Verortungen Von Wissen Die Räume Und Sammlungen Der Universität Leiden 1575-1700

Total Page:16

File Type:pdf, Size:1020Kb

Verortungen Von Wissen Die Räume Und Sammlungen Der Universität Leiden 1575-1700 Research Collection Doctoral Thesis Verortungen von Wissen Die Räume und Sammlungen der Universität Leiden 1575-1700 Author(s): Grämiger, Gregory Publication Date: 2014 Permanent Link: https://doi.org/10.3929/ethz-a-010402159 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library Gregory Grämiger VERORTUNGEN VON WISSEN Die Räume und Sammlungen der Universität Leiden 1575–1700 DISS ETH 22375 DISS ETH 22375 VERORTUNGEN VON WISSEN DIE RÄUME UND SAMMLUNGEN DER UNIVERSITÄT LEIDEN 1575–1700 Abhandlung zur Erlangung des Titels DOKTOR der ETH ZÜRICH vorgelegt von GREGORY GRÄMIGER Dipl. Arch. ETH geboren am 8. Februar 1980 von Mosnang SG Angenommen auf Antrag von PD Dr. Lothar Schmitt Prof. Dr. Eric Jorink Prof. Dr. Philip Ursprung 2014 Dank Auf der vorhergehenden Seite fehlt der Name von Andreas Tönnesmann, denn mein ver- ehrter Doktorvater konnte die letzte Niederschrift der Arbeit leider nicht mehr lesen. Ohne seine Initiative, Inspiration und stete Förderung wäre die vorliegende Arbeit nicht verfasst worden. Ihm gebührt mein erster und grösster Dank. Lothar Schmitt danke ich nicht nur für die Übernahme des Referats, sondern auch für die durchgehende Unterstützung während vieler Jahre der Forschung und Niederschrift. Eric Jorink danke ich für seine Expertise und für die Übernahme des Koreferats. Philip Ursprung half mit seinem Gutachten in Stunden der Not, wofür ich ihm meinen Dank aus- sprechen möchte. Bereichert wurde die Arbeit durch das Interesse und das Fachwissen von Susanne Rau, Anne Goldgar, Tim Huisman, Gerda van Uffelen, A.J.F. Gogelein, Kasper van Om- men, Anton van der Lem, Arend Pietersman, dgtlclassicist, Volker Remmert und Joachim Wolschke-Bulmahn. Bibliothekare der ETH Zürich, der ZB Zürich, der Universitätsbiblio- thek in Leiden, des Nationaal Herbariums in Leiden sowie verschiedener Bibliotheken in Oxford, Padua und anderswo haben unzählige Kilogramm an Büchern und Archivalien besorgt und zugänglich gemacht. Der ETH Zürich verdanke ich nicht nur lehrreiche und erfüllende Jahre des Studiums, sondern auch wunderbare Kolleginnen und Kollegen: Niklas Naehrig, Britta Hentschel, Doris Wirz-Gasperetti, Ita Heinze-Greenberg, Nadia Göntem-Wachtel, Katrin Eberhard, Alexander Markschies, Tilo Richter, Ulf Schulte-Umberg, Ivan Bocchio, Petra Röthlisberger, Lukas Zurfluh, Gregor Harbusch, Christina Farragher und vielen anderen bin ich herzlich verbunden. Viele liebe Freundinnen und Freunde ausserhalb der Hochschule wussten gekonnt, mich nicht nur für notwendige Pausen vom Schreibtisch fernzuhalten, so beispielsweise Marchet Saratz, Dominique Meier, Christoph Dubler, Nicole Leuthold, Cornel Stäheli, Ro- ger Gerber, Jonas Winkler, Benno Agreiter, Victor Willi, Dennis Guggenheim, Jelena Gavric, Dana Guzman und natürlich Paolo und Tamara Stolfo. Andrea Srdic unterstützte mich und das Projekt in der Anfangsphase. Barbara Kühne ermöglichte eine glückselige Zeit der Nie- derschrift. Für fortwährende Unterstützung danke ich meiner ganzen Familie, insbesonde- re natürlich meinen Eltern. Ihnen sei diese Arbeit gewidmet. III Zusammenfassung Die Universität der niederländischen Stadt Leiden, 1575 während der Befreiungskriege gegen die Habsburger gegründet, errichtete als eine der ersten Lehranstalten nördlich der Alpen spezifische Bauten für Forschung und Lehre. Neben einer Bibliothek, dem Speicher des Wissens par excellence, wurden schon bald weitere Räume der Forschung erstellt. Dem überlieferten Wissen in der Bibliothek stellte sich das Buch der Natur zur Seite, das in empirischer Weise untersucht werden musste. Ein botanischer Garten versammelte Pflan- zen aus allen Ecken der bekannten Welt, die man zunächst als Heilmittel verstand, immer mehr aber um ihrer selbst willen gesammelt und untersucht wurden. Eine benachbarte Galerie ergänzte das Reich der Pflanzen mit mineralischen und tierischen Kuriositäten, die meistens ebenfalls aus fremden Ländern stammten. Ein anatomisches Theater diente der Erforschung des menschlichen Körpers. Mittels einer bewussten Inszenierung anatomi- scher Präparate und Gegenständen der Kunst verwies es zudem auf die Endlichkeit allen Lebens. Eine Sternwarte ermöglichte schon bald den ungestörten Blick auf einen weiteren Teil des als göttliche Schöpfung wahrgenommenen Universums. Später gesellten sich ein chemisches Laboratorium und ein physikalisches Theater dazu, die der Durchführung von Experimenten dienten. Zudem ergänzten eine Fecht- und Ingenieurschule, die unterhalb der Bibliothek eingerichtet wurden, das theoretische Wissen durch die Unterweisung in der Handhabung von Waffen, was dem frühneuzeitlichen Ideal von arte et marte ent- sprach. Die vorliegende Arbeit widmet sich diesen Räumen und ihren Sammlungen. Sie er- klärt, wie diese Räume zu definieren sind und weshalb sie errichtet wurden. Desweiteren wird beantwortet, von wem und wie die Räume genutzt wurden, wobei die Analyse der Zugänglichkeit und der Reglementierung im Umgang mit den gezeigten Exponaten aufzei- gen soll, wie die Objekte sowohl geschützt als auch studiert werden konnten. Neben weite- ren gesellschaftlichen und sozialen Aspekten übte auch die nachvollziehbare Anordnung der Objekte eine entscheidende Rolle auf die Praxis der wissenschaftlichen Arbeit aus. Im Gegensatz zu Idealordnungen, wie sie auf dem Papier erdacht werden können, muss bei der tatsächlichen Disposition der Objekte auch die Architektur der Räume berücksichtigt werden. Die Ordnung der Exponate im Raum kann deswegen als architektonische Aufgabe verstanden werden. Sie hatte zum Ziel, den Nutzer eine Hilfe in ihrer Forschungstätigkeit zu bieten. Besonders im Falle der Bibliothek und des botanischen Gartens spielte die gute Nachbarschaft der Objekte eine entscheidende Rolle. Überlieferte Kataloge erlaubten, die Anordnung der Bücher und Pflanzen detailliert zu rekonstruieren und zu analysieren, um Einblicke in das damalige Verständnis über das gedruckte Wissen und die wahrgenomme- ne Welt der Pflanzen zu erhalten. Die Kataloge selbst bildeten nicht nur die Grundlage der Rekonstruktion, sondern wurden ihrer selbst wegen ausgiebig analysiert und diskutiert, zeigen sie doch auf, wie die räumliche Ordnung in einen papierenen Katalog übertragen werden konnte – und vice versa. Die verschiedenen Räume dienten zudem nicht nur der wissenschaftlichen Forschung und Lehre. Vielmehr wurden sie auch symbolisch gestaltet und verstanden. Durch die bewusste Gegenüberstellung der Exponate erhielten sie einen symbolischen Mehrwert. Zudem verwies auch die bauliche Hülle selbst meist auf litera- rische und ideelle Topoi. Neben diesen unterschiedlichen Aspekten von Räumlichkeiten möchte die vorliegende Arbeit zudem aufzeigen, wie die verschiedenen Einrichtungen parallel genutzt wurden, um neue Erkenntnisse zu gewinnen und wie sie in ihrem Zusam- menhang verstanden wurden. V Summary The University of Leiden in the Netherlands was established in 1575 during the war of in- dependence against the Habsburgs. It was one of the first institutions north of the Alps to construct specific buildings for teaching and research. Besides a library—the space of knowledge par excellence—other institutions were soon erected. The traditional wisdom written in books and manuscripts was complemented by the Book of Nature, in which the natural world could be studied in an empirical manner. A botanical garden brought to- gether a vast number of plants from all edges of the known world. These plants were initial- ly understood as medicinal substances but were more and more collected and studied for their own sake. An adjacent gallery complemented the plants with other curiosities from near and far. An anatomical theatre was used to gain knowledge about the human body. Anatomical specimens and pieces of art, which were exhibited there, demonstrated the finiteness of all things. An astronomical observatory allowed to explore another part of the godly creation. A laboratory of chemistry and a theatre of physics were added shortly after- wards to offer a space for conducting experiments. In addition, a fencing and an enginee- ring school were established underneath the library, completing the theoretical wisdom with the practical force of arms, which corresponded to the ideal of arte et marte. This thesis explores those spaces and their collections. It shows why those institutions were erected and how they can be defined. In addition, it describes by whom and how those establishments were used. Matters of access and rules of conducts were crucial for simultaneously displaying and protecting the exhibits. Questions of surveillance and other social aspects arose in all spaces and often led to fundamental problems in conducting scientific research. Also, the comprehensible spatial distribution of the objects played an important role in making the collections accessible and usable. However, a theoretically ideal order could not be easily translated into a factual one, which had to take into account the actual building and its furniture. The spatial disposition of the exhibits can therefore be understood as an architectural task. Its goal was to offer guidance for using the collection. The good neighbourhood of the objects played an important part, particularly in the bota- nical garden and the library. Surviving catalogues allowed for reconstructing and analysing the arrangement of plants and books in detail and provided insights into the early modern comprehension
Recommended publications
  • Simon Stevin
    II THE PRINCIPAL WORKS OF SIMON STEVIN E D IT E D BY ERNST CRONE, E. J. DIJKSTERHUIS, R. J. FORBES M. G. J. MINNAERT, A. PANNEKOEK A M ST E R D A M C. V. SW ETS & Z E IT L IN G E R J m THE PRINCIPAL WORKS OF SIMON STEVIN VOLUME II MATHEMATICS E D IT E D BY D. J. STRUIK PROFESSOR AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE (MASS.) A M S T E R D A M C. V. SW ETS & Z E IT L IN G E R 1958 The edition of this volume II of the principal works of SIMON STEVIN devoted to his mathematical publications, has been rendered possible through the financial aid of the Koninklijke. Nederlandse Akademie van Wetenschappen (Royal Netherlands Academy of Science) Printed by Jan de Lange, Deventer, Holland The following edition of the Principal Works of SIMON STEVIN has been brought about at the initiative of the Physics Section of the Koninklijke Nederlandse Akademie van Weten­ schappen (Royal Netherlands Academy of Sciences) by a committee consisting of the following members: ERNST CRONE, Chairman of the Netherlands Maritime Museum, Amsterdam E. J. DIJKSTERHUIS, Professor of the History of Science at the Universities of Leiden and Utrecht R. J. FORBES, Professor of the History of Science at the Municipal University of Amsterdam M. G. J. M INNAERT, Professor of Astronomy at the University of Utrecht A. PANNEKOEK, Former Professor of Astronomy at the Municipal University of Amsterdam The Dutch texts of STEVIN as well as the introductions and notes have been translated into English or revised by Miss C.
    [Show full text]
  • The Catalan Mathematical Society EMS June 2000 3 EDITORIAL
    CONTENTS EDITORIAL TEAM EUROPEAN MATHEMATICAL SOCIETY EDITOR-IN-CHIEF ROBIN WILSON Department of Pure Mathematics The Open University Milton Keynes MK7 6AA, UK e-mail: [email protected] ASSOCIATE EDITORS STEEN MARKVORSEN Department of Mathematics Technical University of Denmark Building 303 NEWSLETTER No. 36 DK-2800 Kgs. Lyngby, Denmark e-mail: [email protected] KRZYSZTOF CIESIELSKI June 2000 Mathematics Institute Jagiellonian University Reymonta 4 30-059 Kraków, Poland EMS News : Agenda, Editorial, 3ecm, Bedlewo Meeting, Limes Project ........... 2 e-mail: [email protected] KATHLEEN QUINN Open University [address as above] Catalan Mathematical Society ........................................................................... 3 e-mail: [email protected] SPECIALIST EDITORS The Hilbert Problems ....................................................................................... 10 INTERVIEWS Steen Markvorsen [address as above] SOCIETIES Interview with Peter Deuflhard ....................................................................... 14 Krzysztof Ciesielski [address as above] EDUCATION Vinicio Villani Interview with Jaroslav Kurzweil ..................................................................... 16 Dipartimento di Matematica Via Bounarotti, 2 56127 Pisa, Italy A Major Challenge for Mathematicians ........................................................... 20 e-mail: [email protected] MATHEMATICAL PROBLEMS Paul Jainta EMS Position Paper: Towards a European Research Area ............................. 24
    [Show full text]
  • 1 the Geometric Period
    1 The geometric period Up to the Seventeenth Century, approximations of ¼ were obtained by mean of geometrical considerations. Most of the methods were dealing with regular polygons circumscribed about and inscribed in the circle. The perimeter or the area of those polygons were calculated with elementary geometrical rules. During this period the notation ¼ was not used and it was not yet a constant but just a geometrical ratio or even just implicit. 1.1 Ancient estimations 1.1.1 Egypt In one of the oldest mathematical text, the Rhind papyrus (from the name of the Egyptologist Henry Rhind who purchased this document in 1858 at Luxor), the scribe Ahmes copied, around 1650 B.C.E., eighty-five mathematical problems. Among those is given a rule, the problem 48, to find the area of a circular field of diameter 9: take away 1/9 of the diameter and take the square of the remainder. In modern notation, it becomes µ ¶ µ ¶ 1 2 8 2 A = d ¡ d = d2; 9 9 (A is the area of the field and d it’s diameter): so if we use the formula A = ¼d2=4; comes the following approximation µ ¶ µ ¶ 8 2 4 4 ¼ = 4 = ¼ 3:1605: 9 3 This accuracy is astonishing for such ancient time. See [4] for a possible justification of this value. 1.1.2 Babylon On a Babylonian cuneiform tablet from Susa, about 2000 B.C.E., and discovered in 1936, the ratio of the perimeter of the circle to its diameter was founded to be 1 ¼ = 3 + = 3:125; 8 and this estimation is one of the oldest we know.
    [Show full text]
  • The 'True Inventor'
    The ‘true inventor’ of the telescope. A survey of 400 years of debate Huib J. Zuidervaart There is no nation which has not claimed for itself the remarkable invention of the telescope: indeed, the French, Spanish, English, Italians, and Hollanders have all maintained that they did this. Pierre Borel, De vero telescopii inventore (1656) I. introduction Cultural Nationalism and Historical Constructs Who invented the telescope? From the very moment the telescope emerged as a useful tool for extending man’s vision, this seemingly simple question led to a bewildering array of answers. The epigram above, written in the mid- seventeenth century, clearly illustrates this point. Indeed, over the years the ‘invention’ of the telescope has been attributed to at least a dozen ‘inventors,’ from various countries1. And the priority question has remained problematic for four centuries. Even in September 2008, the month in which the 400th anniversary of the ‘invention’ was celebrated in The Netherlands, a new claim was put forward, when the popular monthly History Today published a rather speculative article, in which the author, Nick Pelling, suggested that the hon- our of the invention should nòt go to the Netherlands, but rather to Catalonia on the Iberian Peninsula.2 Pelling’s claim was picked up by the Manchester 1 Over the years the following candidates have been proposed as the ‘inventor of the telescope’: (1) from the Netherlands: Hans Lipperhey, Jacob Adriaensz Metius, Zacharias Jansen and Cornelis Drebbel, to which in this paper – just for the sake of argument – I will add the name ‘Lowys Lowyssen, geseyt Henricxen brilmakers’; (2) from Italy: Girolamo Fracastoro, Raffael Gualterotti, Giovanni Baptista Della Porta and Galileo Galilei; from (3) England: Roger Bacon, Leonard Digges and William Bourne (4) from Germany Jacobus Velser and Simon Marius; (5) from Spain: Juan Roget, and (6) from the Arabian world: Abul Hasan, also known as Abu Ali al-Hasan ibn al-Haith- am.
    [Show full text]
  • Quaestiones Infinitiae
    Quaestiones Infinitiae PUBLICATIONS OF THE DEPARTMENT OF PHILOSOPHY AND RELIGIOUS STUDIES UTRECHT UNIVERSITY VOLUME LXXII Copyright © 2013 by R.O. Buning All rights reserved Cover illustrations, above: Reneri’s signature from his letter to De Wilhem of 22 October 1631 (courtesy of Universiteitsbibliotheek Leiden). Below: Rembrandt Harmensz. van Rijn, Portrait of a Scholar (1631), The State Hermitage Museum, St. Petersburg, Russia/Wikimedia Commons, http://commons.wikimedia.org /wiki/File:Rembrandt_Harmenszoon_van_Rijn_-_A_Scholar.JPG. Cover design: R.O. Buning This publication has been typeset in the “Brill” typeface. © 2011 by Koninklijke Brill NV, Leiden, The Netherlands. All rights reserved. http://www.brill.com/brill-typeface Printed by Wöhrmann Printing Service, Zutphen ISBN 978-94-6103-036-8 Henricus Reneri (1593-1639) Descartes’ Quartermaster in Aristotelian Territory Henricus Reneri (1593-1639) Descartes’ kwartiermaker in aristotelisch territorium (met een samenvatting in het Nederlands) Proefschrift ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van de rector magnificus, prof. dr. G.J. van der Zwaan, ingevolge het besluit van het college voor promoties in het openbaar te verdedigen op dinsdag 12 november 2013 des middags te 12.45 uur door Robin Onno Buning geboren op 7 juni 1977 te Nijmegen Promotor: Prof. dr. Th.H.M. Verbeek The research for this dissertation has been conducted within the project “Descartes and his Network,” which was made possible by the Netherlands Organization for Scientific Research (NWO) under grant number 360-20-140. Contents Acknowledgements ix Abbreviations xi Introduction 1 Chapter 1. Biography I: A Promising Philosopher 13 1.1. Birth and Early Youth (1593-1611) 13 1.2.
    [Show full text]
  • The Cambridge Companion to the Dutch Golden Age Helmer J
    Cambridge University Press 978-1-107-17226-5 — The Cambridge Companion to the Dutch Golden Age Helmer J. Helmers , Geert H. Janssen Index More Information Index Acquet, Hendrik d’ (1632–1706), physician, Theatre, 136, 234, 301, 303, 304, 306, 323, 360 325 Act of Abjuration (1581), 7, 109, 394 Town Hall, 5, 21, 24, 25, 57, 256, 314, Adams, John (17th c.), parliamentary agent, 320–321 394 Anabaptism, Anabaptists, 57, 225, 231, 373. Admiralty Boards, 72, 76 See also Mennonites; Protestantism Amsterdam, 77 anatomical theatre, 334, 363, 364. See also Rotterdam, 78 surgery Aerssen van Sommelsdijck, Cornelis van Anglo-Dutch Wars, 103 (1637–1688), governor of Suriname, 83 First Anglo-Dutch War (1652–1654), 72, Aitzema, Lieuwe van (1600–1669), historian, 83, 93 79 Second Anglo-Dutch War (1665–1667), 176 Alba, Fernando Alvarez de Toledo, Duke of Third Anglo-Dutch War (1672–1674), 178 (1507–1582), governor-general of the Anthonisz van Alkmaar, Adriaan Netherlands (1576–1573), 70, 91, 92, 94, (1541–1620), mathematician and carto- 127, 130 grapher, 354 alba amicorum, 290 Antwerp, 7, 16, 27, 51, 55, 59, 73, 91, 127, 129, Albert VII, Archduke, of Austria (1559–1621), 159, 167, 237, 252, 255, 261, 290, 291, 292, 91 295, 319, 338 alchemy, 232, 356 Fall of (1585), 27, 159, 251, 291 Alkmaar, 20, 22, 23, 42, 95, 354, 356, 357 immigration from, 51, 53, 96, 129, Allard, Carel (1648–), artist, 115 291, 338 Nieuwe Hollandsche Scheepsbouw (1695), 115 architecture, 4, 11, 24, 54, 182, 229, 240, 289, Ambon (East Indies), 103, 166, 204, 205 308, 311, 312, 313, 314, 321, 394 Ambon War (1651–1655), 166 classicist, 316–321 Amboyna Massacre, 103, 172 aristocracy, 4, 87, 113, 118, 130, 131, 140, 167, Amsterdam, passim 258, 272, 335 Admiralty Board.
    [Show full text]
  • The Dutch Republic. Laboratory of the Scientific Revolution
    t The Dutch Republic. Laboratory of the Scientific Revolution klaas van berkel | university of groningen 81­ Historians agree about the significance of the Scientific Revolution for the development of modern society; there is little agreement, however, as to the bmgn | lchr | volume 125 - 2-3 | 81 - 105 nature and the causes of this major shift in our perception of the natural world. In this article, it is argued that we may profit from studying this problem in the context of the Dutch Republic during the seventeenth century, the Republic being in many ways a laboratory of modern life. In this article, three factors often mentioned as contributing to the new scientific themes are explored in the Dutch context. The first factor dealt with is the mingling of scholars and craftsmen; the second the role of the universities as centers of both teaching and research, and the third the congruence of scientific and mercantile values in the early modern Dutch trading communities. Introduction While the Scientific Revolution of the seventeenth century is widely acknowledged as one of the decisive transformations in world history, few historians of science would dare state this really was a revolution; or even that it was a revolution in science. The historical importance of the radical shift in our view of the natural world that occurred in the early modern period is not in dispute: but everything else is. The more we know about the Scientific Revolution, the less we feel sure that there really was a single movement in intellectual history that can be labelled as such.1 The easiest way out would of be to stop using the term altogether.
    [Show full text]
  • The Doctrine of Prevenient Grace in the Theology of Jacobus Arminius
    Andrews University Digital Commons @ Andrews University Dissertations Graduate Research 2017 The Doctrine of Prevenient Grace in the Theology of Jacobus Arminius Abner F. Hernandez Andrews University, [email protected] Follow this and additional works at: https://digitalcommons.andrews.edu/dissertations Part of the Religious Thought, Theology and Philosophy of Religion Commons Recommended Citation Hernandez, Abner F., "The Doctrine of Prevenient Grace in the Theology of Jacobus Arminius" (2017). Dissertations. 1670. https://digitalcommons.andrews.edu/dissertations/1670 This Dissertation is brought to you for free and open access by the Graduate Research at Digital Commons @ Andrews University. It has been accepted for inclusion in Dissertations by an authorized administrator of Digital Commons @ Andrews University. For more information, please contact [email protected]. ABSTRACT THE DOCTRINE OF PREVENIENT GRACE IN THE THEOLOGY OF JACOBUS ARMINIUS by Abner F. Hernandez Fernandez Adviser: Jerry Moon ABSTRACT OF GRADUATE RESEARCH Dissertation Andrews University Seventh-day Adventist Theological Seminary Title: THE DOCTRINE OF PREVENIENT GRACE IN THE THEOLOGY OF JACOBUS ARMINIUS Name of researcher: Abner F. Hernandez Fernandez Name and degree of faculty adviser: Jerry Moon, Ph.D. Date completed: April 2017 Topic This dissertation addresses the problem of the lack of agreement among interpreters of Arminius concerning the nature, sources, development, and roles of prevenient grace in Arminius’s soteriology. Purpose The dissertation aims to investigate, analyze, and define the probable sources, nature, development, and role of the concept of prevenient or “preceding” grace in the theology of Jacobus Arminius (1559–1609). Sources The dissertation relies on Arminius’s own writings, mainly the standard London Edition, translated by James Nichols and Williams Nichols.
    [Show full text]
  • Leidse Hoogleraren Wiskunde 1575-1975
    Leidse hoogleraren Wiskunde 1575-1975 Gerrit van Dijk Leidse hoogleraren Wiskunde 1575-1975 Leidse hoogleraren Wiskunde 1575-1975 Door Gerrit van Dijk Voorwoord Al geruime tijd vroeg ik mij af wie mijn voorgangers Academisch Historisch Museum van de Leidse waren geweest als hoogleraar Wiskunde aan de Leidse Universiteit, de Koninklijke Hollandsche Maatschappij Universiteit. Dat was eigenlijk eenvoudig vast te stellen der Wetenschappen en mijn collega Hendrik Lenstra veel aan de hand van het Album Scholasticum. Daarna wilde ik dank verschuldigd voor het beschikbaar stellen van de toch meer weten: hoe en waar leefden ze, wat presteerden portretten en de toestemming om daarvan kopieën te ze? Ik heb daarvoor bronnenonderzoek gedaan maar geen publiceren. Verder dank ik Freek Lugt, Jaap Murre en echt professioneel bronnenonderzoek, ik ben slechts een Jan Stegeman zeer voor het kritisch commentaar op de amateur, een liefhebber van de geschiedenis van de wis - tekst. kunde en natuurwetenschappen. Ik ben er vrij zeker van echter dat mijn bevindingen waarheidsgetrouw zijn. Leiden, april 2011 Onderweg heb ik steeds steekproeven genomen om de waarheid vast te stellen. Slechts één bron heb ik daarbij Gerrit van Dijk op geen enkele storende onjuistheid kunnen betrappen, dat mag gezegd worden, en dat zijn de boeken van W. Otterspeer, Groepsportret met Dame, over de geschiede - nis van de Leidse Universiteit. Het Album Scholasticum bevat wel een aantal onjuistheden, die ik bij de door mij beschreven personen heb gecorrigeerd. In het voorliggende boekje heb ik niet louter beschrijvin - gen van hoogleraren en hun werk opgenomen, vaak spreek ik ook een oordeel uit over hun prestaties.
    [Show full text]
  • Tombstone. the Tombstone of Ludolph Van Ceulen in Leiden, the Netherlands, Is Engraved with His Amazing 35-Digit Approximation to Pi
    Tombstone. The tombstone of Ludolph van Ceulen in Leiden, the Netherlands, is engraved with his amazing 35-digit approximation to pi. Notice that, in keeping with the tradition started by Archimedes, the upper and lower limits are given as fractions rather than decimals. (Photo courtesy of Karen Aardal. c Karen Aardal. All rights reserved.) 28 What’s Happening in the Mathematical Sciences Digits of Pi BarryCipra he number π—the ratio of any circle’s circumference to its diameter, or, if you like, the ratio of its area to In 2002, Yasumasa Tthe square of its radius—has fascinated mathematicians Kanada and a team of for millennia. Its decimal expansion, 3.14159265 ..., has been computer scientists at studied for hundreds of years. More recently its binary expan- the University of Tokyo sion, 11.001001 ..., has come under scrutiny. Over the last decade, number theorists have discovered some surprising computed a record new algorithms for computing digits of pi, together with new 1.2411 trillion decimal theorems regarding the apparent randomness of those digits. digits of π,breaking In 2002, Yasumasa Kanada and a team of computer scien- tists at the University of Tokyo computed a record 1.2411 tril- their own previous lion decimal digits of π, breaking their own previous record record of 206 billion of 206 billion digits, set in 1999. The calculation was a shake- digits, set in 1999. down cruise of sorts for a new supercomputer. That’s one of the main reasons for undertaking such massive computations: Calculating π to high accuracy requires a range of numerical methods, such as the fast Fourier transform, that test a com- puter’s ability to store, retrieve, and manipulate large amounts of data.
    [Show full text]
  • Story-Of-Pi-Ii.Pdf
    π is irrational Philosophy of Mathematics Niven and Bourbaki's proof Theπ story of and related puzzles Narrator: Niraj Khare Carnegie Mellon University Qatar Being with math is being with the truth and eternity! Nov, 15, 2017 1 / 33 π is irrational Philosophy of Mathematics Niven and Bourbaki's proof Time line III (a): series expressions for π • Ludolph Van Ceulen using archimedean method with 500 million sides calculated π calculated π to an accuracy of 20 decimal digits by 1596. By the time he died in 1610, he accurately found 35 digits! The digits were carved into his tombstone. 2 / 33 π is irrational Philosophy of Mathematics Niven and Bourbaki's proof Time line III (a): series expressions for π • Ludolph Van Ceulen using archimedean method with 500 million sides calculated π calculated π to an accuracy of 20 decimal digits by 1596. By the time he died in 1610, he accurately found 35 digits! The digits were carved into his tombstone. 2 / 33 π is irrational Philosophy of Mathematics Niven and Bourbaki's proof Ludolph Van Ceulen: 3:14159265358979323846264338327950288::: Ludolph van Ceulen Dutch-German mathematician Ludolph van Ceulen was a German-Dutch mathematician from Hildesheim. He emigrated to the Netherlands. Wikipedia: Born: January 28, 1540, Hildesheim, Germany Died: December 31, 1610, Leiden, Netherlands Known for: pi Institution: Leiden University Notable student: Willebrord Snellius 3 / 33 • Around 250 BC, Archimedes proves that 10 223 220 1 3:1408 < 3 71 = 71 < π < 70 = 3 7 ≈ 3:1428. π is irrational Philosophy of Mathematics Niven and Bourbaki's proof Time line I: Ancient period • The story starts in ancient Egypt and Babylon about 4000 years ago! • Around 450 BCE, Anaxagoras proposes `squaring the circle' from a prison! The puzzle was finally `settled' in 1882 AD.
    [Show full text]
  • The Marginalization of Astrology Among Dutch Astronomers
    HOS0010.1177/0073275314529862History of ScienceVermij 529862research-article2014 View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by SHAREOK repository Article HOS History of Science 2014, Vol. 52(2) 153 –177 The marginalization of © The Author(s) 2014 Reprints and permissions: astrology among Dutch sagepub.co.uk/journalsPermissions.nav DOI: 10.1177/0073275314529862 astronomers in the first hos.sagepub.com half of the 17th century Rienk Vermij University of Oklahoma, USA Abstract In the first half of the 17th century, Dutch astronomers rapidly abandoned the practice of astrology. By the second half of the century, no trace of it was left in Dutch academic discourse. This abandonment, in its early stages, does not appear as the result of criticism or skepticism, although such skepticism was certainly known in the Dutch Republic and leading humanist scholars referred to Pico’s arguments against astrological predictions. The astronomers, however, did not really refute astrology, but simply stopped paying attention to it, as other questions (in particular the constitution of the universe) became the focus of their scholarship. The underlying physical view of the world, with its idea of celestial influences, remained in vigor much longer. Even convinced anti-Aristotelians, in explaining the world, tried to account for the effects of the oppositions and conjunctions of planets, and similar elements. It is only with Descartes that the by now widespread skepticism about predictions found expression in a philosophy that denied celestial influence. Keywords Astrology, celestial influence, astronomy, natural philosophy, humanism In 1659, the famous astronomer and mathematician Christiaan Huygens was asked to cast a horoscope for one of the princesses of Orange.
    [Show full text]