Simon Stevin
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
SIMON STEVIN (1548 – 1620) by HEINZ KLAUS STRICK, Germany
SIMON STEVIN (1548 – 1620) by HEINZ KLAUS STRICK, Germany The Flemish mathematician, physicist and engineer SIMON STEVIN is one of the lesser-known personalities in the history of science. However, his work has left many traces. We do not even know his exact date of birth and death; his birthplace was Bruges; where he died is uncertain: either Leiden or the Hague. Raised in the Calvinist tradition, he grew up in Flanders, became an accountant and cashier for a trading firm in Antwerp, travelled for several years through Poland, Prussia and Norway until he took a job at the tax office in Bruges in 1577. Around this time, the 17 provinces of the Netherlands, which also include the area of present-day Belgium, Luxembourg and parts of northern France, belong to the Spanish dominion. Large parts of the population, especially in the northern provinces, converted to the Calvinist faith. In 1567 King PHILIP II OF SPAIN appointed the DUKE OF ALBA as governor. When ALBA carried out a punitive expedition against the Protestants, a war began which only ended in 1648 with the Peace Treaty of Münster (partial treaty of the Peace of Westphalia). In 1579 the Protestant provinces in the north of the Netherlands united to form the Union of Utrecht and declared their independence as the Republic of the United Netherlands; they elected WILLIAM THE SILENT or WILLIAM OF ORANGE as regent. As the political situation came to a head, SIMON STEVIN's life situation also changed: although he was already 33 years old, he still attended a Latin school and then took up studies at the newly founded University of Leiden. -
Verortungen Von Wissen Die Räume Und Sammlungen Der Universität Leiden 1575-1700
Research Collection Doctoral Thesis Verortungen von Wissen Die Räume und Sammlungen der Universität Leiden 1575-1700 Author(s): Grämiger, Gregory Publication Date: 2014 Permanent Link: https://doi.org/10.3929/ethz-a-010402159 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library Gregory Grämiger VERORTUNGEN VON WISSEN Die Räume und Sammlungen der Universität Leiden 1575–1700 DISS ETH 22375 DISS ETH 22375 VERORTUNGEN VON WISSEN DIE RÄUME UND SAMMLUNGEN DER UNIVERSITÄT LEIDEN 1575–1700 Abhandlung zur Erlangung des Titels DOKTOR der ETH ZÜRICH vorgelegt von GREGORY GRÄMIGER Dipl. Arch. ETH geboren am 8. Februar 1980 von Mosnang SG Angenommen auf Antrag von PD Dr. Lothar Schmitt Prof. Dr. Eric Jorink Prof. Dr. Philip Ursprung 2014 Dank Auf der vorhergehenden Seite fehlt der Name von Andreas Tönnesmann, denn mein ver- ehrter Doktorvater konnte die letzte Niederschrift der Arbeit leider nicht mehr lesen. Ohne seine Initiative, Inspiration und stete Förderung wäre die vorliegende Arbeit nicht verfasst worden. Ihm gebührt mein erster und grösster Dank. Lothar Schmitt danke ich nicht nur für die Übernahme des Referats, sondern auch für die durchgehende Unterstützung während vieler Jahre der Forschung und Niederschrift. Eric Jorink danke ich für seine Expertise und für die Übernahme des Koreferats. Philip Ursprung half mit seinem Gutachten in Stunden der Not, wofür ich ihm meinen Dank aus- sprechen möchte. Bereichert wurde die Arbeit durch das Interesse und das Fachwissen von Susanne Rau, Anne Goldgar, Tim Huisman, Gerda van Uffelen, A.J.F. -
Index of Articles and Authors for the First Twenty-Four Numbers
Index of Articles and Authors for the first Twenty-four Numbers MARCH 1923 — NOVEMBER 1935 0 THE HYDROGRAPHIC REVIEW The Directing Committee of the I nternational H ydrographic B u r e a u will be pleased to consider articles for insertion in the Hydrographic Review. Such articles should be addressed to : The Secretary-General, I nternational H ydrographic B u r e a u Quai de Plaisance Mo n te -C arlo (Principality of Monaco) and should reach him not later than 1st February or ist August for the May or November numbers respectively. INDEX OF ARTICLES AND AUTHORS for the First Twenty-four Numbers MARCH 1923 - NOVEMBER 1935 FOREWORD This Index is in two parts : P a r t I. — Classification of articles according to the Subjects dealt with. P a r t II. — Alphabetical Index of the names of Authors of articles which have been published in The Hydrographic Review. NOTE. — Articles marked (R ) are Reviews of publications. Articles marked (E) are Extracts from publications. When no author’s name is given, articles have been compiled from information received by the Interna tional Hydrographic Bureau. Reviews of Publications appear under the name or initials of the author of the review. Descriptions of instruments or appliances are given in the chapters relating to their employment, in Chapter XIV (Various Instruments), or occasionally in Chapter XXT (Hints to Hydrographic Surveyors). CLASSIFICATION OF ARTICLES ACCORDING TO THE SUBJECTS DEALT WITH List of subjects I . — H ydrographic Offic e s a n d o th er Mar itim e a n d S c ie n t ific Organisations (Patrols, Life- saving, Observatories, Institutes of Optics)..................................................................................... -
Geometry and Mathematical Symbolism of the 16Th Century Viewed Through a Construction Problem
THE TEACHING OF MATHEMATICS 2016, Vol. XIX, 1, pp. 32–40 GEOMETRY AND MATHEMATICAL SYMBOLISM OF THE 16TH CENTURY VIEWED THROUGH A CONSTRUCTION PROBLEM Milana Dabi´c Abstract. This paper represents a construction problem from Problematum geometricorum IV written by Simon Stevin from Bruges in 1583. The problem is used for illustrating the geometry practice and mathematical language in the 16th century. The large impact of Euclid and Archimedes can be noted. In one part of the construction, Stevin expressed the need for using numbers for greater clarity. Hence, the link with the work of Descartes and the further geometry development is pointed out. MathEduc Subject Classification: A35 MSC Subject Classification: 97A30 Key words and phrases: 16th century mathematics; mathematical symbolism; Simon Stevin; construction problems 1. Introduction From the times of Ancient Greece until the 16th century there was no signif- icant geometrical contribution that would expand the existing geometrical knowl- edge. Only in the second half of the 16th century we can find geometry works of Simon Stevin from Bruges (1548–1620). It is believed that his influence was neglected in the history of mathematics and that his name should be mentioned together with the name of his contemporary Galileo Galilei, from whom Stevin was a whole generation older (16 years) [8]. It is considered that Stevin, as a predecessor of Descartes, prepared a path for introducing correspondence between numbers and points on the line by studying the 10th book of Euclid’s Elements and translating it to numbers [9]. Besides his work on the Problematum geometricorum libri V, he wrote Tomus secundus de geometriae praxi (in 1605) which is: ::: different from the Problemata geometrica and inferior to it; it is also a collection of geometrical problems but it is not arranged as logically as the former; it was chiefly made to complete the Prince’s geometrical training [6, p. -
Simon Stevin, Polymaths and Polymathy in the Early Modern Period
introduction Simon Stevin, Polymaths and Polymathy in the Early Modern Period Karel Davids, Fokko Jan Dijksterhuis, Rienk Vermij and Ida Stamhuis Simon Stevin (1548– 1620) was a slightly older contemporary of Galileo, and can in many respects be considered his Dutch counterpart: a scholar who opened up new, mathematical, ways of studying the world. As such, he has rightly tak- en his place in the annals of early modern science. But Stevin was more than a clever theoretician; he was also an exponent of a new approach to knowledge in the early modern period, when established ways of understanding the world had been thrown into doubt. Ignoring these broader aspects, as has commonly been done, risks failing to grasp his full significance. Stevin remains badly un- derstood, in many respects, and this volume is thus an attempt to understand him better by placing his work in this broader context. In his approach to a wide range of topics, Stevin presents a case – and a very interesting one – of a more general trend in early modern learning, when knowledge was often produced by ‘polymaths’ rather than specialists. Ana- lyzing his situation is therefore not only important as a means of assessing his aims and motives, but also leads to a better understanding of European intellectual history in general. Such a study will shed light on changes in mathematics and natural philosophy in the early modern period, and it will also contribute to a better understanding of the transformation of European learning. Starting with Stevin, this collective volume aims to analyze the transforma- tion of the European ideal of knowledge in the early modern period by com- paring Stevin with similar multi- talented individuals (‘polymaths’) in the Low Countries and other European countries, and by examining the relations be- tween the multiple strands of Stevin’s thinking, writing and other activities. -
Beginnings of Trigonometry
Beginnings of Trigonometry Trigonometry is an area of mathematics used for determining geometric quantities. Its name, first published in 1595 by B. Pitiscus, means "the study of trigons (triangles)" in Latin. Ancient Greek Mathematicians first used trigonometric functions with the chords of a circle. The first to publish these chords in 140 BC was Hipparchus, who is now called the founder of trigonometry. In AD 100, Menelaus, another Greek mathematician, published six lost books of tables of chords. Ptolemy, a Babylonian, also wrote a book of chords. Using chords, Ptolemy knew that sin(xy+= ) sin x cos y + cos x sin y and abc = = sinABC sin sin In his great astronomical handbook, The Almagest, Ptolemy provided a table of chords for steps of °, from 0° to 180°, that is accurate to 1/3600 of a unit. Ptolemy's degree of accuracy is due in part because the Hellenistic Greeks had adopted the Babylonian base- 60 (sexagesimal) numeration system. He also explained his method for constructing his table of chords, and in the course of the book he gave many examples of how to use the table to find unknown parts of triangles from known parts. Ptolemy provided what is now known as Menelaus's theorem for solving spherical triangles, as well, and for several centuries his trigonometry was the primary introduction to the subject for any astronomer. Sine first appeared in the work of Aryabhata, a Hindu. He used the word jya for sine. He also published the first sine tables. Brahmagupta, in 628, also published a table of sines for any angle. -
The Catalan Mathematical Society EMS June 2000 3 EDITORIAL
CONTENTS EDITORIAL TEAM EUROPEAN MATHEMATICAL SOCIETY EDITOR-IN-CHIEF ROBIN WILSON Department of Pure Mathematics The Open University Milton Keynes MK7 6AA, UK e-mail: [email protected] ASSOCIATE EDITORS STEEN MARKVORSEN Department of Mathematics Technical University of Denmark Building 303 NEWSLETTER No. 36 DK-2800 Kgs. Lyngby, Denmark e-mail: [email protected] KRZYSZTOF CIESIELSKI June 2000 Mathematics Institute Jagiellonian University Reymonta 4 30-059 Kraków, Poland EMS News : Agenda, Editorial, 3ecm, Bedlewo Meeting, Limes Project ........... 2 e-mail: [email protected] KATHLEEN QUINN Open University [address as above] Catalan Mathematical Society ........................................................................... 3 e-mail: [email protected] SPECIALIST EDITORS The Hilbert Problems ....................................................................................... 10 INTERVIEWS Steen Markvorsen [address as above] SOCIETIES Interview with Peter Deuflhard ....................................................................... 14 Krzysztof Ciesielski [address as above] EDUCATION Vinicio Villani Interview with Jaroslav Kurzweil ..................................................................... 16 Dipartimento di Matematica Via Bounarotti, 2 56127 Pisa, Italy A Major Challenge for Mathematicians ........................................................... 20 e-mail: [email protected] MATHEMATICAL PROBLEMS Paul Jainta EMS Position Paper: Towards a European Research Area ............................. 24 -
Simon Stevin - Wikipedia
Simon Stevin - Wikipedia https://en.wikipedia.org/wiki/Simon_Stevin Simon Stevin Simon Stevin (Dutch: [ˈsimɔn ˈsteːvɪn]; 1548–1620), Simon Stevin sometimes called Stevinus, was a Flemish mathematician, physicist and military engineer. He made various contributions in many areas of science and engineering, both theoretical and practical. He also translated various mathematical terms into Dutch, making it one of the few European languages in which the word for mathematics, wiskunde (wis and kunde, i.e., "the knowledge of what is certain"), was not a loanword from Greek but a calque via Latin. Contents Biography Simon Stevin's travels Simon Stevin in the Netherlands Born c. 1548 Discoveries and inventions Bruges, Belgium Hydraulic engineering — management of Died 1620 waterways (aged 71–72) Philosophy of science Alma mater Leiden University Geometry, physics and trigonometry Music theory Occupation Mathematician, Bookkeeping engineer Decimal fractions Known for Decimal Mathematics fractions[a] Neologisms Trivia Publications References Further reading External links Biography Very little is known with certainty about Stevin's life and what we know is mostly inferred from other recorded facts.[1] The exact birth date and the date and place of his death are uncertain. It is assumed he was born in Bruges since he enrolled at Leiden University under 1 von 11 16.09.19, 20:45 Simon Stevin - Wikipedia https://en.wikipedia.org/wiki/Simon_Stevin the name Simon Stevinus Brugensis (meaning "Simon Stevin from Bruges"). His name is usually written as Stevin, but some documents regarding his father use the spelling Stevijn (pronunciation [ˈsti:vaɪn]). This is a normal spelling shift in 16th-century Dutch.[2] He was born around the year 1548 to unmarried parents, Anthonis (Anton) Stevin and Catelyne van der Poort. -
1 the Geometric Period
1 The geometric period Up to the Seventeenth Century, approximations of ¼ were obtained by mean of geometrical considerations. Most of the methods were dealing with regular polygons circumscribed about and inscribed in the circle. The perimeter or the area of those polygons were calculated with elementary geometrical rules. During this period the notation ¼ was not used and it was not yet a constant but just a geometrical ratio or even just implicit. 1.1 Ancient estimations 1.1.1 Egypt In one of the oldest mathematical text, the Rhind papyrus (from the name of the Egyptologist Henry Rhind who purchased this document in 1858 at Luxor), the scribe Ahmes copied, around 1650 B.C.E., eighty-five mathematical problems. Among those is given a rule, the problem 48, to find the area of a circular field of diameter 9: take away 1/9 of the diameter and take the square of the remainder. In modern notation, it becomes µ ¶ µ ¶ 1 2 8 2 A = d ¡ d = d2; 9 9 (A is the area of the field and d it’s diameter): so if we use the formula A = ¼d2=4; comes the following approximation µ ¶ µ ¶ 8 2 4 4 ¼ = 4 = ¼ 3:1605: 9 3 This accuracy is astonishing for such ancient time. See [4] for a possible justification of this value. 1.1.2 Babylon On a Babylonian cuneiform tablet from Susa, about 2000 B.C.E., and discovered in 1936, the ratio of the perimeter of the circle to its diameter was founded to be 1 ¼ = 3 + = 3:125; 8 and this estimation is one of the oldest we know. -
Historical Ecology of the Raja Ampat Archipelago, Papua Province, Indonesia
ISSN 1198-6727 Fisheries Centre Research Reports 2006 Volume 14 Number 7 Historical Ecology of the Raja Ampat Archipelago, Papua Province, Indonesia Fisheries Centre, University of British Columbia, Canada Historical Ecology of the Raja Ampat Archipelago, Papua Province, Indonesia by Maria Lourdes D. Palomares and Johanna J. Heymans Fisheries Centre Research Reports 14(7) 64 pages © published 2006 by The Fisheries Centre, University of British Columbia 2202 Main Mall Vancouver, B.C., Canada, V6T 1Z4 ISSN 1198-6727 Fisheries Centre Research Reports 14(7) 2006 HISTORICAL ECOLOGY OF THE RAJA AMPAT ARCHIPELAGO, PAPUA PROVINCE, INDONESIA by Maria Lourdes D. Palomares and Johanna J. Heymans CONTENTS Page DIRECTOR’S FOREWORD ...................................................................................................................................... 1 Historical Ecology of the Raja Ampat Archipelago, Papua Province, Indonesia ........................................2 ABSTRACT ........................................................................................................................................................... 3 INTRODUCTION ...................................................................................................................................................4 The spice trade and the East Indies.........................................................................................................4 Explorations in New Guinea ................................................................................................................... -
Preprint N°494
2019 Preprint N°494 The Reception of Cosmography in Vienna: Georg von Peuerbach, Johannes Regiomontanus, and Sebastian Binderlius Thomas Horst Published in the context of the project “The Sphere—Knowledge System Evolution and the Shared Scientific Identity of Europe” https://sphaera.mpiwg-berlin.mpg.de The Reception of Cosmography in Vienna: Georg von Peuerbach, Johannes Regiomontanus, and Sebastian Binderlius1 Abstract In this paper, the importance of the cosmographical activities of the Vienna astronomical “school” for the reception of the Tractatus de Sphaera is analyzed. First, the biographies of two main representatives of the Vienna mathematical/astronomical circle are presented: the Austrian astronomers, mathematicians, and instrument makers Georg von Peuerbach (1423– 1461) and his student Johannes Müller von Königsberg (Regiomontanus, 1436–1476). Their studies influenced the cosmographical teaching at the University of Vienna enormously for the next century and are relevant to understanding what followed; therefore, the prosopo- graphical introductions of these Vienna scholars have been included here, even if neither can be considered a real author of the Sphaera. Moreover, taking the examples of an impressive sixteenth-century miscellany (Austrian Na- tional Library, Cod. ser. nov. 4265, including the recently rediscovered cosmography by Sebastian Binderlius, compiled around 1518), the diversity of different cosmographical studies in the capital of the Habsburg Empire at the turning point between the Middle Ages and the early modern period is demonstrated. Handwritten comments in the Vienna edition of De sphaera (1518) also show how big the influence of Sacrobosco’s work remained as a didactical tool at the universities in the first decades of the sixteenth century—and how cosmographical knowledge was transformed and structured in early modern Europe by the editors and readers of the Sphaera. -
The Copernican System
The Copernican system Jan P. Hogendijk Dept of Mathematics, Utrecht University 8 june 2011 1 Prelude: the 15th century Copernicus: biography Copernicus’ new system: Main Points Copernicus’ new system: Dirty Details The reception of the new system 2 Renaissance Invention of Printing by Johannes Gutenberg (Mainz), ca. 1450: typesetting with movable type, printing press, paper. 3 Most important astronomer of the 15th century Johannes Muller¨ of K¨onigsberg (Bavaria), or Regiomontanus (1436-1476) 4 Biography of Regiomontanus (1436-1476) 1448: Entered University of Leipzig. 1460: Met cardinal Bessarion (from Trebizond), travelled with him to Italy. 1463: completed Epitome of the Almagest (of Ptolemy) [printed 1492]. ca. 1461: made observations of eclipses, etc. which diverged from the predictions by e.g. the Alfonsine tables. 5 Quotation from Regiomontanus (1464) “I cannot [but] wonder at the indolence of common astronomers of our age, who, just as credulous women, receive as something divine and immutable whatever they come upon in books, either of tables of their instructions, for they believe in writers and make no effort to find the truth.” Regiomontanus wanted to restore and “update” Ptolemaic astronomy in order to predict astronomical phenomena accurately. 1471: he founded printing press in Nurnberg,¨ producing mathematical and astronomical works with great accuracy. 6 Product of Regiomontanus’ Press (1472) Novae Theoricae Planetarum, Georg von Peuerbach (1423-1461) 7 Example of Regiomontanus’ own predictions solar and lunar eclipses, 1489, 1490 8 Nicolas Copernicus (1473-1543): biography 1473 Torun (Poland) - 1543 Frauenburg = Frombork (now in Poland, near coast and Russian border) Studied at the University of Krakow. Worked in service of the Catholic Church until his death.