolutions Readings: Ptolemy, The Almagest, 5-14, 86-93; Al-Tusi, Memoir on Astronomy, 194-222; Lindberg, Beginnings of Western Science, 85-105. Timeline Ancient Medieval 500 BCE 500 CE 1450 Renaissance Enlightenment 1450 1700 1850 Modern 1850 today Thursday, June 23, 2011, STS.003 Puzzle of the Planets ―planet‖ = ―wanderer‖ 1. Planets roughly follow the path of the sun (within 5˚of the ecliptic). 2. They tend to move W to E over the year, but with varying speeds. 3. They sometimes display retrograde motion. 4. They appear brightest during retrograde. Plato‘s challenge: ―to save the phenomena.‖ ―By the assumption of what uniform and orderly motions can the apparent motions of the planets be accounted for?‖ Retrograde Motion Illustration explaining retrograde motion removed due to copyright restrictions. Mars, 2003 Geocentrism Nearly all of the ancient scholars assumed geocentrism: that the Earth sits at rest in the middle of the cosmos, while the sun, planets, and stars revolve around it. Aristotle, ca. 330 BCE ―[Some people think] there is nothing against their supposing the heavens immobile and the earth as turning on the same axis from west to east very nearly one revolution a day. But it has escaped their notice in the light of what happens around us in the air that such a notion would seem altogether absurd.‖ “That the Earth does not in any way move Aristotle, De Caelo locally” – Ptolemy, Almagest, 1:7 Flat Earth? No! Nearly all Greek scholars assumed that the Earth was a perfect sphere. -
Byzantine and Modern Greek Studies 2 • 2016 Byzantine and Modern Greek Studies
SCANDINAVIAN JOURNAL OF SCANDINAVIAN JOURNAL OF BYZANTINE AND MODERN GREEK STUDIES 2 • 2016 JOURNAL OF BYZANTINE SCANDINAVIAN BYZANTINE AND MODERN GREEK STUDIES Albrecht Berger 9 Magical Constantinople: statues, legends, and the end of time Paolo Cesaretti 31 The Life of St Andrew the Fool by Lennart Rydén: vingt ans après Hedvig von Ehrenheim 53 Pilgrimage for dreams in Late Antiquity and Early Byzantium: continuity of the pagan ritual or development within Christian miracle tradition? Isabel Kimmelfield 97 Defining Constantinople’s Suburbs through Travel and Geography Paul Magdalino 115 The Apostolic Tradition in Constantinople Myrto Veikou 143 Space in Texts and Space as Text: A new approach to Byzantine spatial notions AnnaLinden Weller 177 Marrying the Mongol Khans: Byzantine Imperial Women and the Diplomacy of Religious Conversion in the 13th and 14th Centuries 201 Book Reviews ISSN 2002-0007 No 2 • 2016 Instructions for contributors to SCANDINAVIAN JOURNAL OF BYZANTINE AND MODERN GREEK STUDIES SJBMGS encourages scholarly contributions within Byzantine and Mod- ern Greek philology and history. Manuscripts of articles to be considered for publication should be sent to [email protected] or Marianna Smaragdi, Centre for Lan- guages and Literature, Lund University, Box 201, 22100 Lund, Sweden. Your article will be refereed. If it is accepted for publication, you will be asked to supply a final version on e-mail. Authors will receive five copies of the journal volume. The SJBMGS is a nonprofit venture to be distributed on -
A Rebuttal of Recent Arguments for Maragha Influence on Copernicus
Discussions, polemics, letters to the Editor Viktor Blåsjö ORCID 0000-0001-8494-4567 Mathematical Institute, Utrecht University (Utrecht, The Netherlands) [email protected] A rebuttal of recent arguments for Maragha influence on Copernicus Abstract I reply to recent arguments by Peter Barker & Tofigh Heidarza- deh, Arun Bala, and F. Jamil Ragep claiming that certain aspects Copernicus’s astronomical models where influenced by late Is- lamic authors connected with the Maragha school. In particular, I argue that: the deleted passage in De revolutionibus that alleged- ly references unspecified previous authors on the Tusi couple actually refers to a simple harmonic motion, and not the Tusi couple; the arguments based on lettering and other conventions used in Copernicus’s figure for the Tusi couple have no eviden- tiary merit whatever; alleged indications that Nicole Oresme was aware of the Tusi couple are much more naturally explained on other grounds; plausibility considerations regarding the status of PUBLICATION e-ISSN 2543-702X INFO ISSN 2451-3202 DIAMOND OPEN ACCESS CITATION Blåsjö, Viktor 2018: A rebuttal of recent arguments for Maragha influence on Copernicus.Studia Historiae Scientiarum 17, pp. 479–497. Available online: https://doi.org/10.4467/2543702XSHS.18.017.9337. ARCHIVE RECEIVED: 8.04.2018 LICENSE POLICY ACCEPTED: 16.07.2018 Green SHERPA / PUBLISHED ONLINE: 12.12.2018 RoMEO Colour WWW http://www.ejournals.eu/sj/index.php/SHS/; http://pau.krakow.pl/Studia-Historiae-Scientiarum/ Viktor Blåsjö A rebuttal of recent arguments for Maragha influence on Copernicus Arabic astronomy and norms regarding novelty claims weight against the influence thesis, not for it. -
The Copernican Revolution Setting Both the Earth and Society in Motion
4/21/2014 The Copernican Revolution Setting both the Earth and Society in Motion David Linton EIU Physics Department November 5, 2013 Drawing an ellipse The Modern Picture of the Solar System . A planet moves in an ellipse with the Sun at one focus. A planet moves fastest when closest to the Sun, slowest when furthest. A planet would travel in a straight line were there not a force to hold it to the Sun – this force is supplied by “Gravity” – an attraction Focus Focus between masses, and weakens with increasing distance. A planet’s axis is “fixed’ in space. (Orbital Period)2 = (Semimajor Axis)3 (This derives from the Law of Gravitation and Newton’s 3 Laws of Motion) 1 4/21/2014 Drawing an ellipse Drawing an ellipse Focus Focus Sun For a planetary orbit, one focus is unoccupied. For a planetary orbit, one focus is unoccupied. 2 4/21/2014 Some Other Things We Now Know . Every planet beyond Earth has more than one moon. Both planets closer to the Sun than Earth have no moons. Comets orbit the Sun also. They are dirty icebergs (or icy dirtballs) orbiting along extremely stretched-out (meaning, highly eccentric) ellipses. Many of the comets we see as they pass near the Sun take many thousands of years to orbit one time. Retrograde Motion – the Heliocentric View Astronomy at Copernicus Birth (1473) . Ancient Greek Philosophers held that Earth was the center of Creation, that everything in the sky must wheel in circles about us. Circles were considered the perfect geometric form, and the Greeks had felt the Heavens to be perfect.