Simon Stevin

Total Page:16

File Type:pdf, Size:1020Kb

Simon Stevin II THE PRINCIPAL WORKS OF SIMON STEVIN E D IT E D BY ERNST CRONE, E. J. DIJKSTERHUIS, R. J. FORBES M. G. J. MINNAERT, A. PANNEKOEK A M ST E R D A M C. V. SW ETS & Z E IT L IN G E R J m THE PRINCIPAL WORKS OF SIMON STEVIN VOLUME II MATHEMATICS E D IT E D BY D. J. STRUIK PROFESSOR AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE (MASS.) A M S T E R D A M C. V. SW ETS & Z E IT L IN G E R 1958 The edition of this volume II of the principal works of SIMON STEVIN devoted to his mathematical publications, has been rendered possible through the financial aid of the Koninklijke. Nederlandse Akademie van Wetenschappen (Royal Netherlands Academy of Science) Printed by Jan de Lange, Deventer, Holland The following edition of the Principal Works of SIMON STEVIN has been brought about at the initiative of the Physics Section of the Koninklijke Nederlandse Akademie van Weten­ schappen (Royal Netherlands Academy of Sciences) by a committee consisting of the following members: ERNST CRONE, Chairman of the Netherlands Maritime Museum, Amsterdam E. J. DIJKSTERHUIS, Professor of the History of Science at the Universities of Leiden and Utrecht R. J. FORBES, Professor of the History of Science at the Municipal University of Amsterdam M. G. J. M INNAERT, Professor of Astronomy at the University of Utrecht A. PANNEKOEK, Former Professor of Astronomy at the Municipal University of Amsterdam The Dutch texts of STEVIN as well as the introductions and notes have been translated into English or revised by Miss C. Dikshoorn. THE MATHEMATICAL WORKS OF SIMON STEVIN 1. GENERAL INTRODUCTION When, about 1581, Stevin settled in the Northern Netherlands, he found a country ready to appreciate his talents. The young Republic, at war with Spain and entering a period of great maritime expansion, needed instructors for its navigators, merchants, surveyors, and military engineers. Teachers of mathe­ matics, surveying, navigation and cartography, instrument-makers and engineers found encouragement; their number increased and soon no commercial town was without some of them i). Before the sixteenth century came to an end text­ books in arithmetic, algebra, geometry, and the applied mathematical sciences were available, many written in the vernacular. The teachers and those who patronized them included a great many immigrants from neighbouring countries, expecially from the Southern Netherlands, long known for its learning — the country in which Stevin himself was born. The Stadtholder, Prince Maurice of Orange (1567-1625), was also greatly interested in the mathematical sciences, and so was the new University of Leyden, founded in 1575. Several of these early Dutch mathematicians and teachers of mathematics are still remembered. Apart from Stevin, we find among them Adriaen Anthonisz (c. 1543-1620), several times burgomaster of Alkmaar and a military engineer, who made the value ~ for tt known in Europe2); Ludolph Van Ceulen ( 1540-16 1 0 ), fencing master at Delft, who computed ir first in 20, then in 33 and finally in 35 decimals by the ancient Archimedean method of inscribed and circumscribed polygons; and Claes Pietersz or Nicolaus Petri, after 1567 school­ master at Amsterdam, who wrote a series of Dutch textbooks, which show con­ siderable knowledge of contemporary science. Rudolf Snel, or Snellius (1546- 1612), taught at Leyden University and edited the mathematical works of Petrus Ramus, the Parisian educator. A popular school for navigators at Amsterdam was conducted by the Reverend Petrus Plancius ( 1552-1 6 2 2), cartographer and instrument-maker. Among the scientific amateurs we find Jan Cornets De Groot (1554-1640), patrician of Delft, whose attainments have been eclipsed by the fame of his son, known as Hugo Grotius. With several of these men Stevin entered into correspondence or personal contact, in particular with De Groot and Van Ceulen at Delft. *) This was a development typical of the period. E. G. R. Taylor, in The Mathematical Practitioners of Tudor and Stuart England (London, 1954), lists 582 such practitioners active between 1485 and 1715. 2) This value is sometimes called that of Metius through a confusion between Anthonisz and his son, who adopted the name of Metius. The intellectual climate of Holland seems to have agreed with Stevin. During the years 1582-86 several of his books appeared, first his Tables of Interest, then his Problemata Geometrica, then his Tenth, his L’Arithmétique, a Pratique d’Arithmétique, and the three books on mechanics, which also contain creative mathematical thoughts. These are the books that have established Stevin’s po­ sition in the history of mathematics. It is of some interest to sketch, in some­ what greater detail than in Vol. I, pp. 16-19, the nature of his contributions. ' 2. In Stevin’s formative years the decimal position system, based upon the Hindu- Arabic numerals in their present form 0 , 1, ..., 9, was already widely accepted in Europe and commonly used by those who professed the mathematical sciences. Elementary arithmetic, using this system, could be learned from many textbooks, available in Latin, French, German, and Flemish. Stevin specially mentions the French Arithmétique of Jean Trenchant, first .published in 1558. From books such as these he could also learn the application of arithmetic to commercial transactions, as well as the computation of single and compound interest. They also often contained operations with radicals such as V2, V3, etc. Some features of these books must have been irksome to him. One of them was their reluctance to recognize 1 as a number and their tendency to designate other numbers as “irrational” or “surd”, as if they belonged to a lower class. Other objections were of a more practical nature, such as the reluctance of the authors to illustrate their rules of interest by tables, which still were held as a secret by banking houses, or the clumsy fractional calculus, which used either the numerator-de- nominator notation or the sexagesimal system, but only rarely the more con­ venient decimal .notation. This decimal notation was almost exclusively confined to trigonometric tables, available in several forms, including those published by Rhaeticus (1551), later expanded into the Opus Palatinum (1596). Stevin, in his first published works, tried to remedy some of these shortcomings, and also to improve on the exposition. Thus, in the Tables of Interest, he not only gave a lucid presentation of the rules of single and compound interest, but also published a series of tables, together with a rule for computing them. Some years later, in his Tenth (1585), he showed the use of the decimal system in the calculus of fractions. He took this opportunity to suggest the introduction of the decimal system also into the classification of weights and measures, a proposal which had to wait for partial acceptance until the time of the French Revolution. His theoretical ideas he laid down in his book 11Arithmétique and in a geometrical manuscript, of which only a part was published. Since UArithmétique also contained Stevin’s algebra, while his books on mechanics included several applications of the calculus of infini­ tesimals, Stevin’s. work of these years 1582-1586 can be considered as a fair and often original exposition of most features of the mathematics of his day. In his arithmetical and geometrical studies Stevin pointed out that the analogy between numbers and line-segments was closer than was generally recognized. He showed that the principal arithmetical opérations, as well as the theory of pro­ portions and the rule of three, had their counterparts in geometry. Incommen­ surability existed between line-segments as well as numbers, and since the nature 5 of line-segments was independent of the number that indicated their length, all ¡numbers, including unity, also were of the same nature. All numbers were, squares, all numbers were square roots. Not only was \/2 incommensurable with 2 and :V3, but so was 2 with \J2 and V3; incommensurability was a relative property, and there was no sense in calling numbers “irrational”, “irregular” or any other name which connoted inferiority. He went so far as to say, in his Traiclé des incommensurables grandeurs, that the geometrical theory of incommensurables in Euclid’s Tenth Book had originally been discovered in terms of numbers, and translated the content of this book into the language of numbers. He compared .the still incompletely understood arithmetical continuum to the geometrical continuum, already explained by the Greeks, and thus prepared the way for that correspondence of numbers and points on the line that made its entry with Des­ cartes’ coordinate geometry. Stevin recognized several kinds of quantities: arithmetical numbers, which are abstract numbers, and geometrical numbers, connected with lines, squares, cubes, and rectangular blocks (figures in more than three dimensions were be- yond the compass of the age), which we now denote by a, a2, a?, ..., a 2, a 5 , etc. From this he passed on to linear combinations of geometrical numbers, which he called algebraic numbers. Thus he came to algebra—the theory of equations—, which to him, in his attempt to construe analogies between geometry and arith­ metic, hence between geometrical and arithmetical numbers, consisted in the application of the rule of three to algebraic quantities. His algebra thus forms part of his general ’’arithmetic”. The theory of equations had made considerable progress in the course of the sixteenth century. Cubic equations had been solved, though the ’’casus irreducibilis” still presented difficulties. The new results were laid down by Jerome Cardan in his Ars magna (1545), which became the sixteenth-century standard text on the theory of equations, eclipsing even the Arithmetica integra (1544) of Michael Stifel.
Recommended publications
  • SIMON STEVIN (1548 – 1620) by HEINZ KLAUS STRICK, Germany
    SIMON STEVIN (1548 – 1620) by HEINZ KLAUS STRICK, Germany The Flemish mathematician, physicist and engineer SIMON STEVIN is one of the lesser-known personalities in the history of science. However, his work has left many traces. We do not even know his exact date of birth and death; his birthplace was Bruges; where he died is uncertain: either Leiden or the Hague. Raised in the Calvinist tradition, he grew up in Flanders, became an accountant and cashier for a trading firm in Antwerp, travelled for several years through Poland, Prussia and Norway until he took a job at the tax office in Bruges in 1577. Around this time, the 17 provinces of the Netherlands, which also include the area of present-day Belgium, Luxembourg and parts of northern France, belong to the Spanish dominion. Large parts of the population, especially in the northern provinces, converted to the Calvinist faith. In 1567 King PHILIP II OF SPAIN appointed the DUKE OF ALBA as governor. When ALBA carried out a punitive expedition against the Protestants, a war began which only ended in 1648 with the Peace Treaty of Münster (partial treaty of the Peace of Westphalia). In 1579 the Protestant provinces in the north of the Netherlands united to form the Union of Utrecht and declared their independence as the Republic of the United Netherlands; they elected WILLIAM THE SILENT or WILLIAM OF ORANGE as regent. As the political situation came to a head, SIMON STEVIN's life situation also changed: although he was already 33 years old, he still attended a Latin school and then took up studies at the newly founded University of Leiden.
    [Show full text]
  • Verortungen Von Wissen Die Räume Und Sammlungen Der Universität Leiden 1575-1700
    Research Collection Doctoral Thesis Verortungen von Wissen Die Räume und Sammlungen der Universität Leiden 1575-1700 Author(s): Grämiger, Gregory Publication Date: 2014 Permanent Link: https://doi.org/10.3929/ethz-a-010402159 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library Gregory Grämiger VERORTUNGEN VON WISSEN Die Räume und Sammlungen der Universität Leiden 1575–1700 DISS ETH 22375 DISS ETH 22375 VERORTUNGEN VON WISSEN DIE RÄUME UND SAMMLUNGEN DER UNIVERSITÄT LEIDEN 1575–1700 Abhandlung zur Erlangung des Titels DOKTOR der ETH ZÜRICH vorgelegt von GREGORY GRÄMIGER Dipl. Arch. ETH geboren am 8. Februar 1980 von Mosnang SG Angenommen auf Antrag von PD Dr. Lothar Schmitt Prof. Dr. Eric Jorink Prof. Dr. Philip Ursprung 2014 Dank Auf der vorhergehenden Seite fehlt der Name von Andreas Tönnesmann, denn mein ver- ehrter Doktorvater konnte die letzte Niederschrift der Arbeit leider nicht mehr lesen. Ohne seine Initiative, Inspiration und stete Förderung wäre die vorliegende Arbeit nicht verfasst worden. Ihm gebührt mein erster und grösster Dank. Lothar Schmitt danke ich nicht nur für die Übernahme des Referats, sondern auch für die durchgehende Unterstützung während vieler Jahre der Forschung und Niederschrift. Eric Jorink danke ich für seine Expertise und für die Übernahme des Koreferats. Philip Ursprung half mit seinem Gutachten in Stunden der Not, wofür ich ihm meinen Dank aus- sprechen möchte. Bereichert wurde die Arbeit durch das Interesse und das Fachwissen von Susanne Rau, Anne Goldgar, Tim Huisman, Gerda van Uffelen, A.J.F.
    [Show full text]
  • Index of Articles and Authors for the First Twenty-Four Numbers
    Index of Articles and Authors for the first Twenty-four Numbers MARCH 1923 — NOVEMBER 1935 0 THE HYDROGRAPHIC REVIEW The Directing Committee of the I nternational H ydrographic B u r e a u will be pleased to consider articles for insertion in the Hydrographic Review. Such articles should be addressed to : The Secretary-General, I nternational H ydrographic B u r e a u Quai de Plaisance Mo n te -C arlo (Principality of Monaco) and should reach him not later than 1st February or ist August for the May or November numbers respectively. INDEX OF ARTICLES AND AUTHORS for the First Twenty-four Numbers MARCH 1923 - NOVEMBER 1935 FOREWORD This Index is in two parts : P a r t I. — Classification of articles according to the Subjects dealt with. P a r t II. — Alphabetical Index of the names of Authors of articles which have been published in The Hydrographic Review. NOTE. — Articles marked (R ) are Reviews of publications. Articles marked (E) are Extracts from publications. When no author’s name is given, articles have been compiled from information received by the Interna­ tional Hydrographic Bureau. Reviews of Publications appear under the name or initials of the author of the review. Descriptions of instruments or appliances are given in the chapters relating to their employment, in Chapter XIV (Various Instruments), or occasionally in Chapter XXT (Hints to Hydrographic Surveyors). CLASSIFICATION OF ARTICLES ACCORDING TO THE SUBJECTS DEALT WITH List of subjects I . — H ydrographic Offic e s a n d o th er Mar itim e a n d S c ie n t ific Organisations (Patrols, Life- saving, Observatories, Institutes of Optics).....................................................................................
    [Show full text]
  • Geometry and Mathematical Symbolism of the 16Th Century Viewed Through a Construction Problem
    THE TEACHING OF MATHEMATICS 2016, Vol. XIX, 1, pp. 32–40 GEOMETRY AND MATHEMATICAL SYMBOLISM OF THE 16TH CENTURY VIEWED THROUGH A CONSTRUCTION PROBLEM Milana Dabi´c Abstract. This paper represents a construction problem from Problematum geometricorum IV written by Simon Stevin from Bruges in 1583. The problem is used for illustrating the geometry practice and mathematical language in the 16th century. The large impact of Euclid and Archimedes can be noted. In one part of the construction, Stevin expressed the need for using numbers for greater clarity. Hence, the link with the work of Descartes and the further geometry development is pointed out. MathEduc Subject Classification: A35 MSC Subject Classification: 97A30 Key words and phrases: 16th century mathematics; mathematical symbolism; Simon Stevin; construction problems 1. Introduction From the times of Ancient Greece until the 16th century there was no signif- icant geometrical contribution that would expand the existing geometrical knowl- edge. Only in the second half of the 16th century we can find geometry works of Simon Stevin from Bruges (1548–1620). It is believed that his influence was neglected in the history of mathematics and that his name should be mentioned together with the name of his contemporary Galileo Galilei, from whom Stevin was a whole generation older (16 years) [8]. It is considered that Stevin, as a predecessor of Descartes, prepared a path for introducing correspondence between numbers and points on the line by studying the 10th book of Euclid’s Elements and translating it to numbers [9]. Besides his work on the Problematum geometricorum libri V, he wrote Tomus secundus de geometriae praxi (in 1605) which is: ::: different from the Problemata geometrica and inferior to it; it is also a collection of geometrical problems but it is not arranged as logically as the former; it was chiefly made to complete the Prince’s geometrical training [6, p.
    [Show full text]
  • Simon Stevin, Polymaths and Polymathy in the Early Modern Period
    introduction Simon Stevin, Polymaths and Polymathy in the Early Modern Period Karel Davids, Fokko Jan Dijksterhuis, Rienk Vermij and Ida Stamhuis Simon Stevin (1548– 1620) was a slightly older contemporary of Galileo, and can in many respects be considered his Dutch counterpart: a scholar who opened up new, mathematical, ways of studying the world. As such, he has rightly tak- en his place in the annals of early modern science. But Stevin was more than a clever theoretician; he was also an exponent of a new approach to knowledge in the early modern period, when established ways of understanding the world had been thrown into doubt. Ignoring these broader aspects, as has commonly been done, risks failing to grasp his full significance. Stevin remains badly un- derstood, in many respects, and this volume is thus an attempt to understand him better by placing his work in this broader context. In his approach to a wide range of topics, Stevin presents a case – and a very interesting one – of a more general trend in early modern learning, when knowledge was often produced by ‘polymaths’ rather than specialists. Ana- lyzing his situation is therefore not only important as a means of assessing his aims and motives, but also leads to a better understanding of European intellectual history in general. Such a study will shed light on changes in mathematics and natural philosophy in the early modern period, and it will also contribute to a better understanding of the transformation of European learning. Starting with Stevin, this collective volume aims to analyze the transforma- tion of the European ideal of knowledge in the early modern period by com- paring Stevin with similar multi- talented individuals (‘polymaths’) in the Low Countries and other European countries, and by examining the relations be- tween the multiple strands of Stevin’s thinking, writing and other activities.
    [Show full text]
  • Beginnings of Trigonometry
    Beginnings of Trigonometry Trigonometry is an area of mathematics used for determining geometric quantities. Its name, first published in 1595 by B. Pitiscus, means "the study of trigons (triangles)" in Latin. Ancient Greek Mathematicians first used trigonometric functions with the chords of a circle. The first to publish these chords in 140 BC was Hipparchus, who is now called the founder of trigonometry. In AD 100, Menelaus, another Greek mathematician, published six lost books of tables of chords. Ptolemy, a Babylonian, also wrote a book of chords. Using chords, Ptolemy knew that sin(xy+= ) sin x cos y + cos x sin y and abc = = sinABC sin sin In his great astronomical handbook, The Almagest, Ptolemy provided a table of chords for steps of °, from 0° to 180°, that is accurate to 1/3600 of a unit. Ptolemy's degree of accuracy is due in part because the Hellenistic Greeks had adopted the Babylonian base- 60 (sexagesimal) numeration system. He also explained his method for constructing his table of chords, and in the course of the book he gave many examples of how to use the table to find unknown parts of triangles from known parts. Ptolemy provided what is now known as Menelaus's theorem for solving spherical triangles, as well, and for several centuries his trigonometry was the primary introduction to the subject for any astronomer. Sine first appeared in the work of Aryabhata, a Hindu. He used the word jya for sine. He also published the first sine tables. Brahmagupta, in 628, also published a table of sines for any angle.
    [Show full text]
  • The Catalan Mathematical Society EMS June 2000 3 EDITORIAL
    CONTENTS EDITORIAL TEAM EUROPEAN MATHEMATICAL SOCIETY EDITOR-IN-CHIEF ROBIN WILSON Department of Pure Mathematics The Open University Milton Keynes MK7 6AA, UK e-mail: [email protected] ASSOCIATE EDITORS STEEN MARKVORSEN Department of Mathematics Technical University of Denmark Building 303 NEWSLETTER No. 36 DK-2800 Kgs. Lyngby, Denmark e-mail: [email protected] KRZYSZTOF CIESIELSKI June 2000 Mathematics Institute Jagiellonian University Reymonta 4 30-059 Kraków, Poland EMS News : Agenda, Editorial, 3ecm, Bedlewo Meeting, Limes Project ........... 2 e-mail: [email protected] KATHLEEN QUINN Open University [address as above] Catalan Mathematical Society ........................................................................... 3 e-mail: [email protected] SPECIALIST EDITORS The Hilbert Problems ....................................................................................... 10 INTERVIEWS Steen Markvorsen [address as above] SOCIETIES Interview with Peter Deuflhard ....................................................................... 14 Krzysztof Ciesielski [address as above] EDUCATION Vinicio Villani Interview with Jaroslav Kurzweil ..................................................................... 16 Dipartimento di Matematica Via Bounarotti, 2 56127 Pisa, Italy A Major Challenge for Mathematicians ........................................................... 20 e-mail: [email protected] MATHEMATICAL PROBLEMS Paul Jainta EMS Position Paper: Towards a European Research Area ............................. 24
    [Show full text]
  • Simon Stevin - Wikipedia
    Simon Stevin - Wikipedia https://en.wikipedia.org/wiki/Simon_Stevin Simon Stevin Simon Stevin (Dutch: [ˈsimɔn ˈsteːvɪn]; 1548–1620), Simon Stevin sometimes called Stevinus, was a Flemish mathematician, physicist and military engineer. He made various contributions in many areas of science and engineering, both theoretical and practical. He also translated various mathematical terms into Dutch, making it one of the few European languages in which the word for mathematics, wiskunde (wis and kunde, i.e., "the knowledge of what is certain"), was not a loanword from Greek but a calque via Latin. Contents Biography Simon Stevin's travels Simon Stevin in the Netherlands Born c. 1548 Discoveries and inventions Bruges, Belgium Hydraulic engineering — management of Died 1620 waterways (aged 71–72) Philosophy of science Alma mater Leiden University Geometry, physics and trigonometry Music theory Occupation Mathematician, Bookkeeping engineer Decimal fractions Known for Decimal Mathematics fractions[a] Neologisms Trivia Publications References Further reading External links Biography Very little is known with certainty about Stevin's life and what we know is mostly inferred from other recorded facts.[1] The exact birth date and the date and place of his death are uncertain. It is assumed he was born in Bruges since he enrolled at Leiden University under 1 von 11 16.09.19, 20:45 Simon Stevin - Wikipedia https://en.wikipedia.org/wiki/Simon_Stevin the name Simon Stevinus Brugensis (meaning "Simon Stevin from Bruges"). His name is usually written as Stevin, but some documents regarding his father use the spelling Stevijn (pronunciation [ˈsti:vaɪn]). This is a normal spelling shift in 16th-century Dutch.[2] He was born around the year 1548 to unmarried parents, Anthonis (Anton) Stevin and Catelyne van der Poort.
    [Show full text]
  • 1 the Geometric Period
    1 The geometric period Up to the Seventeenth Century, approximations of ¼ were obtained by mean of geometrical considerations. Most of the methods were dealing with regular polygons circumscribed about and inscribed in the circle. The perimeter or the area of those polygons were calculated with elementary geometrical rules. During this period the notation ¼ was not used and it was not yet a constant but just a geometrical ratio or even just implicit. 1.1 Ancient estimations 1.1.1 Egypt In one of the oldest mathematical text, the Rhind papyrus (from the name of the Egyptologist Henry Rhind who purchased this document in 1858 at Luxor), the scribe Ahmes copied, around 1650 B.C.E., eighty-five mathematical problems. Among those is given a rule, the problem 48, to find the area of a circular field of diameter 9: take away 1/9 of the diameter and take the square of the remainder. In modern notation, it becomes µ ¶ µ ¶ 1 2 8 2 A = d ¡ d = d2; 9 9 (A is the area of the field and d it’s diameter): so if we use the formula A = ¼d2=4; comes the following approximation µ ¶ µ ¶ 8 2 4 4 ¼ = 4 = ¼ 3:1605: 9 3 This accuracy is astonishing for such ancient time. See [4] for a possible justification of this value. 1.1.2 Babylon On a Babylonian cuneiform tablet from Susa, about 2000 B.C.E., and discovered in 1936, the ratio of the perimeter of the circle to its diameter was founded to be 1 ¼ = 3 + = 3:125; 8 and this estimation is one of the oldest we know.
    [Show full text]
  • Historical Ecology of the Raja Ampat Archipelago, Papua Province, Indonesia
    ISSN 1198-6727 Fisheries Centre Research Reports 2006 Volume 14 Number 7 Historical Ecology of the Raja Ampat Archipelago, Papua Province, Indonesia Fisheries Centre, University of British Columbia, Canada Historical Ecology of the Raja Ampat Archipelago, Papua Province, Indonesia by Maria Lourdes D. Palomares and Johanna J. Heymans Fisheries Centre Research Reports 14(7) 64 pages © published 2006 by The Fisheries Centre, University of British Columbia 2202 Main Mall Vancouver, B.C., Canada, V6T 1Z4 ISSN 1198-6727 Fisheries Centre Research Reports 14(7) 2006 HISTORICAL ECOLOGY OF THE RAJA AMPAT ARCHIPELAGO, PAPUA PROVINCE, INDONESIA by Maria Lourdes D. Palomares and Johanna J. Heymans CONTENTS Page DIRECTOR’S FOREWORD ...................................................................................................................................... 1 Historical Ecology of the Raja Ampat Archipelago, Papua Province, Indonesia ........................................2 ABSTRACT ........................................................................................................................................................... 3 INTRODUCTION ...................................................................................................................................................4 The spice trade and the East Indies.........................................................................................................4 Explorations in New Guinea ...................................................................................................................
    [Show full text]
  • Preprint N°494
    2019 Preprint N°494 The Reception of Cosmography in Vienna: Georg von Peuerbach, Johannes Regiomontanus, and Sebastian Binderlius Thomas Horst Published in the context of the project “The Sphere—Knowledge System Evolution and the Shared Scientific Identity of Europe” https://sphaera.mpiwg-berlin.mpg.de The Reception of Cosmography in Vienna: Georg von Peuerbach, Johannes Regiomontanus, and Sebastian Binderlius1 Abstract In this paper, the importance of the cosmographical activities of the Vienna astronomical “school” for the reception of the Tractatus de Sphaera is analyzed. First, the biographies of two main representatives of the Vienna mathematical/astronomical circle are presented: the Austrian astronomers, mathematicians, and instrument makers Georg von Peuerbach (1423– 1461) and his student Johannes Müller von Königsberg (Regiomontanus, 1436–1476). Their studies influenced the cosmographical teaching at the University of Vienna enormously for the next century and are relevant to understanding what followed; therefore, the prosopo- graphical introductions of these Vienna scholars have been included here, even if neither can be considered a real author of the Sphaera. Moreover, taking the examples of an impressive sixteenth-century miscellany (Austrian Na- tional Library, Cod. ser. nov. 4265, including the recently rediscovered cosmography by Sebastian Binderlius, compiled around 1518), the diversity of different cosmographical studies in the capital of the Habsburg Empire at the turning point between the Middle Ages and the early modern period is demonstrated. Handwritten comments in the Vienna edition of De sphaera (1518) also show how big the influence of Sacrobosco’s work remained as a didactical tool at the universities in the first decades of the sixteenth century—and how cosmographical knowledge was transformed and structured in early modern Europe by the editors and readers of the Sphaera.
    [Show full text]
  • The Copernican System
    The Copernican system Jan P. Hogendijk Dept of Mathematics, Utrecht University 8 june 2011 1 Prelude: the 15th century Copernicus: biography Copernicus’ new system: Main Points Copernicus’ new system: Dirty Details The reception of the new system 2 Renaissance Invention of Printing by Johannes Gutenberg (Mainz), ca. 1450: typesetting with movable type, printing press, paper. 3 Most important astronomer of the 15th century Johannes Muller¨ of K¨onigsberg (Bavaria), or Regiomontanus (1436-1476) 4 Biography of Regiomontanus (1436-1476) 1448: Entered University of Leipzig. 1460: Met cardinal Bessarion (from Trebizond), travelled with him to Italy. 1463: completed Epitome of the Almagest (of Ptolemy) [printed 1492]. ca. 1461: made observations of eclipses, etc. which diverged from the predictions by e.g. the Alfonsine tables. 5 Quotation from Regiomontanus (1464) “I cannot [but] wonder at the indolence of common astronomers of our age, who, just as credulous women, receive as something divine and immutable whatever they come upon in books, either of tables of their instructions, for they believe in writers and make no effort to find the truth.” Regiomontanus wanted to restore and “update” Ptolemaic astronomy in order to predict astronomical phenomena accurately. 1471: he founded printing press in Nurnberg,¨ producing mathematical and astronomical works with great accuracy. 6 Product of Regiomontanus’ Press (1472) Novae Theoricae Planetarum, Georg von Peuerbach (1423-1461) 7 Example of Regiomontanus’ own predictions solar and lunar eclipses, 1489, 1490 8 Nicolas Copernicus (1473-1543): biography 1473 Torun (Poland) - 1543 Frauenburg = Frombork (now in Poland, near coast and Russian border) Studied at the University of Krakow. Worked in service of the Catholic Church until his death.
    [Show full text]