Nitric Oxide–Cyclic GMP Pathway with Some Emphasis on Cavernosal Contractility

Total Page:16

File Type:pdf, Size:1020Kb

Nitric Oxide–Cyclic GMP Pathway with Some Emphasis on Cavernosal Contractility International Journal of Impotence Research (2004) 16, 459–469 & 2004 Nature Publishing Group All rights reserved 0955-9930/04 $30.00 www.nature.com/ijir Review Nitric oxide–cyclic GMP pathway with some emphasis on cavernosal contractility IF Ghalayini1* 1Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan Nitric oxide (NO) is formed from the conversion of L-arginine by nitric oxide synthase (NOS), which exists in three isoforms: neuronal (nNOS), endothelial (eNOS), and inducible (iNOS). nNOS is expressed in penile neurons innervating the corpus cavernosum, and eNOS protein expression has been identified primarily in both cavernosal smooth muscle and endothelium. NO is released from nerve endings and endothelial cells and stimulates the activity of soluble guanylate cyclase (sGC), leading to an increase in cyclic guanosine-30,50-monophosphate (cGMP) and, finally, to calcium depletion from the cytosolic space and cavernous smooth muscle relaxation. The effects of cGMP are mediated by cGMP dependent protein kinases, cGMP-gated ion channels, and cGMP-regulated phosphodiesterases (PDE). Thus, cGMP effect depends on the expression of a cell-specific cGMP- receptor protein in a given cell type. Numerous systemic vasculature diseases that cause erectile dysfunction (ED) are highly associated with endothelial dysfunction, which has been shown to contribute to decreased erectile function in men and a number of animal models of penile erection. Based on the increasing knowledge of intracellular signal propagation in cavernous smooth muscle tone regulation, selective PDE inhibitors have recently been introduced in the treatment of ED. Phosphodiesterase 5 (PDE5) inactivates cGMP, which terminates NO-cGMP-mediated smooth muscle relaxation. Inhibition of PDE5 is expected to enhance penile erection by preventing cGMP degradation. Development of pharmacologic agents with this effect has closely paralleled the emerging science. International Journal of Impotence Research (2004) 16, 459–469. doi:10.1038/sj.ijir.3901256 Published online 1 July 2004 Keywords: nitric oxide; cGMP; soluble guanylate cyclase; phosphodiesterase; corpus cavernosum Introduction NO and cGMP together comprise an especially wide-ranging signal transduction system when one considers the many roles of cGMP in physiological Nitric oxide (NO) was first described by Stuehr and regulation, including smooth muscle relaxation, 1 Marletta (1985) as a product of activated murine visual transduction, intestinal ion transport, and macrophages. Also, the substance known as en- platelet function.5 dothelium-derived relaxing factor (EDRF), described Erectile dysfunction (ED) is defined as the con- 2,3 by Furchgott and Zawadzki (1980), has been sistent inability to achieve or maintain an erection identified as NO. sufficient for satisfactory sexual performance, and is Soluble guanylate cyclase (sGC), responsible for considered to be a natural process of aging.6 Studies the enzymatic conversion of guanosine-5-tripho- have shown that ED is caused by inadequate sphate (GTP) to cyclic guanosine-30,50-monopho- relaxation of the corpus cavernosum with defect in sphate (cGMP), was first identified as a constituent NO production.7 4 of mammalian cells almost three decades ago. It is clear that NO is the predominant neurotrans- mitter responsible for cavernasal smooth muscle relaxation and hence penile erection. Its action is mediated through the generation of the second *Correspondence: IF Ghalayini, MD, FRCS, PO Box messenger cGMP. Neurally derived NO has been 940165, Amman 11194, Jordan. established as a mediator of smooth muscle relaxa- E-mail: [email protected] tion in the penis, and it is thought that constitutive Received 25 October 2003; revised 25 May 2004; accepted forms of nitric oxide synthase (NOS) work to 3 June 2004 mediate the erection.8 Released NO activates sGC, Nitric oxide–cyclic GMP pathway IF Ghalayini 460 which catalyzes the conversion of GTP to the and release of NO by these cells.14 Bivalacqua et al intracellular second messenger cGMP in smooth (2001)15 found in their study that in vivo adenoviral muscle cells. An increase in cGMP modulates gene transfer of CGRP can physiologically improve cellular events, such as relaxation of smooth muscle erectile function in the aged rat, while others cells.9 reported that intracavernosal injections of CGRP in This review will describe current knowledge of combination with adrenomedullin (ADM) or pros- cellular events involved in cavernosal relaxation taglandin E1 (PGE1) induce penile erection by and the range of putative factors involved in NO- activating different receptors.16,17 mediated relaxation. The combination of molecular oxygen and the amino acid arginine in the presence of reduced nicotinamide adenine dinucleotide phosphate Synthesis of NO (NADPH) and NO synthase (NOS) yields citrulline and NO, through a 5-electron oxidation of the 18 guanidine nitrogen of L-arginine (Figure 1). Recent observations suggest that the main site of NO L-citrulline can be converted by arginine synthase biosynthesis in human corpus cavernosum is within (AS) to form L-arginine, the precursor for NO. Each the terminal branches of cavernosal nerves supply- of these enzymes, cofactors, or transport systems ing the erectile tissue. It is strongly suggested that could be an eventual target of pharmacologic NO released from nonadrenergic–noncholinergic intervention in the NO cascade. (NANC) neurons increases the production of cGMP, Oral administration of L-arginine in high doses which in turn relaxes the cavernous smooth mus- seems to cause significant subjective improvement cle.10,11 Endothelial-derived NO plays a major role in sexual function in men with organic ED only if in the sustained erectile response and is a major they have decreased production of plasma and urine source of NO in the penis.8 Some suggest that NO nitrite and nitrates, which are stable metabolites of is highly labile, therefore, it cannot be stored as a NO.19 preformed neurotransmitter.12 Alternatively, an- There are at least three isoforms of NOS (neuronal, other neurotransmitter such as vasoactive intestinal endothelial, and macrophage)18,20 (Table 1). A polypeptide (VIP) may interact with either endothe- constitutive form of NOS is found in endothelium lial or smooth muscle cells in the corpus caverno- and neurons, and is calcium dependent.21 The sum to trigger the local formation of NO.13 Other constitutive NOS found in endothelial and smooth proerectile mediators, such as acetylcholine, calci- muscle cells has been named NOS-3, whereas the tonin gene-related peptide (CGRP) or substance P, constitutive NOS found in neural and epithelial act via endothelial cells by promoting the synthesis tissue has been named NOS-1. The latter has also Figure 1 NO generation from L-arginine and NO donors and the formation of cGMP. L-citrulline can be converted by arginine synthase(AS) to form L-arginine. Nitric oxide synthase (NOS), in the presence of O2 and the cofactors converts arginine to NO, with the formation of citrulline. Cofactors include reduced nicotinamide adenine dinucleotide phosphate (NADPH), tetrahydrobiopterin (BH4), flavin mononucleotide (FMN), and flavin adenine dinucleotide (FAD). AS, NOS, cofactor, and L-arginine availability are all possible sites of pharmacologic intervention in this pathway. International Journal of Impotence Research Nitric oxide–cyclic GMP pathway IF Ghalayini 461 Table 1 Properties of the three isoforms of nitric oxide synthase (NOS) Property Isoform I Isoform II Isoform III Name bNOS, cNOS, nNOS iNOS, mNOS eNOS Tissue Neuronal, epithelial, skeletal, Macrophages, smooth muscle Endothelial, smooth muscle cardiac muscle cells cells cells Expression Constitutive Transcriptional induction Constitutive Calcium requirement Yes No Yes Chromosome 12 17 7 Approximate mass of protein 150–160 kDa 125–135 kDa 133 kDa bNOS ¼ brain NOS, cNOS ¼ constitutive or Ca þ regulated NOS, nNOS ¼ neuronal NOS, iNOS ¼ inducible NOS, mNOS ¼ macrophage NOS, eNOS ¼ endothelial NOS. been found in a number of cell types including skeletal and cardiac muscle.22 An inducible form of NOS, now designated iNOS, is calcium indepen- dent.23 It is induced within 4–24 h of the appro- priate stimulus and can produce NO in a 100-fold greater amount than can constitutive NOS. Neuronal NOS has multiple regulator sites, in- cluding binding sites for nicotinamide adenine dinucleotide phosphate (NADPH), flavin adenine dinucleotide (FAD), and flavin monoucleotide Figure 2 Modular structure of neuronal nitric oxide synthase (FMN). All of these are cofactors for the synthesis showing approximate locations of prosthetic groups and co- of NO.24 These cofactors bind to a reductase domain factors. to process electron transfer. This is then linked to a heme and tetrahydrobiopterin (BH4)-containing catalytic oxygenase domain by calcium–calmodulin complex25 (Figure 2). The complete enzyme con- centrally from the brain, or peripherally by means verts L-arginine to L-citrulline and NO in the of the dorsal nerve spinal reflex, is assumed to be presence of molecular oxygen. In addition to the exerted through the activation of PnNOS activity.30 various protein modules or domains of neuronal This mechanism occurs mainly by Ca2 þ binding to NOS, which are involved in electron transfer, calmodulin by means of a Ca2 þ flux through the N- substrate binding, oxygen activation, and calcium methyl-D-aspartate receptor (NMDAR). Both the binding, a four-amino-acid motif (glycine–leucine–
Recommended publications
  • Cardioactive Agents : Metoprolol, Sotalol and Milrinone. Influence of Myocardial Content and Systolic Interval
    3Õ' î'qt ACUTE HAEMODYNAMIC EFFECTS OF THREE CARDIOACTIVE AGENTS : METOPROLOL, SOTALOL AND MILRINONE. INFLUENCE OF MYOCARDIAL CONTENT AND SYSTOLIC INTERVAL. by Rebecca Helen Ritchie, B.Sc (Hons) A thesis submitted for the degree of Doctor of Philosophy ln The University of Adelaide (Faculty of Medicine) February 1994 Department of Medicine (Cardiology Unit, The Queen Elizabeth Hospital) The University of Adelaide Adelaide, SA, 5000. ll ¡ r -tL',. r,0';(', /1L.)/'t :.: 1 TABLE OF CONTENTS Table of contents 1 Declaration vtl Acknowledgements v111 Publications and communications to learned societies in support of thesis D( Summary xl Chapter 1: General Introduction 1 1.1 Overview 2 1.2 Acute effeots of cardioactive drugs 3 1.2.1 Drug effects 4 l.2.2Determnants of drug effects 5 1.3 Myocardial drug gPtake of cardioactive agents 8 1.3.1 Methods of assessment in humans invívo 9 1.3.2 Results of previous studies 10 1.4Influence of cardioactive drugs on contractile state 11 1.4. 1 Conventional indices 11 I.4.2 The staircase phenomenon t2 1.4.3 The mechanical restitution curve t2 1.5 The present study t4 1.5.1 Current relevant knowledge of the acute haemodynamic effects of the cardioactive drugs under investigation r4 1.5.1.1 Metoprolol 15 1.5.1.2 Sotalol 28 1.5.1.3 Milrinone 43 1.5.2 Cunent relevant knowledge of the short-term pharmacokinetics of the cardioactive drugs under investigation 59 1.5.2.1Metoprolol 59 1.5.2.2 Sotalol 7I ll 1.5.2.3 Milrinone 78 1.5.3 Current relevant knowledge of the potential for rate-dependence of the effects of these
    [Show full text]
  • Functional T Cells Phosphodiesterase 7A-Deficient Mice Have
    Phosphodiesterase 7A-Deficient Mice Have Functional T Cells Guchen Yang, Kim W. McIntyre, Robert M. Townsend, Henry H. Shen, William J. Pitts, John H. Dodd, Steven G. This information is current as Nadler, Murray McKinnon and Andrew J. Watson of October 2, 2021. J Immunol 2003; 171:6414-6420; ; doi: 10.4049/jimmunol.171.12.6414 http://www.jimmunol.org/content/171/12/6414 Downloaded from References This article cites 37 articles, 17 of which you can access for free at: http://www.jimmunol.org/content/171/12/6414.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on October 2, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2003 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Phosphodiesterase 7A-Deficient Mice Have Functional T Cells Guchen Yang,1 Kim W. McIntyre, Robert M. Townsend, Henry H. Shen, William J. Pitts, John H. Dodd, Steven G. Nadler, Murray McKinnon, and Andrew J.
    [Show full text]
  • Nitric Oxide in Health and Disease of the Nervous System H-Y Yun1,2, VL Dawson1,3,4 and TM Dawson1,3
    Molecular Psychiatry (1997) 2, 300–310 1997 Stockton Press All rights reserved 1359–4184/97 $12.00 PROGRESS Nitric oxide in health and disease of the nervous system H-Y Yun1,2, VL Dawson1,3,4 and TM Dawson1,3 Departments of 1Neurology; 3Neuroscience; 4Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA Nitric oxide (NO) is a widespread and multifunctional biological messenger molecule. It mediates vasodilation of blood vessels, host defence against infectious agents and tumors, and neurotransmission of the central and peripheral nervous systems. In the nervous system, NO is generated by three nitric oxide synthase (NOS) isoforms (neuronal, endothelial and immunologic NOS). Endothelial NOS and neuronal NOS are constitutively expressed and acti- vated by elevated intracellular calcium, whereas immunologic NOS is inducible with new RNA and protein synthesis upon immune stimulation. Neuronal NOS can be transcriptionally induced under conditions such as neuronal development and injury. NO may play a role not only in physiologic neuronal functions such as neurotransmitter release, neural development, regeneration, synaptic plasticity and regulation of gene expression but also in a variety of neurological disorders in which excessive production of NO leads to neural injury. Keywords: nitric oxide synthase; endothelium-derived relaxing factor; neurotransmission; neurotoxic- ity; neurological diseases Nitric oxide is probably the smallest and most versatile NO synthases isoforms and regulation of NO bioactive molecule identified. Convergence of multi- generation disciplinary efforts in the field of immunology, cardio- vascular pharmacology, chemistry, toxicology and neu- NO is formed by the enzymatic conversion of the guan- robiology led to the revolutionary novel concept of NO idino nitrogen of l-arginine by NO synthase (NOS).
    [Show full text]
  • Inhibiting PDE7A Enhances the Protective Effects of Neural Stem
    Research Article: New Research | Cognition and Behavior Inhibiting PDE7A enhances the protective effects of neural stem cells on neurodegeneration and memory deficits in sevoflurane-exposed mice https://doi.org/10.1523/ENEURO.0071-21.2021 Cite as: eNeuro 2021; 10.1523/ENEURO.0071-21.2021 Received: 19 February 2021 Revised: 21 May 2021 Accepted: 25 May 2021 This Early Release article has been peer-reviewed and accepted, but has not been through the composition and copyediting processes. The final version may differ slightly in style or formatting and will contain links to any extended data. Alerts: Sign up at www.eneuro.org/alerts to receive customized email alerts when the fully formatted version of this article is published. Copyright © 2021 Huang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license, which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. 1 Inhibiting PDE7A enhances the protective effects of neural stem cells on 2 neurodegeneration and memory deficits in sevoflurane-exposed mice 3 Yanfang Huang, Yingle Chen*, Zhenming Kang, Shunyuan Li* 4 Department of Anesthesiology, Quanzhou First Hospital Affiliated to Fujian Medical 5 University, Quanzhou 362000, Fujian, China 6 7 *Corresponding authors 8 Shunyuan Li and Yingle Chen 9 Department of Anesthesiology, Quanzhou First Hospital Affiliated to Fujian Medical 10 University, Quanzhou 362000, Fujian, China 11 Email: [email protected] (Shunyuan Li); [email protected] (Yingle Chen) 12 Tel: 86-18960333666 13 14 15 Running title: Role of PDE7A in neurodegeneration 16 17 1 18 Abstract 19 Sevoflurane is widely used in general anesthesia, especially for children.
    [Show full text]
  • Theophylline and Selective PDE Inhibitors As Bronchodilators and Smooth Muscle Relaxants
    Eur Respir J, 1995, 8, 637–642 Copyright ERS Journals Ltd 1995 DOI: 10.1183/09031936.95.08040637 European Respiratory Journal Printed in UK - all rights reserved ISSN 0903 - 1936 SERIES 'THEOPHYLLINE AND PHOSPHODIESTERASE INHIBITORS' Edited by M. Aubier and P.J. Barnes Theophylline and selective PDE inhibitors as bronchodilators and smooth muscle relaxants K.F. Rabe, H. Magnussen, G. Dent Theophylline and selective PDE inhibitors as bronchodilators and smooth muscle relaxants. Krankenhaus Grosshansdorf, Zentrum für K.F. Rabe, H. Magnussen, G. Dent. ERS Journals Ltd 1995. Pneumologie und Thoraxchirurgie, LVA ABSTRACT: In addition to its emerging immunomodulatory properties, theophy- Hamburg, Grosshansdorf, Germany. lline is a bronchodilator and also decreases mean pulmonary arterial pressure in vivo. The mechanism of action of this drug remains controversial; adenosine Correspondence: K.F. Rabe Krankenhaus Grosshansdorf antagonism, phosphodiesterase (PDE) inhibition and other actions have been advanced Wöhrendamm 80 to explain its effectiveness in asthma. Cyclic adenosine monophosphate (AMP) and D-22927 Grosshansdorf cyclic guanosine monophosphate (GMP) are involved in the regulation of smooth Germany muscle tone, and the breakdown of these nucleotides is catalysed by multiple PDE isoenzymes. The PDE isoenzymes present in human bronchus and pulmonary artery Keywords: Bronchi have been identified, and the pharmacological actions of inhibitors of these enzy- 3',5'-cyclic-nucleotide phosphodiesterase mes have been investigated. phosphodiesterase inhibitors Human bronchus and pulmonary arteries are relaxed by theophylline and by pulmonary artery selective inhibitors of PDE III, while PDE IV inhibitors also relax precontracted smooth muscle theophylline bronchus and PDE V/I inhibitors relax pulmonary artery. There appears to be some synergy between inhibitors of PDE III and PDE IV in relaxing bronchus, and Received: February 1 1995 a pronounced synergy between PDE III and PDE V inhibitors in relaxing pulmon- Accepted for publication February 1 1995 ary artery.
    [Show full text]
  • REDUCTION of PURINE CONTENT in COMMONLY CONSUMED MEAT PRODUCTS THROUGH RINSING and COOKING by Anna Ellington (Under the Directio
    REDUCTION OF PURINE CONTENT IN COMMONLY CONSUMED MEAT PRODUCTS THROUGH RINSING AND COOKING by Anna Ellington (Under the direction of Yen-Con Hung) Abstract The commonly consumed meat products ground beef, ground turkey, and bacon were analyzed for purine content before and after a rinsing treatment. The rinsing treatment involved rinsing the meat samples using a wrist shaker in 5:1 ratio water: sample for 2 or 5 minutes then draining or centrifuging to remove water. The total purine content of 25% fat ground beef significantly decreased (p<0.05) from 8.58 mg/g protein to a range of 5.17-7.26 mg/g protein after rinsing treatments. After rinsing and cooking an even greater decrease was seen ranging from 4.59-6.32 mg/g protein. The total purine content of 7% fat ground beef significantly decreased from 7.80 mg/g protein to a range of 5.07-5.59 mg/g protein after rinsing treatments. A greater reduction was seen after rinsing and cooking in the range of 4.38-5.52 mg/g protein. Ground turkey samples showed no significant changes after rinsing, but significant decreases were seen after rinsing and cooking. Bacon samples showed significant decreases from 6.06 mg/g protein to 4.72 and 4.49 after 2 and 5 minute rinsing and to 4.53 and 4.68 mg/g protein after 2 and 5 minute rinsing and cooking. Overall, this study showed that rinsing foods in water effectively reduces total purine content and subsequent cooking after rinsing results in an even greater reduction of total purine content.
    [Show full text]
  • Nitric Oxide Produced by Ultraviolet-Irradiated Keratinocytes Stimulates Melanogenesis
    Nitric oxide produced by ultraviolet-irradiated keratinocytes stimulates melanogenesis. C Roméro-Graillet, … , J P Ortonne, R Ballotti J Clin Invest. 1997;99(4):635-642. https://doi.org/10.1172/JCI119206. Research Article Ultraviolet (UV) radiation is the main physiological stimulus for human skin pigmentation. Within the epidermal-melanin unit, melanocytes synthesize and transfer melanin to the surrounding keratinocytes. Keratinocytes produce paracrine factors that affect melanocyte proliferation, dendricity, and melanin synthesis. In this report, we show that normal human keratinocytes secrete nitric oxide (NO) in response to UVA and UVB radiation, and we demonstrate that the constitutive isoform of keratinocyte NO synthase is involved in this process. Next, we investigate the melanogenic effect of NO produced by keratinocytes in response to UV radiation using melanocyte and keratinocyte cocultures. Conditioned media from UV-exposed keratinocytes stimulate tyrosinase activity of melanocytes. This effect is reversed by NO scavengers, suggesting an important role for NO in UV-induced melanogenesis. Moreover, melanocytes respond to NO-donors by decreased growth, enhanced dendricity, and melanogenesis. The rise in melanogenesis induced by NO-generating compounds is associated with an increased amount of both tyrosinase and tyrosinase-related protein 1. These observations suggest that NO plays an important role in the paracrine mediation of UV-induced melanogenesis. Find the latest version: https://jci.me/119206/pdf Nitric Oxide Produced by Ultraviolet-irradiated Keratinocytes Stimulates Melanogenesis Christine Roméro-Graillet, Edith Aberdam, Monique Clément, Jean-Paul Ortonne, and Robert Ballotti Institut National de la Santé et de la Recherche Médicale U385, Faculté de Médecine, 06107 Nice cedex 02, France Abstract lin-1 (ET-1),1 and GM-CSF by keratinocytes is upregulated after UV light exposure, and these peptides stimulate melanocyte Ultraviolet (UV) radiation is the main physiological stimu- growth (16–19).
    [Show full text]
  • Use of Computational Biochemistry for Elucidating Molecular Mechanisms of Nitric Oxide Synthase
    Use of Computational Biochemistry for Elucidating Molecular Mechanisms of Nitric Oxide Synthase Bignon, Emmanuelle; Rizza, Salvatore; Filomeni, Giuseppe; Papaleo, Elena Published in: Computational and Structural Biotechnology Journal DOI: 10.1016/j.csbj.2019.03.011 Publication date: 2019 Document version Publisher's PDF, also known as Version of record Citation for published version (APA): Bignon, E., Rizza, S., Filomeni, G., & Papaleo, E. (2019). Use of Computational Biochemistry for Elucidating Molecular Mechanisms of Nitric Oxide Synthase. Computational and Structural Biotechnology Journal, 17, 415- 429. https://doi.org/10.1016/j.csbj.2019.03.011 Download date: 02. Oct. 2021 Computational and Structural Biotechnology Journal 17 (2019) 415–429 Contents lists available at ScienceDirect journal homepage: www.elsevier.com/locate/csbj Mini Review Use of Computational Biochemistry for Elucidating Molecular Mechanisms of Nitric Oxide Synthase Emmanuelle Bignon a,⁎, Salvatore Rizza b, Giuseppe Filomeni b,c, Elena Papaleo a,d,⁎⁎ a Computational Biology Laboratory, Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark b Redox Signaling and Oxidative Stress Group, Cell Stress and Survival Unit, Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark c Department of Biology, University of Rome Tor Vergata, Rome, Italy d Translational Disease Systems Biology, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research University of Copenhagen, Copenhagen, Denmark article info abstract Article history: Nitric oxide (NO) is an essential signaling molecule in the regulation of multiple cellular processes. It is endoge- Received 21 December 2018 nously synthesized by NO synthase (NOS) as the product of L-arginine oxidation to L-citrulline, requiring NADPH, Received in revised form 17 March 2019 molecular oxygen, and a pterin cofactor.
    [Show full text]
  • Annotation Guidelines for Experimental Procedures
    Annotation Guidelines for Experimental Procedures Developed By Mohammed Alliheedi Robert Mercer Version 1 April 14th, 2018 1- Introduction and background information What is rhetorical move? A rhetorical move can be defined as a text fragment that conveys a distinct communicative goal, in other words, a sentence that implies an author’s specific purpose to readers. What are the types of rhetorical moves? There are several types of rhetorical moves. However, we are interested in 4 rhetorical moves that are common in the method section of a scientific article that follows the Introduction Methods Results and Discussion (IMRaD) structure. 1- Description of a method: It is concerned with a sentence(s) that describes experimental events (e.g., “Beads with bound proteins were washed six times (for 10 min under rotation at 4°C) with pulldown buffer and proteins harvested in SDS-sample buffer, separated by SDS-PAGE, and analyzed by autoradiography.” (Ester & Uetz, 2008)). 2- Appeal to authority: It is concerned with a sentence(s) that discusses the use of standard methods, protocols, and procedures. There are two types of this move: - A reference to a well-established “standard” method (e.g., the use of a method like “PCR” or “electrophoresis”). - A reference to a method that was previously described in the literature (e.g., “Protein was determined using fluorescamine assay [41].” (Larsen, Frandesn and Treiman, 2001)). 3- Source of materials: It is concerned with a sentence(s) that lists the source of biological materials that are used in the experiment (e.g., “All microalgal strains used in this study are available at the Elizabeth Aidar Microalgae Culture Collection, Department of Marine Biology, Federal Fluminense University, Brazil.” (Larsen, Frandesn and Treiman, 2001)).
    [Show full text]
  • Nicotinamide Adenine Dinucleotide Is Transported Into Mammalian
    RESEARCH ARTICLE Nicotinamide adenine dinucleotide is transported into mammalian mitochondria Antonio Davila1,2†, Ling Liu3†, Karthikeyani Chellappa1, Philip Redpath4, Eiko Nakamaru-Ogiso5, Lauren M Paolella1, Zhigang Zhang6, Marie E Migaud4,7, Joshua D Rabinowitz3, Joseph A Baur1* 1Department of Physiology, Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States; 2PARC, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States; 3Lewis-Sigler Institute for Integrative Genomics, Department of Chemistry, Princeton University, Princeton, United States; 4School of Pharmacy, Queen’s University Belfast, Belfast, United Kingdom; 5Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States; 6College of Veterinary Medicine, Northeast Agricultural University, Harbin, China; 7Mitchell Cancer Institute, University of South Alabama, Mobile, United States Abstract Mitochondrial NAD levels influence fuel selection, circadian rhythms, and cell survival under stress. It has alternately been argued that NAD in mammalian mitochondria arises from import of cytosolic nicotinamide (NAM), nicotinamide mononucleotide (NMN), or NAD itself. We provide evidence that murine and human mitochondria take up intact NAD. Isolated mitochondria preparations cannot make NAD from NAM, and while NAD is synthesized from NMN, it does not localize to the mitochondrial matrix or effectively support oxidative phosphorylation. Treating cells *For correspondence: with nicotinamide riboside that is isotopically labeled on the nicotinamide and ribose moieties [email protected] results in the appearance of doubly labeled NAD within mitochondria. Analogous experiments with †These authors contributed doubly labeled nicotinic acid riboside (labeling cytosolic NAD without labeling NMN) demonstrate equally to this work that NAD(H) is the imported species.
    [Show full text]
  • Soluble Guanylate Cyclase B1-Subunit Expression Is Increased in Mononuclear Cells from Patients with Erectile Dysfunction
    International Journal of Impotence Research (2006) 18, 432–437 & 2006 Nature Publishing Group All rights reserved 0955-9930/06 $30.00 www.nature.com/ijir ORIGINAL ARTICLE Soluble guanylate cyclase b1-subunit expression is increased in mononuclear cells from patients with erectile dysfunction PJ Mateos-Ca´ceres1, J Garcia-Cardoso2, L Lapuente1, JJ Zamorano-Leo´n1, D Sacrista´n1, TP de Prada1, J Calahorra2, C Macaya1, R Vela-Navarrete2 and AJ Lo´pez-Farre´1 1Cardiovascular Research Unit, Cardiovascular Institute, Hospital Clı´nico San Carlos, Madrid, Spain and 2Urology Department, Fundacio´n Jime´nez Diaz, Madrid, Spain The aim was to determine in circulating mononuclear cells from patients with erectile dysfunction (ED), the level of expression of endothelial nitric oxide synthase (eNOS), soluble guanylate cyclase (sGC) b1-subunit and phosphodiesterase type-V (PDE-V). Peripheral mononuclear cells from nine patients with ED of vascular origin and nine patients with ED of neurological origin were obtained. Fourteen age-matched volunteers with normal erectile function were used as control. Reduction in eNOS protein was observed in the mononuclear cells from patients with ED of vascular origin but not in those from neurological origin. Although sGC b1-subunit expression was increased in mononuclear cells from patients with ED, the sGC activity was reduced. However, only the patients with ED of vascular origin showed an increased expression of PDE-V. This work shows for the first time that, independently of the aetiology of ED, the expression of sGC b1-subunit was increased in circulating mononuclear cells; however, the expression of both eNOS and PDE-V was only modified in the circulating mononuclear cells from patients with ED of vascular origin.
    [Show full text]
  • Effects of Tetrahydrobiopterin on Endothelial Dysfunction in Rats with Ischemic Acute Renal Failure
    J Am Soc Nephrol 11: 301–309, 2000 Effects of Tetrahydrobiopterin on Endothelial Dysfunction in Rats with Ischemic Acute Renal Failure MASAO KAKOKI,* YASUNOBU HIRATA,* HIROSHI HAYAKAWA,* ETSU SUZUKI,* DAISUKE NAGATA,* AKIHIRO TOJO,* HIROAKI NISHIMATSU,* NOBUO NAKANISHI,‡ YOSHIYUKI HATTORI,§ KAZUYA KIKUCHI,† TETSUO NAGANO,† and MASAO OMATA* *The Second Department of Internal Medicine, Faculty of Medicine, and †Faculty of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan; ‡Department of Biochemistry, Meikai University School of Dentistry, Saitama, Japan; and §Department of Endocrinology, Dokkyo University School of Medicine, Tochigi, Japan. Abstract. The role of nitric oxide (NO) in ischemic renal injury 4 fmol/min per g kidney; serum creatinine: control 23 Ϯ 2, is still controversial. NO release was measured in rat kidneys ischemia 150 Ϯ 27, ischemia ϩ BH4 48 Ϯ 6 ␮M; mean Ϯ subjected to ischemia and reperfusion to determine whether SEM). Most of renal NOS activity was calcium-dependent, and (6R)-5,6,7,8-tetrahydro-L-biopterin (BH4), a cofactor of NO its activity decreased in the ischemic kidney. However, it was synthase (NOS), reduces ischemic injury. Twenty-four hours restored by BH4 (control 5.0 Ϯ 0.9, ischemia 2.2 Ϯ 0.4, after bilateral renal arterial clamp for 45 min, acetylcholine- ischemia ϩ BH4 4.3 Ϯ 1.2 pmol/min per mg protein). Immu- induced vasorelaxation and NO release were reduced and renal noblot after low-temperature sodium dodecyl sulfate-polyac- excretory function was impaired in Wistar rats. Administration rylamide gel electrophoresis revealed that the dimeric form of of BH4 (20 mg/kg, by mouth) before clamping resulted in a endothelial NOS decreased in the ischemic kidney and that it marked improvement of those parameters (10Ϫ8 M acetylcho- was restored by BH4.
    [Show full text]