Wings 2007 Fall Revised

Total Page:16

File Type:pdf, Size:1020Kb

Wings 2007 Fall Revised WINGS ESSAYS ON INVERTEBRATE CONSERVATION THE XERCES SOCIETY FALL 2007 CONTENTS Introduction: Invertebrates and Global Warming Scott Hoffman Black Page 3. Wetland Invertebrates: What Happens When the Pond Is Half-Empty? John H. Matthews Water temperature and volume, both critical to the development and emergence of dragonfly larvae in wetlands, are changing as global warming increases. Page 5. Bleached Out: Coral Reefs Under Stress David Obura Tropical coral reefs are one of the first ecosystems to show significant changes due to changing climate. Page 11. Beer for Butterflies: Tracking Global Warming Matthew L. Forister As scientists study the impacts of global warming upon butterflies, patterns are emerging of both shifts in range and changes in the timing of life-history events. The consequences for these tiny creatures may be enormous. Page 15. For Marine Worms, Timing Is Everything Andrew Lawrence Marine worms are a hugely important link in the food chain of intertidal areas. In- creasing water temperatures place their future breeding success at risk. Page 19. Impacts of Global Warming on Pollinators David Inouye Climate change is altering the phenology of both plants and their insect visitors, breaking the link between the two and putting at risk the essential service of pol- lination. Page 24. Xerces News Protecting native bumble bees and other pollinators, wetland conservation efforts, and a Butterfly-A-Thon; and new staff members join the Xerces Society. Page 28. 2 WINGS Introduction: Invertebrates and Global Warming Scott Hoffman Black Not long ago, as I was hiking along a collecting, and a prolonged drought roaring stream on my way up to Col- that was thought to be drying out the orado’s Red Cloud Peak, my mind wan- habitat, this butterfly had recently been dered back to the summer of 1995. I had listed as an endangered species. been hired by the Colorado Natural The Uncompahgre fritillary lives Heritage Program to help organize a only in alpine meadows. Thought to search for the Uncompahgre fritillary have been broadly distributed near gla- (Boloria improba acrocnema). With few cial margins during the last ice age, the known populations and multiple threats butterfly is now confined to small including sheep grazing, potential over- patches of habitat above thirteen thou- The San Juan Mountains of Colorado are home to the Uncompahgre fritillary (Boloria improba acrocnema), one of many alpine insects that are vulnerable to climate destabi- lization. Warming climate may spell extinction for many of these species. Photograph by Scott Hoffman Black. FALL 2007 3 sand feet in the San Juan Mountains of but will it really be the same without a southwestern Colorado, where cool and species that has resided here for thou- wet environments have persisted to the sands of years? present. The Uncompahgre fritillary is not On my recent trip, I was heading up the only invertebrate facing a changing to see how things had changed in the environment. In this issue of Wings, we last twelve years. Although it was a lit- explore multiple aspects of climate de- tle late in the year, I hoped to see a few stabilization from the perspective of in- late-season stragglers. The area looked vertebrate conservation. Included are es- much the same as it did in 1995. Snow says on how warming temperatures are willow (the Uncompahgre fritillary’s lar- already leading to bleaching corals and val hostplant) was still abundant. There shifts in butterfly ranges. You will see were bumble bees, flies, and several spe- that global warming may lead to the ex- cies of butterflies including the arctic tinction of some butterflies and aquat- fritillary (Boloria chariclea), Uncompah- ic invertebrates. It may also lead to the gre’s sister species. loss of some marine worms that are an I carefully made my way through important food source for many birds the habitat hoping to spot an adult Un- and marine animals. In short, global compahgre. I thought about the com- warming is already having a profound plexities and uncertainties confronting impact on both terrestrial and marine us. Global warming will not lead to uni- ecosystems. form change across the landscape. Some It is interesting to note that the first places will be hotter and drier while species thought to have been driven ex- others may be wetter; in still others the tinct by global climate change was a weather may simply be more variable. snail. Does it matter that one snail goes It may affect plant communities and extinct or that the Uncompahgre fritil- cause seasonal shifts that put species out lary may follow? There has been talk of synchrony with their food sources. lately of taking action to protect some After a fruitless search, I decided to of the species that have been led to the hike the last few hundred feet to the brink of extinction by global warming. ridge to take in the magnificent view. Some scientists have floated the idea Just as I reached the very limit of the of assisted migration (helping species habitat, a familiar sight met my eyes. A move to habitat where they were never faded and battered Uncompahgre fritil- native). For most species this option is lary fluttered across the trail to land on neither feasible nor wise. What we need a rock a few feet away. I sat down next to do is to take heroic efforts as a soci- to the butterfly, noting that its life was ety to curb the impact of global warm- near an end. I then looked up and real- ing. We must find the societal and po- ized that this species really has nowhere litical will to take the actions that are to go as the climate changes. It cannot needed to curb this global threat. live in the rock and ice at the top of the To find out some changes that you peak. I thought about what future gen- can make as an individual, go to www. erations will see when they come up climatecrisis.net/takeaction/whatyou this mountain. It might look the same, cando/index6.html. 4 WINGS Wetland Invertebrates: What Happens When the Pond Is Half-Empty? John H. Matthews In May 2003, I stuffed my car with tween climate change and the aquatic camping and collecting equipment, said macroinvertebrates found in small wet- good-by to my wife, and began a twelve- lands. Given the diversity and abun- hundred-mile drive north from central dance of life they hold, these wetlands Texas. On the front seat next to me sat are both under-studied and beneath the a well-thumbed photocopy of a 1970 radar of the public and policy makers. Ph.D. dissertation about dragonflies, Most small wetlands are ephemeral written by a University of Toronto stu- aquatic habitats (that is, they dry up on dent named Robert Trottier. And the a regular basis), but even “permanent” topmost page had a fuzzy photograph wetlands swing wildly in their annual of a pond in Caledon, Ontario. water volume. Since many fish are in- I was headed to Caledon to begin a tolerant of large shifts in volume, these multi-year study of the relationship be- fish-free habitats are typically rich in in- Common green darners (Anax junius) are found at lakes, ponds, and wetlands across much of North America. Male, photographed in Texas by John C. Abbott. FALL 2007 5 When mating, the male dragonfly grasps the female behind her head, and she curls her abdomen around to accept sperm. Com- mon green darners, photographed in Texas by Giff Beaton. vertebrate diversity. Indeed, the top car- of the water in most small wetlands nivore positions held by fish in larger comes from precipitation. And in recent bodies of water tend to be occupied by decades, the timing, form, and amount dragonfly or beetle larvae in such wet- of precipitation have been changing. lands. But most of these wetlands are Less snow is falling. Globally, precip- viewed as insignificant and marginal itation amounts are increasing and ecosystems, and many countries offer individual precipitation events on av- them little or no protection. In my long erage are becoming more intense. But drive to Caledon I had time to ponder because air temperatures are also gener- the question of just how sensitive these ally warmer, evaporation rates are high- wetlands are to shifts in climate. er. The effect is even stronger in arid Climate change has been generally and semi-arid regions, where, for the viewed through the lens of air temp- most part, precipitation is decreasing erature, a bias reinforced by the term while evaporation rates are rising. As a “global warming.” However, in addition result, many places — even those receiv- to air temperature, many aspects of cli- ing more rain — are actually drier more mate such as wind speed, cloud cover, of the time. To make the matter worse, and relative humidity have been shift- the timing of precipitation is changing ing over the past century. The majority in many areas. As every gardener knows, 6 WINGS the timing of rain matters. Annual in- bodies of water such as rivers and lakes creases in mean precipitation are shift- tend to change volume (or temperature) ing at a monthly or seasonal scale in bi- slowly, even small changes in precip- ologically significant ways. And all of itation regime can radically alter the these changes are likely to intensify in volume of small wetlands, and thus coming decades. the temperature of their water. Less There are two major effects on small water volume means warmer water, wetlands that could come from shifts in since there is a smaller thermal mass.
Recommended publications
  • Likely to Have Habitat Within Iras That ALLOW Road
    Item 3a - Sensitive Species National Master List By Region and Species Group Not likely to have habitat within IRAs Not likely to have Federal Likely to have habitat that DO NOT ALLOW habitat within IRAs Candidate within IRAs that DO Likely to have habitat road (re)construction that ALLOW road Forest Service Species Under NOT ALLOW road within IRAs that ALLOW but could be (re)construction but Species Scientific Name Common Name Species Group Region ESA (re)construction? road (re)construction? affected? could be affected? Bufo boreas boreas Boreal Western Toad Amphibian 1 No Yes Yes No No Plethodon vandykei idahoensis Coeur D'Alene Salamander Amphibian 1 No Yes Yes No No Rana pipiens Northern Leopard Frog Amphibian 1 No Yes Yes No No Accipiter gentilis Northern Goshawk Bird 1 No Yes Yes No No Ammodramus bairdii Baird's Sparrow Bird 1 No No Yes No No Anthus spragueii Sprague's Pipit Bird 1 No No Yes No No Centrocercus urophasianus Sage Grouse Bird 1 No Yes Yes No No Cygnus buccinator Trumpeter Swan Bird 1 No Yes Yes No No Falco peregrinus anatum American Peregrine Falcon Bird 1 No Yes Yes No No Gavia immer Common Loon Bird 1 No Yes Yes No No Histrionicus histrionicus Harlequin Duck Bird 1 No Yes Yes No No Lanius ludovicianus Loggerhead Shrike Bird 1 No Yes Yes No No Oreortyx pictus Mountain Quail Bird 1 No Yes Yes No No Otus flammeolus Flammulated Owl Bird 1 No Yes Yes No No Picoides albolarvatus White-Headed Woodpecker Bird 1 No Yes Yes No No Picoides arcticus Black-Backed Woodpecker Bird 1 No Yes Yes No No Speotyto cunicularia Burrowing
    [Show full text]
  • Papilio Series) @17 2006
    (NEW April 28 PAPILIO SERIES) @17 2006 PROPOSALS FOR A NEW INSECT STUDY, COMMERCE, AND CONSERVATION LAW THAT DEREGULATES DEAD INSECTS, AND PROPOSALS FOR FIXING THE ENDANGERED SPECIES ACT AS APPLIED TO INSECTS By Dr. James A. Scott, 60 Estes St., Lakewood, Colorado, 80226 (Ph.D. in entomology, University of California, Berkeley) Why Do We Need New Insect Laws? The current laws regulating insects (and plants) in the U.S. are very bad. They were made for deer, and are only incidentally being applied to insects, because no legislators ever thought to make laws specifically targeted at insects that are not agricultural pests. These laws are not serving the conservation of insects well, and the laws are retarding the taxonomic study of insects, and are making criminals out of harmless hobbyist insect collectors. Basically, large animals like deer and Bighorn Sheep can be managed by controlling the numbers hunted using bag limits and exclusion areas etc., and roping and corraling them and transporting them to new sites. Large animals tend to have low population numbers, so might need to be protected from hunting (after all, at the end of the shooting spree in the late 1800s, the U.S. reached a low of population numbers for Bison and deer and nearly every other large animal, and their numbers have gradually recovered since). But insects are tiny by comparison, and their population sizes are huge by comparison. The average insect may be a thousand or a million times more numerous than your average deer'. Insect population sizes cannot be "managed" like deer, because population sizes vary hugely mostly depending on the weather and other uncontrollable factors, and their survival depends on the continued survival of their habitat, rather than useless government intervention.
    [Show full text]
  • Effects of Climate Change on Arctic Arthropod Assemblages and Distribution Phd Thesis
    Effects of climate change on Arctic arthropod assemblages and distribution PhD thesis Rikke Reisner Hansen Academic advisors: Main supervisor Toke Thomas Høye and co-supervisor Signe Normand Submitted 29/08/2016 Data sheet Title: Effects of climate change on Arctic arthropod assemblages and distribution Author University: Aarhus University Publisher: Aarhus University – Denmark URL: www.au.dk Supervisors: Assessment committee: Arctic arthropods, climate change, community composition, distribution, diversity, life history traits, monitoring, species richness, spatial variation, temporal variation Date of publication: August 2016 Please cite as: Hansen, R. R. (2016) Effects of climate change on Arctic arthropod assemblages and distribution. PhD thesis, Aarhus University, Denmark, 144 pp. Keywords: Number of pages: 144 PREFACE………………………………………………………………………………………..5 LIST OF PAPERS……………………………………………………………………………….6 ACKNOWLEDGEMENTS……………………………………………………………………...7 SUMMARY……………………………………………………………………………………...8 RESUMÉ (Danish summary)…………………………………………………………………....9 SYNOPSIS……………………………………………………………………………………....10 Introduction……………………………………………………………………………………...10 Study sites and approaches……………………………………………………………………...11 Arctic arthropod community composition…………………………………………………….....13 Potential climate change effects on arthropod composition…………………………………….15 Arctic arthropod responses to climate change…………………………………………………..16 Future recommendations and perspectives……………………………………………………...20 References………………………………………………………………………………………..21 PAPER I: High spatial
    [Show full text]
  • Papilio 0 0000 ..;)
    1 NEW :ft{t 2 Nov. 15,1982 SERIES • $1.50 PAPILIO 0 0000 ..;) THE Lil'E HISTORY AND l!XlOLOGY f!F AN ALPINE RELICT, BOLORIA !MFR.OBA ACROCNEMA (LEPIDOP.rEltA: NYMPHALIDAE), ILLUSTRATING A NE.W MATHEMATICAL POPULATION CENSUS MEl'HOD Dr. James A. Scott, 60 Estes St., Lakewood, Colorado, 80226 Abstract. The egg, larva, and pupa of B. improba acrocnema are described and illustrated. The larval foodplant Is Salix nivalis. There are five instars; overwintering occurs in the fourth instar, and perhaps also in the first instar. Adults fly slowly near the ground, and are very local. Males patrol to find females. Adults often visit flowers, and bask on dark soil by spreading the wings laterally. A binomial method is derived and used to determine daily population size. Daily population size may be as large as 655, and yearly population size may reach two thousand in a few hectares. Introduction Boloria improba (Butl.) is a circumpolar butterfly, occurring from northern Scandinavia eastward to northern Siberia and arctic America. In North America it occurs from Alaska to Baffin r., south to central Alberta, and a relict subspecies acrocnema G. & s. occurs in the alpine San Juan Mts. of Colorado. The life history and ecology of improba were nearly unknown. This paper presents the complete life history and details of the. life cycle, ecology, and behavior, studied from 1979 to 1981. In addition, a new method of computing the population size of one continuous mark­ recapture sample is presented, which is useful for quick survey work on colonial animals like insects.
    [Show full text]
  • Behavioural Thermoregulation by High Arctic Butterflies*
    Behavioural Thermoregulation by High Arctic Butterflies* P. G. KEVAN AND J. D. SHORTHOUSE2s ABSTRACT. Behavioural thermoregulation is an important adaptation of the five high arctic butterflies found at Lake Hazen (81 “49‘N., 71 18’W.), Ellesmere Island, NorthwestTerritories. Direct insolation is used byarctic butterflies to increase their body temperatures. They select basking substrates andprecisely orientate their wings with respect to the sun. Some experiments illustrate the importance of this. Wing morphology, venation, colour, hairiness, and physiology are briefly discussed. RI~SUMÉ.Comportement thermo-régulatoire des papillons du haut Arctique. Chez cinq especes de papillons trouvés au lac Hazen (81”49’ N, 71” 18’ W), île d’Elles- mere, Territoires du Nord-Ouest, le comportement thermo-régulatoire est une im- portante adaptation. Ces papillons arctiques se servent de l’insolation directe pour augmenter la température de leur corps: ils choisissent des sous-strates réchauffantes et orientent leurs ailes de façon précise par rapport au soleil. Quelques expériences ont confirmé l’importance de ce fait. On discute brikvement de la morphologie alaire, de la couleur, de la pilosité et de la physiologie de ces insectes. INTRODUCTION Basking in direct sunlight has long been known to have thermoregulatory sig- nificance for poikilotherms (Gunn 1942), particularly reptiles (Bogert 1959) and desert locusts (Fraenkel 1P30;.Stower and Griffiths 1966). Clench (1966) says that this was not known before iwlepidoptera but Couper (1874) wrote that the common sulphur butterfly, Colias philodice (Godart) when resting on a flower leans sideways “as if to receive the warmth of the sun”. Later workers, noting the consistent settling postures and positions of many butterflies, did not attribute them to thermoregulation, but rather to display (Parker 1903) or concealment by shadow minimization (Longstaff 1905a, b, 1906, 1912; Tonge 1909).
    [Show full text]
  • Papilio (New Series) #1, P
    NEW c;/;::{J:, 11 Feb. 20, 1998 PAPILIO SERIES qj::f? $1.00 NEWWESTERN NORTH AMERICAN BUTT£RFLl£S BY DR, JAMES A, SCOTT 60 Estes Street, Lakewood, Colorado 80226, and one taxon by MICHAEL S, FISHER 6521 S. Logan Street, Littleton, Colorado 80121 Abstract. New subspecies and other geographic tax.a from western U.S. are described and named. INTRODUCTION Scott (1981) named various new subspecies of butterflies from western U.S. Since then a few other butterflies have come to my attention that deserve to be named. They are named below. NEWTAXA HIPPARCHIA (NEOMINOIS) RIDINfiSII WYOMIN60 SCOTI 1998, NEW SUBSPECIES (OR SPECIES?) (Figs 1-2) DIAGNOSIS. This subspecies is distinguished by its very late flight, L Aug. to M Sept., versus June fer ordinary ridingsii (Edwards), and by its mate-locating behavior (at least in central Wyoming including the type locality), in which males perch in swales in early morning to await females, versus ridgetops for ordinary ridingsii. This butterfly is not a freak late-season occurrence; it flies every year, is very widespread in distribution, and around the end of August it is the commonest butterfly in Wyoming (except perhaps Hesperia comma). I examined valvae of this ssp. and June ridingsii, and the first few comparison pairs of examined males had a different curl on one dorsal shoulder of the valva, but as more additional males were examined, some were found to have the shape of the other, and after a dozen males of wyomingo were examined and compared to a dozen June ridingsii, it appeared that this trait was sufficiently variable that it is not a consistent difference.
    [Show full text]
  • Butterflies and Moths of Yukon-Koyukuk, Alaska, United States
    Heliothis ononis Flax Bollworm Moth Coptotriche aenea Blackberry Leafminer Argyresthia canadensis Apyrrothrix araxes Dull Firetip Phocides pigmalion Mangrove Skipper Phocides belus Belus Skipper Phocides palemon Guava Skipper Phocides urania Urania skipper Proteides mercurius Mercurial Skipper Epargyreus zestos Zestos Skipper Epargyreus clarus Silver-spotted Skipper Epargyreus spanna Hispaniolan Silverdrop Epargyreus exadeus Broken Silverdrop Polygonus leo Hammock Skipper Polygonus savigny Manuel's Skipper Chioides albofasciatus White-striped Longtail Chioides zilpa Zilpa Longtail Chioides ixion Hispaniolan Longtail Aguna asander Gold-spotted Aguna Aguna claxon Emerald Aguna Aguna metophis Tailed Aguna Typhedanus undulatus Mottled Longtail Typhedanus ampyx Gold-tufted Skipper Polythrix octomaculata Eight-spotted Longtail Polythrix mexicanus Mexican Longtail Polythrix asine Asine Longtail Polythrix caunus (Herrich-Schäffer, 1869) Zestusa dorus Short-tailed Skipper Codatractus carlos Carlos' Mottled-Skipper Codatractus alcaeus White-crescent Longtail Codatractus yucatanus Yucatan Mottled-Skipper Codatractus arizonensis Arizona Skipper Codatractus valeriana Valeriana Skipper Urbanus proteus Long-tailed Skipper Urbanus viterboana Bluish Longtail Urbanus belli Double-striped Longtail Urbanus pronus Pronus Longtail Urbanus esmeraldus Esmeralda Longtail Urbanus evona Turquoise Longtail Urbanus dorantes Dorantes Longtail Urbanus teleus Teleus Longtail Urbanus tanna Tanna Longtail Urbanus simplicius Plain Longtail Urbanus procne Brown Longtail
    [Show full text]
  • Sensitive Species That Are Not Listed Or Proposed Under the ESA Sorted By: Major Group, Subgroup, NS Sci
    Forest Service Sensitive Species that are not listed or proposed under the ESA Sorted by: Major Group, Subgroup, NS Sci. Name; Legend: Page 94 REGION 10 REGION 1 REGION 2 REGION 3 REGION 4 REGION 5 REGION 6 REGION 8 REGION 9 ALTERNATE NATURESERVE PRIMARY MAJOR SUB- U.S. N U.S. 2005 NATURESERVE SCIENTIFIC NAME SCIENTIFIC NAME(S) COMMON NAME GROUP GROUP G RANK RANK ESA C 9 Anahita punctulata Southeastern Wandering Spider Invertebrate Arachnid G4 NNR 9 Apochthonius indianensis A Pseudoscorpion Invertebrate Arachnid G1G2 N1N2 9 Apochthonius paucispinosus Dry Fork Valley Cave Invertebrate Arachnid G1 N1 Pseudoscorpion 9 Erebomaster flavescens A Cave Obligate Harvestman Invertebrate Arachnid G3G4 N3N4 9 Hesperochernes mirabilis Cave Psuedoscorpion Invertebrate Arachnid G5 N5 8 Hypochilus coylei A Cave Spider Invertebrate Arachnid G3? NNR 8 Hypochilus sheari A Lampshade Spider Invertebrate Arachnid G2G3 NNR 9 Kleptochthonius griseomanus An Indiana Cave Pseudoscorpion Invertebrate Arachnid G1 N1 8 Kleptochthonius orpheus Orpheus Cave Pseudoscorpion Invertebrate Arachnid G1 N1 9 Kleptochthonius packardi A Cave Obligate Pseudoscorpion Invertebrate Arachnid G2G3 N2N3 9 Nesticus carteri A Cave Spider Invertebrate Arachnid GNR NNR 8 Nesticus cooperi Lost Nantahala Cave Spider Invertebrate Arachnid G1 N1 8 Nesticus crosbyi A Cave Spider Invertebrate Arachnid G1? NNR 8 Nesticus mimus A Cave Spider Invertebrate Arachnid G2 NNR 8 Nesticus sheari A Cave Spider Invertebrate Arachnid G2? NNR 8 Nesticus silvanus A Cave Spider Invertebrate Arachnid G2? NNR
    [Show full text]
  • Insect Pollinators of Gates of the Arctic NPP a Preliminary Survey of Bees (Hymenoptera: Anthophila) and Flower Flies (Diptera: Syrphidae)
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science Insect Pollinators of Gates of the Arctic NPP A Preliminary Survey of Bees (Hymenoptera: Anthophila) and Flower Flies (Diptera: Syrphidae) Natural Resource Report NPS/GAAR/NRR—2017/1541 ON THE COVER Left to right, TOP ROW: Bumble bee on Hedysarum, Al Smith collecting bees at Itkillik River; MIDDLE ROW: Al Smith and Just Jensen collecting pollinators on Krugrak River, Andrena barbilabris on Rosa; BOTTOM ROW: syrphid fly on Potentilla, bee bowl near Lake Isiak All photos by Jessica Rykken Insect Pollinators of Gates of the Arctic NPP A Preliminary Survey of Bees (Hymenoptera: Anthophila) and Flower Flies (Diptera: Syrphidae) Natural Resource Report NPS/GAAR/NRR—2017/1541 Jessica J. Rykken Museum of Comparative Zoology Harvard University 26 Oxford Street, Cambridge, MA 02138 October 2017 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service. The series supports the advancement of science, informed decision-making, and the achievement of the National Park Service mission. The series also provides a forum for presenting more lengthy results that may not be accepted by publications with page limitations.
    [Show full text]
  • Fritillary, White Mountain
    Appendix A: Insects White Mountain Fritillary Boloria titania montinus Federal Listing N/A State Listing E Global Rank State Rank S1 Regional Status Photo by © K.P. McFarland Justification (Reason for Concern in NH) White Mountain fritillary is limited to the 2,800 ac alpine zone of the White Mountain National Forest (WMNF). The natural communities used most frequently by White Mountain fritillary ranked S1 in New Hampshire. Climate change will likely alter alpine habitat structure, composition, phenology, and distribution, all of which directly impact White Mountain fritillary populations (Kimball and Weihrauch 2000, McFarland 2003, Lesica and McCune 2004). Habitat isolation further increases the species’ vulnerability (Halloy and Mark 2003, McFarland 2003). Interdependent responses to climate change could disrupt ecological interactions throughout the alpine community, reducing the ability of sensitive species to endure other environmental stresses, such as acid deposition and increased UV‐B radiation (McCarty 2001). Distribution White Mountain fritillary is a subspecies endemic to the 2,800 ac alpine zone of the Presidential Range of the WMNF (McFarland 2003). Habitat suitability depends on the abundance of host plants, particularly Alpine goldenrod, as well as ground temperature, moisture, and winter snow cover (Anthony 1970, McFarland 2003). White Mountain fritillary populations tend to be locally abundant, the northernmost occurrence is from Mt. Madison and the southernmost is Mt. Pierce at an elevation range of 1,220 to 1,860 m, with the highest densities at Cragway Spring and Wamsutta Trail (McFarland 2003). The only historical record occurring outside the Presidential Range alpine zone was a specimen collected by D. J.
    [Show full text]
  • Book Review, of Systematics of Western North American Butterflies
    (NEW Dec. 3, PAPILIO SERIES) ~19 2008 CORRECTIONS/REVIEWS OF 58 NORTH AMERICAN BUTTERFLY BOOKS Dr. James A. Scott, 60 Estes Street, Lakewood, Colorado 80226-1254 Abstract. Corrections are given for 58 North American butterfly books. Most of these books are recent. Misidentified figures mostly of adults, erroneous hostplants, and other mistakes are corrected in each book. Suggestions are made to improve future butterfly books. Identifications of figured specimens in Holland's 1931 & 1898 Butterfly Book & 1915 Butterfly Guide are corrected, and their type status clarified, and corrections are made to F. M. Brown's series of papers on Edwards; types (many figured by Holland), because some of Holland's 75 lectotype designations override lectotype specimens that were designated later, and several dozen Holland lectotype designations are added to the J. Pelham Catalogue. Type locality designations are corrected/defined here (some made by Brown, most by others), for numerous names: aenus, artonis, balder, bremnerii, brettoides, brucei (Oeneis), caespitatis, cahmus, callina, carus, colon, colorado, coolinensis, comus, conquista, dacotah, damei, dumeti, edwardsii (Oarisma), elada, epixanthe, eunus, fulvia, furcae, garita, hermodur, kootenai, lagus, mejicanus, mormo, mormonia, nilus, nympha, oreas, oslari, philetas, phylace, pratincola, rhena, saga, scudderi, simius, taxiles, uhleri. Five first reviser actions are made (albihalos=austinorum, davenporti=pratti, latalinea=subaridum, maritima=texana [Cercyonis], ricei=calneva). The name c-argenteum is designated nomen oblitum, faunus a nomen protectum. Three taxa are demonstrated to be invalid nomina nuda (blackmorei, sulfuris, svilhae), and another nomen nudum ( damei) is added to catalogues as a "schizophrenic taxon" in order to preserve stability. Problems caused by old scientific names and the time wasted on them are discussed.
    [Show full text]
  • Fossil Ridge Wilderness Indigenous Fish And
    a Forest Service U.S. Department of Agriculture In Partnership with Western Colorado University Indigenous Fish and Wildlife Management Strategy Fossil Ridge Wilderness, Gunnison National Forest “Like winds and sunsets, wild things were taken for granted until progress began to do away with them. Now we face the question whether a still higher ‘standard of living’ is worth its cost in things natural, wild, and free.” – Aldo Leopold Indigenous Fish and Wildlife Management Strategy Fossil Ridge Wilderness, Gunnison National Forest Tobias Nickel Wilderness Fellow Master in Environmental Management (MEM) Candidate [email protected] October 2020 Grand Mesa, Uncompahgre, and Gunnison National Forests Gunnison Ranger District 216 N. Colorado St. Gunnison, CO 81230 Western Colorado University The Center for Public Lands 1 Western Way Gunnison, CO 81231 ON THE FRONT COVER Top: Henry Mountain, the highest point in the wilderness at 13,254 feet, as seen from an expansive, subalpine grassland meadow along the Van Tuyl Trail (Tobias Nickel, July 4, 2020) Middle left: Bighorn ram (CPW) Middle right: Southern white-tailed ptarmigan in fall plumage (Shawn Conner, BIO-Logic, Inc.) Bottom left: Colorado River cutthroat trout (Photo © Alyssa Anduiza, courtesy of Aspiring Wild) Bottom right: Adult boreal toad (Brad Lambert, CNHP) ON THE BACK COVER The shores of Henry Lake in the heart of the Fossil Ridge Wilderness. Rising to over 13,000 feet, the granite peaks of the Fossil Ridge tower in the background (Tobias Nickel, June 16, 2020) ii iii Dedication This publication is dedicated to all past, present, and future defenders of wilderness. Your efforts safeguard the Earth’s wild treasures from our species’ most destructive tendencies and demonstrate that humility and restraint are possible in an age of overconsumption and unfettered development.
    [Show full text]