1BO4UBOGPSE4FSJFTPO3FOFXBCMF&OFSHZ‰7PMVNF

ORGANIC STRUCTURE DESIGN APPLICATIONS IN OPTICAL AND ELECTRONIC DEVICES editors Preben Maegaard Anna Krenz edited by Wolfgang Palz Tahsin J. Chow

The Rise of Modern Wind Energy Wind Power for the World CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2015 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works Version Date: 20141104

International Standard Book Number-13: 978-981-4463-35-5 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reason- able efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www. copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organiza- tion that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com Contents

Preface xiii

1. Theoretic al Modeling for Electron Transfer in Organic Materials 1 Robert C. Snoeberger III, Bo-Chao Lin, and Chao-Ping Hsu 1.1 Introduction 1 1.1.1 Theoretical Modeling for Electron Transfer in Solar Cells 3 1.1.1.1 The in luence of energy gaps 3 1.1.1.2 Charge separation and recombination 4 f 1.1.2 Theoretical Modeling for Charge Transport 7 1.1.2.1 The hopping models 7 1.1.2.2 Polaron models 10 1.2 Electronic Coupling 11 1.2.1 Structural Models 12 1.2.1.1 Idealized models 12 1.2.1.2 Crystal structures 13 1.2.1.3 Simulated morphology 14 1.2.2 Calculation of Electronic Coupling 14 1.2.2.1 Energy gap 15 1.2.2.2 Direct coupling 17 1.2.2.3 The generalized Mulliken–Hush and fragment charge difference schemes 20 1.3 Conclusion 23 2. Organic Structure Design and Applications in Solution-Pr ocessed Organic Micro- and Nanomaterials 33 Ting Lei, Jie-Yu Wang, and Jian Pei 2.1 Introduction 34 2.2 Main Approaches to Organic Micro/Nanomaterials 35 vi Contents

2.2.1 Template Synthesis 36 2.2.2 Electrospinning 37 2.2.3 Lithography 39 2.2.4 Physical Vapor Transport 40 2.2.5 Solution Process 43 2.2.5.1 Vapor diffusion 43 2.2.5.2 Phase transfer 44 2.2.5.3 Rapid solution dispersion 44 2.2.5.4 Sol-gel process 45 2.3 Molecular Design Strategy for Solution Processed Organic Micro/Nanomaterials 45 2.3.1 p–p Interaction 45 2.3.2 Donor–Acceptor Interaction 48 2.3.3 Sulfur–Sulfur Interaction 49 2.3.4 Hydrophobic Interaction 51 2.3.5 Hydrogen-Bonding Interaction 52 2.4 Impact Factors and Growth Mechanism of Organic Micro/Nanomaterials 54 2.4.1 Alkyl Chain Effect and p–p Stacking 54 2.4.2 Isomeric Effect and Solvent Effect 56 2.4.3 Organic Microtwist and Temperature Effect 59 2.4.4 Organic Micro/Nanotube Formed by Etching 60 2.4.5 Organic Flowers Formed by Hierarchical Self-Assembly 61 2.4.6 “Oriented Attachment” Mechanism 64 2.5 Applications of Organic Micro/Nanomaterials 66 2.5.1 Organic Field-Effect Transistors 66 2.5.2 Organic Light-Emitting Diodes and Organic Photovoltaics 71 2.5.3 Photodetector 72 2.5.4 Photowaveguide 73 2.5.5 Gas and Explosive Detection 75 2.5.6 Superhydrophobic Material 76 2.6 Surface Modi ication of Organic Micro/ Nanomaterials 77 f 2.7 Summary and Perspectives 79 Contents vii

3. Synthesis, Structure, and Electronic and Photophysical Properties of Donor–Acceptor Cyclophanes 95 Masahiko Shibahara, Motonori Watanabe, Takaaki Miyazaki, Jun-ichi Fujishige, Yuki Matsunaga, Keisuke Tao, Zhang Hua, Kenta Goto, and Teruo Shinmyozu 3.1 Introduction 95 3.2 Structural, Photophysical, and Charge Transfer Interaction of Multilayered [3.3]Paracyclophanes 100 3.3 Synthesis, Structure, Electronic, and Photophysical and Properties of [2.2]Benzothiadiazolophane 115 3.4 Synthesis, Structure, Electronic and Photophysical Properties of Two- and Three-Layered [3.3]Paracyclophane-Based Donor–Acceptor Systems 122 3.5 Conclusion and Future Remarks 130

4. Light- and Electricity -Gated Internal Rotation of Molecular Rotors: Toward Artificial Molecular Machines 137 Jye-Shane Yang and Wei-Ting Sun 4.1 Introduction 137 4.2 cis-trans Photoisomerization 141 4.3 Chemicals-Gated Molecular Brakes 152 4.4 Light-Gated Molecular Brakes 160 4.5 Electricity -Gated Molecular Brakes 168 4.6 Concluding Remarks and Perspecti ves 172

5. Supramolecular Assemblies of Organogels Featuring p -Conjugated Framework with Long-Chain Dicarboxamides 185 M. Rajeswara Rao and Shih-Sheng Sun 5.1 Introduction 186 5.2 Classi ication of Gels 186 5.2.1 Organogelators Based on Elongated f , Fatty Acids, and Esters 188 5.2.2 Organogelators Based on Saccharides 189 5.2.3 Organogelators Based on Steroids 190 5.2.4 Organogelators Based on Aromatic Molecules 190 viii Contents

5.2.5 Binary Organogelators 191 5.2.6 Metal Complex Based Organogelators 193 5.2.7 Organogelators Based on Amino Acids and Ureas 194 5.3 Organogelators Based on Amides 196 5.4 Conclusions 220 6. Quinoxaline-Based Polycyclic Molecules Having Defined Shapes: From Orthocyclophanes to Polyazaacenes 229 Teh-Chang Chou 6.1 Introduction 229 6.2 Prologue 232 6.3 U- and Z-Shaped Multi-Bridged [n,n¢ ]Orthocyclophanes 235 6.3.1 The Quadruple-Bridged [5,5]Orthocyclophanes and [6,6]Orthocyclophanes 236 6.3.2 The U-Shaped Septuple-Bridged [7,7]Orthocyclophanes 242 6.3.3 The Z-Shaped [6,4]Orthocyclophanes 248 6.4 N-Shaped p,p -Stacking Molecules 252 6.5 Multi-Functionalized Polyazaacenes 259 6.5.1 Multi-Functionalized Chlorinated Polyacenoquinone Esters 261 6.5.2 Mechanistic Consideration for Fragmentation of Chlorinated Polyacenoquinone Esters 268 6.5.3 Amination of Chlorinated Polyacenoquinone Esters 272 6.6 Closing Remarks 275 7. Fluorogenic Sensors of Heavy Metal Ions Based on Calix[4]arenes Functionaliz ed by 1,3-Dipolar Cycloaddition Reactions 287 Wen-Sheng Chung 7.1 Introduction of Calixarenes 287 7.2 1,3-Dipolar Cycloaddition Reactions and Subsequent Ring-Opening Reactions 290 Contents ix

7.3 Calix[4]arenes with Upper- and Lower-Rim Isoxazolines and Isoxazoles 293 7.4 Fluorogenic Sensors of Calix[4]arenes with Lower-Rim 1,2,3-Triazoles 299 7.5 Metal Ion Sensing and Ditopic Sensing Based on Calix[4]arenes Functionalized by 1,3-Dipolar Cycloaddition Reactions 309 7.6 Summary and Perspecti ve 319

8. Electron Transport Materials in Organic Light-Emitting Diodes: Design Considerations and Structural Diversity 327

Samik Jhulki, Ishita Neogi, and Jarugu Narasimha Moorthy 8.1 Introduction 327 8.2 Metal Chelates 330 8.3 Six-Membered Heterocycles 332 8.3.1 Pyridines 333 8.3.2 Quinoxaline 336 8.3.3 Naphthyridines 337 8.3.4 Phenanthrolines 338 8.3.5 Pyrazines 340 8.3.6 Pyrimidines 341 8.3.7 Quinoxaline 342 8.3.8 Anthrazolines 344 8.3.9 Triazines 345 8.4 Five-Membered Heterocycles 346 8.4.1 Isobenzofurans 348 8.4.2 Oxazoles 349 8.4.3 Benzimidazoles 349 8.4.4 Benzothiazoles 351 8.4.5 Oxadiazoles 352 8.4.6 Triazoles 354 8.5 Per luorinated Compounds 356 8.6 Metalloles 359 f 8.7 Miscellaneous 361  Contents

8.8 Electron-Transporting Materials for Phosphorescent Organic Light-Emitting Diodes 366 8.9 Structural Determinants for Better ETMs: Our Perspecti ve 367 8.10 Conclusions and Outlook 389 9. Electrochemical Deposition of Carbazole and Triarylamine Derivativ es and Their Polymeric Optoelectronic Applications 399 Man-kit Leung 9.1 Introduction 399 9.2 Hole Mobility in Triarylamine-Based Materials 400 9.2.1 Hole-Mobility in Organic Glass 401 9.2.2 Hole-Mobility in Liquid Films 403 9.3 Electrochemical Deposition of Triarylamine-Based Materials 403 9.3.1 Electrochemical Polymerization of Carbazole 405 9.3.2 Electrochemical Polymerization of Dicarbazole, Polycarbazole, and Carbazole Dendrimers 408 9.3.3 Electrochemical Polymerization of Triphenylamine Derivati ves 416 9.3.4 Electrochemical Polymerization of Diphenylamine 419 9.3.5 Electrochemical Polymerization of 4-(1-Hydro-xyethyl)Triphenylamine 420 9.3.6 Electrochemical Polymerization of bis(Triphenylamine)s 422 9.3.7 Electrochemical Polymerization of Poly, Hyperbranched, and Dendritic Triphenylamines 428 9.4 Lithography and Nanopatt erning 436 9.4.1 Electrochemical Nanolithography 437 9.4.2 Colloidal Template Electropolymerization 438 9.4.3 Electropolymerization of Macromonomer Bearing Photolabile Linker for Imaging 440 Contents xi

10. Solution-Pr ocessed and Their Applications on Field-Eff ect Transistor 455 Motonori Watanabe and Tahsin J. Chow 10.1 Introduction 455 10.2 Synthesis of Acenes from Norbornadienone Type Precursors 457 10.2.1 Precursors of Pentacene 458 10.2.2 Precursors of Tetracene and Hexacene 462 10.3 Physical Properties of Precursors 463 10.3.1 Pentacene Precursors 464 10.3.2 Tetracene and Hexacene 467 10.3.3 Solution-Pr ocessed Thin-Film Transistor 469 10.3.4 OFETs Made with Single Crystals of Acenes 470 10.4 Higher Acenes with Functional Substituents 472 10.4.1 Acenes Containing Trialkylsilylethynyl Substituents 472 10.4.2 Acenes Containing Thiolyl Substituents 476 10.5 Twisted Acenes from Lactam-Bridged Precursors 477 10.6 Summary 479 w11. Synthetic Ne Route to Acenes 487 Chih-Hsiu Lin 11.1 Introduction 487 11.2 New Methodology in Acene Synthesis 489 11.2.1 Novel Convenient One-Step Reduction of Acenoquinone to Acene Derivatives 489 11.2.2 One-Pot Syntheses of Tetracene Sulfoxide and Tetracene Sulfone Compounds via Cascade Cyclization 491 11.2.3 Synthesis of Ladder-Type Oligonaphthalene Derivatives via Cationic Cyclization 493 11.2.4 Iterative Synthesis of Acene Diesters and Acene Dinitriles 496 11.2.5 Synthesis of Hetero-Acene and Perylene Derivatives Conjugated Systems Using Elongation Protocol 503 xii Contents

11.2.6 Direct Derivatization of Acene Skeletons: Ether–Ether, Ether–Sul ide, Ether–Selenide Exchange Reactions 505 11.3 Summary and Conclusion f 510

Index 513 Preface

The application of organic materials to optical and electronic devices is a fast-growing research area nowadays. These new type of materials are expected to be the mainstream in the next generation of smart machines. They combine the classical electronic properties of metals, yet with the advantages of organic matters, such as softness, light weight, good solubility, and versatile, such as extended p-conjugate systems and macrocycles withhigh structural special shapes. flexibility. The The functional choice of properties molecular include structures light- is

Thisemitting book diodes provides (OLEDs), a revieworganic onphotovoltaics several top-notch (OPVs), field-effect topics in thesetransistors areas. (OFETs), The contents artificial are machines,mainly focused and on chemical the design sensors. and synthesis of organic functional molecules but also include related topics such as the model study on electron transfer phenomena and the fabrication technologies of organic nanostructures. The key features in this book may be grouped into the following categories: (1) molecular design and synthesis of functional compounds of organic and organometallic molecules in forms discrete and polymeric structures; (2) solution-processed fabrication technologies, nanostructure growth and crystallization, electro- polymerization of organic amines, supramolecular assemblies of organogels; (3) principles of long-range electron transfer through organic media, and for the design of donor–acceptor dipolar compounds; and (4) evaluation of device performance with respect to structural designs, for the application to light-emitting diodes, and chemical sensors. The following gives a brief outline of each chapter.organic solar cells, field-effect transistors, artificial machines, To make a single molecule work as a functional device, several active sites have to be implanted onto a common molecular backbone so that they can communicate effectively in a designated xiv Preface

manner. In these systems, electron and/or energy transfer

energy, the mechanism of electronic coupling must be realized. Theprocesses construction are involved. of theoretical In order models to control by the using flow computational of electron/ methods is reviewed in Chapter 1. An overall view on organic nano- and micro materials constructed by the solution process and their applications is described in Chapter 2. The design strategies, various growth mechanisms, and device performances of OFETs, OLEDs, OPVs, photo-detectors, and super-hydrophobic materials are summarized. In comparison with physical vapor deposition, solution processing

organic nano- and micro materials with various morphologies, provides a more convenient and cost-effective approach to obtain corresponding applications are discussed based on the general conceptsincluding of wires, supramolecular sheets, and chemistry. flowers. Their relationships with the The p p interaction in organic molecules plays a fundamental role in many processes, such as the self-assembly for supramolecular stacking, − light-harvesting antennae for photosynthesis, amyloid

DNA, and so on. The study of electron/energy transfer processes infibril organic formation structures in a variety depends of diseases, on the double-helix understanding structure of their of p p interactions. In Chapter 3, the electron movement in p-stacked linear arrays, namely the multilayered [3.3]paracyclophanes, is examined− by their transient absorption spectra of radical cation species. Their electron/charge transfer mechanism is regarded as analogous to that of the double strand DNA molecules. One of the ultimate goals in the development of functional

level. The mechanical work of ATP synthase involves the rotation ofmolecules a central is stalk to assemble that is an powered artificial by machine electrochemical at the molecular potential energy created by the concentration gradient of proton across the inner membrane of mitochondria. As inspired by ATP synthase and other biological molecular machines, the development of

nanoscience and nanotechnology. Chapter 4 reviews the progress ofartificial molecular molecular design machines and functions has beenof molecular an important machines, subject with of a special emphasis on molecular rotors. The rotation of the rotors is gated by light and/or electrical energy as energy sources. Preface xv

electrochemistry are discussed. TheSupramolecular principle and efficiency gels are semisolid of the related materials, photochemistry which can serve and a variety of purposes and appear ubiquitously in our daily lives in a variety of forms. Gels are prevalent in nature, within cells materials, including toothpaste, soap, shampoo, hair gel, contact lenses,and tissues and of gelbodies, pens. and These are also materials present in self-assemble a variety of artificial through the formation of non-covalent intermolecular interactions to form supramolecular networks that trap solvent within their matrices. Because of the non-covalent nature of the forces of self- assembly, the gelation process is typically thermally reversible. In Chapter 5, various types of organogelators, mainly including those grafted with amide functionalities, are reviewed. The pharmacological importance of quinoxalines and their utility as building blocks for preparing organic electronic materials have motivated a considerable number of studies in recent years. The synthetic approaches to multi-bridged U, N, and Z-shaped

mainlyartificial by compounds three fundamental embedded reactions, with i.e., quinoxaline Diels–Alder units reaction, are described in Chapter 6. The synthesis was executed efficiently oxidation with RuO4, and carbonyl-amine condensation reaction. as electron/energy transfer phenomena, host–guest complexation, andThese pharmaceutical compounds may applications. possess specific functions of interest, such

Calixarenes are [1n] metacyclophanes, which are derived from conditions. Gutsche coined the term “calix[4]arenes,” which is derivedthe condensation from Latin of “calyx,” phenols which and means formaldehyde vase, pointing in different out the presence of a cup-shape structure in these macrocycles when they assume the cone conformation, where all four aryl groups are oriented to the same direction. In Chapter 7, a series of calix[4]arene derivatives containing various bifunctional groups were prepared by using “click chemistry,” where metal ions can be encircled

The contents of Chapter 8 are focused on the electron- transportingmaking them useful materials fluorescent (ETMs) sensors. of OLEDs. The major objective is to glean a variety of structure types from a comprehensive survey of organic compounds that are exploited for application xvi Preface

as ETMs and identify key structural elements/motifs that allow design and development of newer materials with improved device performances. Although limited to ETMs, the insights that are developed in this chapter will apply equally to all other types of materials, viz., hole-transporting materials, emissive materials, etc., that are relevant to OLED device constructions.

an To electrode fabricate by thin-filmspin casting. organic It requires electronic good devices, solubility polymeric of the polymersmaterials in are an appropriate usually coated solvent. as uniform The low solubility thin films of directlyconjugated on polymers limits their use on optoelectronic applications. Direct

an option to bypass the solubility problem. In Chapter 9, some fundamentalfilm formation properties on ITO about glass bythe electro-polymerizationchemical reactivity of carbazole provides and triphenylamine derivatives toward electro-polymerization are reviewed.

Acenes exhibit a strong tendency to form highly ordered films arein various recognized substrates as promising under different materials growth for conditions. the application They oncan OFETs.display However, a high charge the low mobility solubility in an of electricpentacene field in and,most therefore, solvents is a major drawback that limited its utility through solution

pentacene precursors in order to go around this problem. Inprocesses. Chapters Many 10 and efforts 11, new have methods been attempted for the preparation to prepare of “soluble” acenes are summarized. Workable synthetic schemes are outlined, and can be used as practical guide for the preparation of similar poly-aromatic materials. The authorship of this book includes eleven renowned professors in the top-rated universities and institutions in Asia: Kyushu University (Teruo Shinmyozu), Peking University (Jian Pei), IIT Kanpur (J. N. Moorthy), National Taiwan University (Jye- Shane Yang and Man-kit Leung), National Chiao Tung University (Wen-Sheng Chung), National Chung Cheng University (Teh-Chang Chou), and Academia Sinica (Chao-Ping Hsu, Shih-Sheng Sun, Chih-Hsiu Lin, and Tahsin J. Chow). Many of the authors have developed long-term research collaboration among themselves.

results and integrated into the contents of this book. It provides They have made significant efforts to summarize their best Preface xvii

optoelectronicthe first-hand materials. reference information to the readers who are interested in the progresses of the emerging new field of organic

Chapter 1

Theoretical Modeling for Electron Transfer in Organic Materials

Robert C. Snoeberger III, Bo-Chao Lin, and Chao-Ping Hsu Institute of Chemistry, Academia Sinica, 128 Sec. 2, Academia Road, 115 Taipei, Taiwan [email protected]

1.1 Introduction

Research and development of organic materials have been potentials of organic electronic devices. Organic photovoltaics (OPV),developed organic vastly light-emitting and become andiodes exciting (OLED), field because of the versatile transistors are a few examples of the new technologies that have been developed based on organic, -based,and organic materials field-effect (Braga and Horowitz, 2009; Dimitrakopoulos and Malenfant, 2002; Hoppe theirand Sariciftci, fabrication 2004; endows Hung them and with Chen, novel 2002). properties Organic that electronic enables thedevices innovation attract great of newinterest technologies. because the organic materials used for limitless possibilities for the synthesis ofThese new propertiesmaterials. In include order weight,for devices flexibility, and technologies low cost, ease based of manufacture, on organic and electronics the seemingly to be

978-981-4463-35-5 (eBook) www.panstanford.com  Theoretical Modeling for Electron Transfer in Organic Materials

developed and improved, high performance organic materials need

modeling can withto be physical designed insight and synthesized, into the microscopic and this isprocesses, where computational enabling the rational designhelp. of improvedTheoretical organic and computational materials, and modeling therefore, helps has become increasingly important. Electron transfer is an important process in the organic devices.

The commonly seen electron transfer events in these molecular ( ) devices include those depicted in Fig. 1.1:

(2)1 CS (or exciton dissociation), where a pair of electron and hole are created from an (neutral) exciton (3) CR, where the electron or hole recombines back to the neutral ground state for the molecules . the charge transport (CT), in which an excess electron or hole is passed through an array of ground-state molecules

Figure 1.1

listed.Schematic sketch for two commonly studied devices: OPV and OLED. The processes that are of fundamental interested are the electrons or holes are drifted

As shown in Fig. 1.1, in OLED, across a film of organic or polymeric semiconducting material, generated.creating either In collecting an excited solar state energy or anwith accumulated an OPV cell, charge the optically at the interface, and further electrooptically useful results are then Introduction  excited exciton migrates to the interface of an electron- and a hole- transporting material where charge separation (CS) takes place. The basic principle of dye-sensitized solar cells (DSSCs) is similar, where takes place at the dye-TiO2 the sunlight is absorbed by the dye, and subsequent charge injection interface. With a CS, the electrons and holes are generated, and subsequently transported in the electron- and hole-transporting materials. Charge recombination (CR) can andalso take exciton place migration at the interface, are mainly contributing the light to absorption, a loss of efficiency. emission, and Otherthe excitation processes, energy such astransfer exciton in generation, the condensed photon phase. generation, In this importantchapter, we as keepwell. our scope to those related to electron transfer, even though detailed studies on these excitation process are very 1.1.1 Theoretical Modeling for Electron Transfer in Solar Cells 1.1.1.1 The influence of energy gaps

hP

In solar cells,VJ the power conversion efficiency ( ) can be defined as , hP  OCP SC i FF where V J (1.1) P is the intensity of the incident OC i SC light. is the open-circuit voltage, is the current density at short-circuit,In general, FF Vis the fill factor, and

OC is roughly the difference for the oxidation and reduction potentials. For bulk-heterojunctionq2 solar cells, it is simply qV max IP – EA – , 40  rr DA OC donor acceptor (1.2) where 0 r is the relative dielectric rDA the initial separation distance of is the the optically vacuum generated permittivity, hole and electron pair in the donor constantand acceptor of the layers bulk (Rand organic et material,al., 2007). and IP is for ionization potential, between V while EA stands for electron affinity. In practice, a linear relation OC and the redox potential difference is indeed found (Scharber et al., 2006). Therefore, computational determination for  Theoretical Modeling for Electron Transfer in Organic Materials

the positions of IP and EA helps determining the V of OPV cells

OC V is determined by the redox potentials of the (Sini et al., 2011). In DSSC, OC excited dye and the TiO2 electrolyte and the counter electrode. The energy difference in the on the energy gap in the conductiondye itself recently band is (Olivares-Amayaessentially dissipated. et al., Theoretical work on different organic and inorganic dyes is focused J , a panchromatic 2011). The HOMO-LUMO energy difference determines the lowest SC theoreticalfrequency photon models the can dye help can absorb. predicting To increase the energy gaps and help screeningabsorption candidates with a high with extinction good potential coefficient of yielding is important. a high ProperJ (Le

SC 1.1.1.Bahers2 et Chargeal., 2013). separation and recombination

processes in organic devices, it is necessary to link the electron In order to theoretically predict the efficiencies of electron transfer

transfer rate to the molecular properties (Brédas et al., 2009). The Marcus theory of electron transfer (Marcus, 1956) is commonly used to predict the electron transfer rate, as  2 2 kET = | Vif | exp(–(DG +  ) /(4 kB T )),  4k T 2 1 B (1.3) where Vif  is the reorganization energy, and DG is the Gibbs free energy change. is the electronic coupling,

or in the dye-TiO2 CS and CR usually take place in the heterojunction of OPV, contact of DSSC. After a direct absorption of light (in DSSC) or with an exciton migrated to the interface (in OPV), an excited-state fragment may proceed with CS and generate an electron and a hole, leading to electric current from the cell. The subsequent CR reduces the electric current collected from the device. Both CS and CR are important electronic processesDG in the organic materials (Clarke and Durrant, IP 2010; and Faist et al., 2011). can be typically modeled as the difference of the the EA of the two molecules in contact (Rehm and Weller, 1970). When an exciton reaches the interface, the Coulomb attraction of unbalance electron population of the excited charge transfer Introduction  state also DG in the and the contributes. Such an interfacial electron transfer leads to a CoulombHowever, energy in a solid-state that influences interface, the overallthere exist factorsCS that make CR processes (Clarke and Durrant, 2010). At the estimation of the site energies of the molecules complicated. the interface, the difference of the Fermi energies between the energydonor and level the alignment acceptor depends leads to ona charge the electronic redistribution properties so that of the an twoequilibrium components; is established it is also (Ishii highly et al., dependent 1999; Gao, on 2010). the The arrangement resulting of the molecules in the interface, and both are hard to model theoretically (Heimel et al., 2010). One way to accommodate this difficulty is to use experimental results to establish the free energy model (Gao, 2010; Kang et al., 2006). This way, other aspects of region.the CS and The CR processes electron-hole can still recombination be established. becomes dominated The CR is often discussed in the context of the Marcus’ inverted when the gap energy is as small as the molecular reorganization regionenergy happens (Tsutsumi when et al.,–D G 2012). > l, and CR in is this typically case, the exothermic, electron transfer due to the Coulomb interaction for the ion pair.DG becomes The Marcus’ more negative inverted rate from Marcus theory decreases as seen(Kuciauskas in solar etcells. al., 2000; Yi et al., 2009). The decreased CR rate helps reducing the loss of efficiency and it is one important character

The reorganization energy characterized the coupling of the electron transfer state energy to the fluctuation of the environments. arisesIt is often from divided solvent intopolarization. an inner The and inner an outer reorganization component. energy The outer reorganization energy is the dielectric response energy charge carrier. It can be obtained from the geometry change that refers to the geometry relaxation of the molecule supporting the accompanies the oxidation or reduction of the fragments, and therefore, can be simulated (Chang and Chao, 2010; Hutchison et al., the2005a; inner Lin reorganizationet al., 2003; Malagoli energy and can Brédas, be viewed 2000). asIn a a solid-state dominate parameterdevice where for surrounding determining media the activationare with a energylow dielectric of the constant, electron transfer reaction. A small reorganization energy is desirable in  Theoretical Modeling for Electron Transfer in Organic Materials

order to lower the free energy barrier of electron transfer. Many computational studies have been devoted to elucidating the factors that determine the reorganization energy (Chang and Chao, 2010; Chen and Chao, 2005). The electronic coupling has become an important target in theoretical studies (Adams et al., 2003; Coropceanu et al., 2007; Hsu,- 2009; Newton, 1991; Prytkova et al., 2007). To properly calculate the electronic coupling for the CS or CR process, a proper determi Herenation wefor the note structure that both is necessary. the experimental We include determination a brief discussion (Al- on the structural aspects of modeling works below (Section 1.2.1).

Mahboob et al., 2009) and the theoretical simulation (Cantrell and Clancy, 2012; Liu et al., 2011; Maggio et al., 2012) for the interfacial structures are important. The computational methods for the electron transfer coupling are also discussed in Section 1.2.2. The calculation of CS or CR coupling typically involves an excited state, and therefore, computational schemes described in Section 1.2.2.3 are likely useful. , Theoretical modeling for the CS and CR for OPV has been an active area of research (Yi et al., 2009; Liu et al., 2011; Yen et al. 2008). However, theoretical modeling for CS in DSSC requires a different set of consideration. The CS (or charge injection) in DSSC longeris a sub-picosecond valid since the process.excited dye The does fast not charge have a injection chance thermally after the relax,photo andexcitation the electron indicates transfer that the may traditional be coherent, Marcus and theory therefore, is no new theoretical treatments have been developed (Liang et al., 2007;

Caruso and Troisi, 2012). Computational characterization for the distribution of excited state population for the dye molecules has also provided insights in DSSC dyes (Yen et al., 2008; Huang et al., 2 2008).it attaches A large to. electronic A positive population correlation shifted is observed towards the between anchoring the group of the dye increases the electronic coupling with the TiO

theoretically calculated charge shift at the electron-accepting group et(weighted al., 2008), by the which oscillator is consistent strength withto account the physical for the light-absorbing consideration. capacity) and the measured short-circuit current in DSSCs (Huang

Therefore, computational works for the electron transfer in solar cells are beginning to offer some insights. Introduction 

1.1.2 Theoretical Modeling for Charge Transport

The relationship between the average velocity  of charge carriers E is established with the carrier and the applied electric field mobility: = E

(1.4) E as well Mobility is often measured and reported in the new devices whichdeveloped, states and that it log varies m is withproportional the electric to | E field| , strengthhas been reported as the temperature. For example, the Poole–Frenkel1/2 relationship frequently, and a number of theoretical origins have been discussed (Bässler, 1993; Nagata and Lennartz, 2008; Pasveer et al., 2005). A number of theories have been proposed to model the charge mobility of organic films) (Bässler, 1993; Bouhassoune et al., 2009; Cheng and Silbey, 2008; Kenkre et al., 1989; Ortmann et al., 2009; Novikov et al., 1998 . Unfortunately, the predictive power of computational modeling is still limited. For example, to the best of our knowledge, there has not been a theory that can correctly describe the full mobility dependence at different temperatures and electric field strengths. Some of the simulated mobility may exhibit a very similar dependence to the observed one, but the mobility values are often quite different from the observed ones. While a complete computation of bulk properties is currently infeasible, theoretical modeling is still useful in providing system- dependent parameters, and in offering further physical insights. The ability to predict the electronic coupling factor, for example, allows researchers to interpret experimental results based on theoretical expressions with one less adjustable parameter. The electronic coupling factor plays an important role in almost all of 1.1.the theoretical2.1 The hopping models and models it will be discussed in Section 1.2.2. The charge hopping rates The charge carrier is able to move within

Each charge hopping event can be modeled as an electron transfer. an organic material by “hopping” from one molecule to another.

In recent years, there has been much effort to describe the conductivity of organic materials with the electron transfer theory  Theoretical Modeling for Electron Transfer in Organic Materials

(Brédas et al., 2002; Coropceanu et al., 2007; Troisi, 2011). The MarcusAnother theory practical of electron way transferto model (Eq. the 1.3)rate (Marcus,of the hopping 1956) processis often used for charge hopping rate.

is with the Miller–Abrahams (MA) formalism (Miller and Abrahams, 1960):  DDEEij+| ij | k= k exp –2 r  0 0 ij k T  B  (1.5) where Eij 

is the energy difference between hopping sites, and distance rij. is used to model the exponential decay in terms of site-to-site

whenWe the note charge that hoppingthe MA rate is endothermic. has an exponential Otherwise, dependence it becomes on the energy difference, which is like a simple Arrhenius rate law

independent of energy difference. In the Marcus theory, there is a ofquadratic the environment, free energy as dependence. a strong system-bath The Marcus interaction theory is based has been on a classical statistics over a harmonic potential for the fluctuation

assumed. The exponential distance dependence in the MA rate is an effect arising from the electronic coupling, and it is modeled as an isotropic exponential attenuation. We note that, especially for organic molecules containing fragments with extended aromatic or conjugated bonded structures, an isotropic electron transfer rate is a poor approximation. Face-to-face molecular contact allows interaction through molecular orbitals (MOs); the electronic coupling for this type of orientation decays slower than edge-to- ­edge contact (You et al., 2006). A proper account for the electronicg) is coupling factor helps reduce the problem arising from the crude assumption,Estimating and mobilitythe value of from the theexponential diffusion attenuation coefficients rate If( the no longer an adjustable parameter. of an external force qE, the Einstein relationship give rise an charge carrier is modeled as a Brownian particle under the influenceD as qD expression= for, the mobility in terms of the diffusion coefficient k T B (1.6) Introduction 

where q is the charge of the carrier, kB and T D depends on the is Boltzmann’s constant, is temperature. The diffusion coefficient material. TheD diffusion of the charge carriers is limited by the time required to hop between sites. For a periodic system, the diffusion coefficienthopping rate was (Deng estimated and Goddard, by a weighted 2004). sum The rateof hopping of the distance hopping squared, with each hopping path weighted by the corresponding process can be determined from either the MA formalism (Eq. 1.5) (Miller and Abrahams, 1960) or Marcus’ theory of electron transfer (Marcus, 1993). The Marcus’ electron transfer rate has been used to predict diffusion coefficients and charge mobilities for crystalline materials straightforward.(Chai et al., 2011; However, Wen et for al., a 2009). site with Predicting a high hopping mobilities rate from to diffusion coefficient has the advantage of being simple and one site but very slow hopping rates to all others, the high hopping rate Monte does not Carlo contribute simulations to a meaningful mobility. Therefore, the Monte Carlo simulation has been a commonly seen alternative. For more general problems, such as a disordered morphology other than crystals, the kinetic Monte Carlo (MC) simulation is a useful tool to model charge mobility inwithin the the details hopping of themodel hopping (Bässler, rates, 1993; and Kwiatkowski can generally et al., obtain2009; Nelson et al., 2009). It is not limited to the theoretical assumptions mobilities while include some details in the theoretical models. existsOne a good site with advantage very lowof the hopping MC simulation rates to is most its ability neighbors, to account the highfor the electron effect transferof network rates connectivity. to the remaining As mentioned few neighbors above, ifdo there not contribute to a meaningful mobility since it cannot pass the charge effectively. This effect can be properly accounted for with a proper Monte Carlo simulation (Nan et al., 2009; Vehoff et al., 2010) and it has been discussed with a more general and rigorous theoretical ground in the literature (Tessler et al., 2009). Since the charge mobility has been measured along different crystal directions, it is of great interest to reproduce such anisotropy theoretically. For example, the anisotropic charge mobilities in crystals have been studied extensively in the past. The anisotropy can be regarded as arising from different electron transfer rates in 10 Theoretical Modeling for Electron Transfer in Organic Materials

different directions, mainly due to the orientation dependence of the (Wenelectronic et al., coupling. In this regards, both the diffusion coefficients and Monte Carlo simulations have been reported in the literature 2009; Vehoff et al., 2010). A multi-dimensional effect was observed in Monte Carlo simulations of charge hopping (Bässler 1993; Vehoff et al., 2010). In such simulations, the mobility obtained orthogonalin different directions crystal directions helps facilitate was mobility not simply by avoiding proportional high- to the charge hopping rates in these directions. Charge motion along

network.energy sites (Bässler, 1993). We note that the overall anisotropy is a nontrivial result of the multi-dimensional charge transport the hopping rates, which can be properly addressed given the The electronic coupling is a major physical factor determining

structure of the material. We expect that an ab initio characterization for the coupling factor would facilitate the research work in this area, while the details of the modeling may be varied as the field develops. Thus, we include below a section summarizing the computational considerations1.1.2.2 Polaron for themodels couplings (Section 1.2.2).

Experimental findings indicate that in most cases the charge themobility charge increases hopping with rates. temperature, It was also which observed, agrees however, with the hoppingthat the model (see Eq. (1.3)), since thermal activation helps increasing

etmobility al., 2006; of carefullyPodzorov purified et al., 2004). oligoacene In these based crystals, crystals the decreasedelectronic with temperature (Jurchescu et al., 2004; Karl, 2003; Ostroverkhova

coupling can easily be similar to or even larger than the small modelreorganization are invalid. energy of these molecules. In this scenario, the hopping rate given by Marcus theory, Eq. (1.3), and the hopping

The inverse temperature dependence implies that the charge therefore,may not be disorder) localized increases. to a single Polaron molecule, models and are that developed delocalized for charge may become more localized when the temperature (and models have been developed to describe the charge transport such a delocalized charge transport. A, 2008;number Ortmann of different et al., 2009).polaron

(Kenkre et al., 1989; Cheng and Silbey Electronic Coupling 11

They are based on the Holstein (Holstein, 1959a,b) or Peierls (Peierls, 2001) model Hamiltonians. A tight-binding Hamiltonian is used as a starting point for the electronic part of the system, and it is coupled the charge carrier to a bath of harmonic oscillators for the effects of the nuclear fluctuation. In the Holstein model, the site energies (diagonal elements) are linearly coupled to the nuclear degrees of freedom. The reorganization energy of Marcus theory is equivalent to this electron-phonon coupling. The Peierls model goes one step further. The off-diagonal matrix elements of the tight-binding Hamiltonian, the electronic coupling terms, are coupled linearly to the phonon bath (Peierls, 2001). polaronA full models, quantum the dynamical Hamiltonian solution is transformed for either to the the Holstein polaron orbasis, the Peierls model is neither feasible nor practical (Xu et al., 2005). In position when a site is charged. The dynamical descriptions were which are obtained by shift the nuclei motion to their optimized then developed for the polaron basis (Cheng and Silbey, 2008; polaronKenkre et models. al., 1989; In theOrtmann Holstein-based et al., 2009). models, the electron or hole The electronic coupling is again an important factor in the model Hamiltonian. In the Peierls-based models, the dependence transfer coupling between nearest neighbor sites is constant in the originate mainly from the exponential distance dependence of the of electronic coupling strength on the nuclear displacements coupling strength. We expect that such a dependence would appear in low-frequency phonon modes that involve displacements of the molecules. The coupling strength, and its dependence on nuclear polaroncoordinates, or other can models be determined that describe by the ab initioelectron quantum transfer chemistrydynamics incalculations, organic materials. which offer a set of well-grounded parameters for the

1.2 Electronic Coupling

The electronic coupling factor is an important parameter in the theories described above. The magnitude of electronic coupling and its dependence on structure influence the electron transfer rates. Calculation of the electronic coupling factor is an important aspect of the emergent works in the literature that connect microscopic 12 Theoretical Modeling for Electron Transfer in Organic Materials

electronic and molecular structure to bulk properties. The starting point for any endeavor to compute the electronic coupling factor is a 1.reasonable2.1 Structural model of Modelsthe geometry of the molecules.

exponentialThe electronic decay coupling with distanceis highly betweendependent the on donor the inter-fragment and acceptor degrees of freedom. For example, the coupling strength exhibits an

fragments. The extent of molecular orbital contact has a direct effect on the electronic coupling magnitude. To compute the electronic coupling in a solid-state organic material, the choice of 1.the2 .1.1intermolecular Idealized structure models is paramount.

The early attempts to compute electronic coupling in organic materials focused on describing charge-transport behavior in simple dimer models (Cheng et al., 2003; Deng and Goddard, 2004; Hutchison et al., 2005b). The electronic coupling was calculated using reasonable guesses for the orientations between molecules. Low-bandgap molecules with planar -conjugated moieties are often good organic semiconducting materials. A large orbitals. electronic This typecoupling of alignment is obtained is also when favored these frommolecules the perspective are aligned of in maximizing a co-facial thearrangement – interaction. because it improves the overlap of the  moieties stacked

Molecular pairs were studied with their face-to-face. Electronic couplings were reported as a function of the distance of one molecule shifted horizontally, revealing that the electronic coupling rapidly oscillates as the cofacial arrangement is slipped (Brédas et al., 2002; Kwon et al., 2004). The oscillations- closely resemble the nodal structure of the frontier molecular orbitals.On the These other results hand, showed we can that reasonably small intermolecular expect that in displace a solid- ments can create significant changes in the electronic coupling.

state device, the intermolecular structure is flexible enough to allow for a broad range of different electronic coupling values. Lin et al. (2011) showed that across several different crystal structure, even with a very similarly arranged molecular pairs, there still Electronic Coupling 13

exists about 5 Å in the distribution of relative positions, which is almost three cycles of oscillation in the coupling. Instead of fine- tuning for a peak in the oscillatory coupling strength, perhaps it is more practical to consider a coupling strength in a more coarse- grained scale. However, for tris(8-hydroxyquinolinato)aluminum (Alq) studied, the pyridyl part of the aromatic ligand has a larger lowest-unoccupied MO (LUMO) population, implying that a pyridyl– pyridyl contact may lead to a better electron transfer coupling. Therefore, it is still possible to take advantage of computational results for experimental design, but it is necessary to consider the uncertainty from the natural occurring disorder. Idealized models are also useful to test the methodologies thefor calculating donor and electron acceptor transfer orbitals coupling. where the The transferred electron electron transfer coupling is essentially an off-diagonal Fock matrix element between occupies. The molecular orbitals decay exponentially when the electron moves away from the molecule. Therefore, the electron transfer coupling decays exponentially with respect to donor- acceptor distance, as discussed in Section 1.1.2.1. In numerically calculating the electron transfer coupling, the exponential distance dependence is a desirable property to test for (You et al., 2004). Therefore, the artificially created structures are helpful in testing the computational1.2.1.2 Crystal schemes. structures obtained from crystallography, which is only available for crystalline The best source of structural information about a material is materials. Even though the structure in an amorphous film is different, studies on molecules arranged according to the crystal structure still provide important insights into the structure-function relationships. The electronic coupling has been computed using DFT for a number of organic materials with structural models obtained from the experimental crystal structures (Kim et al., 2007; Wen et al., 2009; Yang et al., 2008). The electronic coupling in Alq has– interactionbeen studied promotes based onstrong the geometry obtained from its crystal structure (Yang et al., 2006). In another study, it was found that the electronic coupling between the Alq LUMOs (electron transfer) but weak electronic coupling between the highest occupied MOs 14 Theoretical Modeling for Electron Transfer in Organic Materials

 interaction (HOMOs) (hole transfer) (Lin et al., 2005). A survey across several mobilityavailable (Lin crystal et al., structures indicated that the CH– could play a role in biasing the material toward a higher electron 2011). This result interactions is consistent (Liao with etexperimental al., 2008). work that reported bipolar charge mobility for Alq derivatives that are incapable of forming CH– Therefore, it is possible to extract general insights from molecules with1.2.1. several3 Simulated different morphology crystal structures.

Simulations of morphology are necessary when experimental crystal structures are unavailable or when it is desirable to model the effect of disorder. In most solid-state organic devices, the films are amorphous. Disordered materials inherently have more disorder in structure, site energy, electronic coupling, and electron-- mentphonon in this coupling. area has Molecular been reviewed modeling (Nelson methods et al., have 2009). been use to simulate the morphology of organic films and the recent advance 1.2.2 Calculation of Electronic Coupling

A two-state model is often employed to model electron transfer

(Cave and Newton, 1996, 1997). However, multistate electron transfer effects have been studied both experimentally and theoretically by a number of groups (Bixon et al., 1994; Gould et al., expressed1994; Herbich as aand linear Kapturkiewicz, combination 1998; of two Rust eigenstates et al., 2002). (adiabatic In the states).two-state The model, Hamiltonian it is assumed H that the diabatic states can be

EVi if  can be written in the diabatic basis: H diad =  , VE if f  (1.7)

diagonal matrix element. The Hamiltonian matrix in the diabatic representationwhere the electronic can be diagonalized coupling factorto yield is the located Hamiltonian on the matrix, off-

E 0  H ad =  , 01 E 2  (1.8) Electronic Coupling 15

- in the adiabatic representation. In this representation,A the off energies, E and E2 . The adiabatic diagonal elements are zero and the diagonal values are the energies, E and E2, can be expressed in terms of the diabatic 1 , of the adiabatic wavefunctions Ψ 1

Hamiltonian matrix elements:2

EEEEi + f i – f  2 E = ±  +V 2 2   1,2 if (1.9) The exact kinetic energy most cases. diabatic states, those that diagonalize the nuclear- operator, are overdetermined and cannot be found in Therefore, a number of different methods for determi ning approximate diabatic states and calculating the electronic thecoupling diabatic have states. been introduced into the literature. For electron transfer, charge localization is often used as the criteria to define In the following, a number of computational methods to compute the electronic coupling factor will be discussed. These methods can be classified into three groups: methods based on the energy gap (Newton, 1991; Yang and Hsu, 2006; You et al., 2004), direction coupling methods (Broo and Larsson, 1990; Farazdel et al., 1990; Ohta et al., 1986; Zhang et al., 1997), and methods similar to generalized Mulliken–Hush scheme that are based on defining localization with additional operators (Cave and1.2. 2Newton,.1 Energy 1996; gap Voityuk and Rösch, 2002).

In the special case that the diabatic energies Ei and Ef are resonant (i.e., Ei = Ef E = Ei ± Vif erence in electronic energies is ), the expression for the electronic energies, Eq. (1.9), E2 E = 2Vif, where the energy of the diabatic state has been simplifies to 1,2 . The diff − 1 eliminated by subtraction and we are left with an expression that gives the electronic coupling factor as one-half of the energy difference:|VEE |= | – | 2 if 1 2 1 This method has been referred to as the “energy gap” or “energy(1.10) 2004; splitting” method in the literature (Newton, 1991; You et al., Yang and Hsu, 2006). 16 Theoretical Modeling for Electron Transfer in Organic Materials

The energy gap requires simultaneous calculation of two state energies. A widely used approximation to the adiabatic energies is based on Koopmans’ Theorem (KT) (Koopmans, 1934). According to KT, the ionization potential (or electron affinity) is approximately the minus energy of the HOMO (or the LUMO), and so the energy ofdifference the neutral for system.two cationic In this (or way, anionic) the many-electron radical states energy equals gapto the is energy difference of the two corresponding HOMOs (or LUMOs)

reduced to a 1-electron energy difference. We note that KT works mainly for Hartree–Fock calculations. For the popular density-functional theory (DFT), KT is not valid for most of the commonly used functionals because of the self- interaction error in these functionals. On the other hand, if a DFT functional were exact, the negative energy of the Kohn–Sham HOMO is exactly the first IP (Perdew et al., 1982). Therefore, the quality of DFT-based coupling can be improved when the self-interaction error is corrected. The long-range correct DFT (Tawada et al., 2004; Yanai et al., 2004) has great potential in this regard. It has been pointed out that care must be taken when using the energy gap method because even dimers constructed from identical monomers may have different site energies (Valeev et al., 2006). If the structure of the dimer is not symmetric, the diabatic (i.e., Ei  Ef energies are not guaranteed to be resonant. In off-resonant cases ), perturbations such as external electric fields can be introduced to force the diabatic states into resonance (Newton, 1991), and at resonance, the energy gap of the two eigenstates (adiabatic states) is minimized. The perturbation could be from a homogeneous electric field (Tong et al., 2002; Voityuk et al., 2000, 2001), external point charges (Larsson and Volosov, 1986), or diabaticeven artificial states energy are driven terms into added resonance, onto the it atom is a transition centered basisstate functions of the Hamiltonian (Daizadeh et al., 1997). When the

in an electron transfer process. In Marcus’ theory of electron transfer, a fluctuating dielectric environment offers such a driving force for electron transfer. Therefore, the search and computation modelfor a perturbed for the transition resonance state condition of the electron does not transfer only offer reaction. a feasible means for calculating electronic coupling, it also offers a proper

For electron transfer problems, the states often involve open- shell configurations where singly occupied orbitals exist, and the Electronic Coupling 17

importantdifferent singlyto treat occupied these orbitals orbitals in are a “balanced” often similar manner, in their and energies, in this whose energy difference directly influence the energy gap. It is way, the nondynamical correlation due to these nearly degenerate orbitals (and states) is minimized. For example, in the HF-KT scheme, the MO energy derived from the neutral system is used, even though the cationic or anionic state energies are desired. A computationally efficient procedure for this nearly degenerate issituation a high-spin is the state,spin-flip and scheme the two (Krylov, desired 2006; low-spin You et eigenstates al., 2004; Yang are and Hsu, 2006). In the spin-flip scheme, the reference determinate obtained as “excited states” in the calculation. Based on through- bond electron transfer couplings computed from spin-flip coupled- cluster methods, it is concluded that dynamical is an correlation attractive means is not sinceimportant in most cases (Yang and Hsu, 2006). chemistryCalculating program. coupling It is not from limited energy to gapthe theoretical level for the eigenstateit is not energies limited either, to the as functionality long as the of two a particular eigenenergies quantum are obtained in the same theoretical ground and the nondynamical asymmetriccorrelation systems. is properly accounted. It is also important to use an external electric field to bring the system to resonance for 1.2.2.2 Direct coupling

(Broo“Direct and coupling” Larsson refers to schemes that use wavefunctions calculated from quantum chemistry programs as diabatic states , 1990; Farazdel et al., 1990; Ohta et al., 1986; Zhang et al., 1997). For electron transfer reactions, charge-localized unrestricted Hartree–Fock (UHF), symmetry-broken solutions are often used (Broo and Larsson, 1990; Newton 1991; Ohta et al., 1986). d d diabatic states, referred to as the initial i f charge- localizedAssuming states weof an have electron charge-localized transfer reaction, states the representing matrix elements the and final of the diabatic Hamiltoniand|H |  d  can  bed |computedH |  d   asHH  d i i i f i if H()  d d d d   |H |    |H |   HH  f i f f  if f  (1.11) 18 Theoretical Modeling for Electron Transfer in Organic Materials

H. In general, the charge- localized states may not be orthogonal. This can be addressed

with the full electronic Hamiltonian Horth = S HS , with the overlap matrix S −1/2 −1/2 by Löwdin symmetric orthogonalization (Löwdin, 1950):  d d  i||  f  Sif  S  d d    f||  i   Sif  1 1 (1.12) 1 1

The electronicHHHS–( +coupling ) /2 obtained after orthogonalization is V  if i f if . if S 2 if (1.13) 1– Vif = Hif, when We can see that the orthogonalized electronic coupling reduces the overlap term Sif to the off-diagonald Hamiltoniand matrix element,  and f i is zero. For symmetric systems, the diabatic wavefunctions d d are symmetry-broken solutions. The combination of  and f eigenfunctions cani be approximated by a symmetry-restored linear d d : i±  f ±  S if (1.14) 2(1± )

The expression in Eq. (1.13) is half of the energy gap of these two eigenstates, which are modeled as dual-configuration symmetry- restored solutions (Broo and Larsson, 1990; Yang and Hsu, 2006). In restoredother words, linear in combination order to account of several for the (in non-dynamical this case, two) correlationsymmetry- effect, the eigenfunctions can be described as the symmetry-

broken (charge localized) wavefunctions (Broo and Larsson, 1990; Newton, 1991; Ohta et al., 1986;d Yangd and Hsu, 2006). the charge-localized states  and f There are several differenti approaches for the construction of and acceptor A fragments. The electron. We will transfer proceed between by assuming these fragments,the molecular in the system case can of an be excess partitioned electron into initially separate localized donor (D) on

fragmentD– + A(D),  isD described+ A– by the following reaction:

(1.15) Electronic Coupling 19

–, A, and A–. The Fourd independentd electronic structure calculations provide a set initial Ψi Ψf of molecular orbitals for each fragment species: D, D and final wavefunctions are constructed by joining the moleculard = orbitalsAˆ { } of the fragments together: i  D–  A

d (1.16) =Aˆ {– }, f  D  A d ˆ (1.17) wheref= A {  D  A– },

antisymmetrizes the electronic wavefunctions. This way, we obtainedAnother waya direct to obtain coupling charge-localized from a set of states unrelaxed is from and a brokenstrictly charge-localized wavefunctions. symmetry self-consistent field (SCF) solution (Davidson and Borden, 1983). The donor and acceptor wavefunctions discussed above, othersince theyfragment. are obtainedIt is straightforward from independent to start fragmentwith strictly calculations, localized do not account for electronic relaxation in the presence of the wavefunctions as an initial guesses for a SCF relaxation. This procedure usually relaxes to a broken-symmetry UHF solution. In a previous test for several through-bridge electron transfer systems, the relaxed direct coupling results are often very close to those derived from coupled-cluster (EOMCCSD) energy gaps, which seems to indicates that this relaxed approach is perhaps the best “dual- configuration” approximation to eigenfunctions of the system (Yang and Hsu, 2006). In some cases, a simplified description of the electronic structure based on the 1-electron molecular orbitals is advantageous, especially when a great number of coupling calculations is required or the molecular system is large. The frontier molecular orbital (FMO) approach takes the 1-electronic off-diagonal Fock matrix element for the coupling. Assuming that all other MOs are frozen in the process of electron transfer, the off-diagonal Hamiltonian matrix element can be reduced to an off-diagonal Fock matrix element abetween “direction the two MOs whosevariant electronic of This occupancy approach is is changed in the to electron transfer process (Zhang et al., in 1997). Section FMO can beif the viewed orbital as energies are coupling”resonant. KT. equivalent the KT energy gap method discussed 1.2.2.1 20 Theoretical Modeling for Electron Transfer in Organic Materials

An efficient computational scheme has been developed by etemploying al., 2009) FMO and in semiempirical conjunction with Hamiltonians low-cost (Troisielectronic and structure Orlandi, methods, such as DFT (Valeev et al., 2006; Yang et al., 2008; Wen

2001, 2006; Troisi et al., 2004). Couplings from semiempirical Hamiltonians have a faster exponential decay in through-bridge electron transfer (Chen and Hsu, 2005), which is presumably from the parameters for the interatomic interactions. The quality of DFT- based FMO coupling is again highly dependent on the functionals chosen. The deficiency associated with the self-interaction errors seen in most DFT functionals may create problems. The 1-electron potential derived from most commonly used exchange-correlation functionals is wrong in the asymptotic region when the electronic coordinate is far removed from the nuclei (Casida and Salahub, 2000). The incorrect asymptotic potential may affect the quality of the wavefunction in the peripheral region, and the coupling values may be affected. As discussed above, the long-range corrected DFT (Tawada et al., 2004; Yanai et al., 2004) may be a good choice. We note that in calculating the off-diagonal Fock (or Kohn–Sham) matrix element, it is still necessary to specify the configurations (density) of all other electrons in the evaluation of the Coulomb and exchange (exchange-correlation) contributions. One way to proceed is to use the configurations (density) obtained from neutral donor and acceptor fragments (Yang et al., 2008), and again we note that this is very similar to the common usage of KT. The direct coupling scheme is useful mainly for electron transfer in the ground state. It is perhaps also the best and most commonly used method for modeling charge hopping in molecular semiconductors.1.2.2.3 The generalized Mulliken–Hush and fragment charge difference schemes

and Charge-localized states can be obtained by mixing the eigenstates additional from a set of calculations. Generalized Mulliken–Hush (GMH) to create its variant, the fragment charge difference (FCD), use charge- operators to define the necessary linear transformation charge-localized states. These methods are suitable for transfer reactions involving excited states. In particular, we expect Electronic Coupling 21

in organic solar cells. that they may be useful in cases where the CS and CR processes

The GMH scheme is a generalization from the Mulliken–Hush matrixexpression in the (Hush, adiabatic 1967, representation 1968), which is uses absorption spectra to determine coupling values for optical electron transfer. The dipole     . 1  12   Diagonalization12 2 of the dipole matrix leads to the largest dipole(1.18) moment di transformation from the adiabatic to the diabatic representation. fference in the two states, which is used to define the

The corresponding linear combination gives the electronic coupling factor as the off-diagonal | DE Hamiltonian matrix element, V  . if 2 –12  ) + 12 4   1 2 (1.19) operator Dq The FCD scheme is similar to GMH, except that a charge difference erence is between used to the define charge the of linear the donortransformation fragment (Voityuk (D) and andthe charge Rösch, of 2002). the acceptor The charge fragment difference (A operator is defined as the diff from the one-particle density, mm(r ). The charges are computed from the transition density, mm(r ), and corresponding quantity ): * r ()rNdrdr  (,,,)(,,,) rr  r rr  r , mm  2 N m 2 N n 2 N where N is the of electrons in the system. With the densities,(1.20) the charge matrix elements can be as number difference computed Dq   ()–().r dr r dr mn r D mn rA mn In practice, a (1.21) or Becke (Becke, analysis, is population analysis scheme, such as Mulliken dipole (Mulliken, 1955) 1988) population operatorused to compute the necessary a donorintegrals and in acceptor Eq. (1.21). fragment. Unlike The the charge operator used in the GMH scheme, the charge difference relies on the definition of difference matrix in the adiabatic representation is 22 Theoretical Modeling for Electron Transfer in Organic Materials

DDq q  Dq  . DDq11 q 12   12 22 (1.22)

transformation for the diabatic states, since they have the largest Diagonalization of the charge difference operator defines the q and q22 after transformation of the Hamiltonian difference in 11 . The electronic coupling factor is obtained Dq| D E V  . if 2 Dq– D12 q ) +12 4 D q  1 2 (1.23)

In practice, a vertical excitation is calculated for the full system that includes the donor and the acceptor. The locally excited and the charge-transfer states are assigned, and the GMH or FCD scheme are used to find the diabatic states and the coupling values. They have been used to characterize the electron transfer in DNA (Voityuk et al., 2001; Voityuk and Rösch, 2002), and a number of electron transfer system (Lee et al., 2010; Orian et al., 2012; Yang et al., 2012). dipolesWe arisingnote that from the a GMH local couplingsexcitation arein the sometimes transition. overestimated Since a local (Chen and Hsu, 2005). This is due to an  increasedq transition

excitation component does not contribute to , the FCD coupling is less likely be affected (Lee et al., 2010). It is possible to generalize GMH and FCD to include three or four theadiabatic  or  statesq (Rust et al., 2002; Lee et al., 2010). In this approach, two linear transformations are employed: first, the eigenstates for diagonalized. matrices are obtained; then, the Hamiltonian subspaces, which include states of a similar charge separation nature, are re-

the formationGMH and of FCD exciton are from suitable an electron for electron and a hole transfer in light-emitting problems involving excited states. We expect that CS and CR in solar cells, or are applicable to almost any model Hamiltonian for solving the excitedmaterials state, would as belong potential as transition problems dipoles for GMH (or transition and FCD. Sincedensities) both are available, it is expected that they will become even more widely

used in the future. References 23

1.3 Conclusion

reviewed,In this chapter, with thean emphasiscomputational on organic methods electronic and theoretical materials. models With used for the computation of electronic coupling are listed and hasthe vast become progress an achievable in computer goal. software In the area and hardware, of organic predicting materials forproperties electronic of large devices, molecules it is now and possible computer-aided to model molecular many important design parameters of electron transfer. However, in order to predict device performance, there are still several aspects that need attention.

We believe that the main difficulties are in correctly simulating therethe detailed is active intermolecular development instructure these areas and andenergy we canin the optimistically solid-state expectdevices, that both these inside problems the film or will at bethe overcome interface. asOn newthe other theoretical hand,

Referencesmodels and computational methods are developed.

Adams, D. M., Brus, L., Chidsey, C. E. D., Creager, S., Creutz, C., Kagan, C. R., Kamat, P. V., Lieberman, M., Lindsay, S., Marcus, R. A., Metzger, R. M., Michel-Beyerle, M. E., Miller, J. R., Newton, M. D., Rolison, D. R., Sankey, J. Phys. Chem. B, 107, 28, 6668–6697. O., Schanze, K. S., Yardley, J., and Zhu, X. (2003). Charge transfer on the nanoscale: current status,

Al-Mahboob, A., Sadowski, J. T., Fujikawa, Y., and Sakurai, T. (2009). The Surf. Sci., 603 growth mechanism of pentacene-fullerene heteroepitaxial films, , 8, L53–L56. Phys. Status Solidi B, 175 Bässler, H. (1993). Charge transport in disordered organic photoconductors polyat- a Monte Carlo simulation study, , 1, 15–56. J. Chem. Phys., 88 Becke, A. D. (1988). A multicenter numerical integration scheme for omic molecules, , 4, 2547–2553. J. Am. Chem. Soc., Bixon, M., Jortner, J., and Verhoeven, J. W. (1994). Lifetimes for radiative 116 charge recombination in donor-acceptor molecules, , 16, 7349–7355. Bouhassoune, M., Mensfoort, S. L. M. V., Bobbert, P. A., and Coehoorn, R. (2009). Carrier-density and field-dependent charge-carrier mobility 24 Theoretical Modeling for Electron Transfer in Organic Materials

Org. Electron., 10 in organic semiconductors with correlated Gaussian disorder, , 3, 437–445. transistors, Adv. Mater., 21 Braga, D., and Horowitz, G. (2009). High-performance organic field-effect , 14–15, 1473–1486. - Brédas,eters J. L., governing Calbert, J. charge P., da Silva transport, Filho, D.Proc A.,. andNatl .Cornil, Acad. SciJ. (2002).. U. S. A Organic., 99, 9, semiconductors: a theoretical characterization of the basic param

5804–5809. Acc. Chem. Res., Brédas,42 J.-L., Norton, J. E., Cornil, J., and Coropceanu, V. (2009). Molecular understanding of organic solar cells: the challenges, , 11, 1691–1699. Chem. Phys., 148 Broo, A., and Larsson, S. (1990). Electron transfer due to through-bond interactions. Study of aliphatic chains, , 1, 103–115. 60 growth on pentacene, J. Cantrell,Chem R.. A.,Theory and ComputClancy, .,P. 8 (2012). A new kinetic Monte Carlo algorithm for heteroepitactical growth: case study of C , 3, 1048–1057. solar cells, Proc. Natl. Acad. Sci. U. S. A., 109 Caruso, D., and Troisi, A. (2012). Long-range exciton dissociation in organic , 34, 13498–13502. Casida, M. E., and Salahub, D. R. (2000). Asymptotic correction approach excitationto improving spectra, approximate J. Chem. Phys exchange-correlation., 113 potentials: time- dependent density-functional theory calculations of molecular , 20, 8918–8935.

Cave, ChemR. J., and. Phys Newton,. Lett., 249 M. D. (1996). Generalization of the Mulliken-Hush treatment for the calculation of electron transfer matrix elements, , 1–2, 15–19. Cave, R. J., and Newton, M. D. (1997). Calculation of electronic coupling diagonalizationmatrix elements methods, for ground J. Chem and. Phys excited., 106 state electron transfer reactions: comparison of the generalized Mulliken-Hush and block , 22, 9213–9226.

Chai, transport S., Wen, properties S.-H., and of Han, perylene K.-L. bisimide (2011). derivatives, Understanding Org . Electron electron-., 12withdrawing substituent effect on structural, electronic and charge

, 11, 1806–1814.

Chang,frontier Y.-C., and orbitals, Chao, JI.. Phys(2010).. Chem An. importantLett., 1 key to design molecules with small internal reorganization energy: strong nonbonding character in , 1, 116–121. Chen, H.-C., and Hsu, C.-P. (2005). Ab Initio characterization of electron transfer coupling in photoinduced systems: generalized Mulliken- References 25

J. Phys. Chem. A, 109

Hush with configuration-interaction singles, , 51, 11989–11995.

Chen, H.-Y., and Chao, I. (2005). Effect of perfluorination on theChem charge-. Phystransport. Lett., properties401 of organic semiconductors: density functional theory study of perfluorinated pentacene and sexithiophene, , 4–6, 539–545. transport in organic crystals, J. Chem. Phys., 128 Cheng, Y.-C., and Silbey, R. J. (2008). A unified theory for charge-carrier , 11, 114713–114718.

Cheng, Y. C., Silbey, R. J., da Silva Filho, D. A., Calbert, J. P., Cornil, J.,J. Chemand Brédas,. Phys., 118J. L. ,(2003). 8, 3764–3774. Three-dimensional band structure and bandlike mobility in oligoacene single crystals: a theoretical investigation,

solar cells, Chem. Rev., 110 Clarke, T. M., and Durrant, J. R. (2010). Charge photogeneration in organic , 11, 6736–6767. Chem. Rev., Coropceanu,107 V., Cornil, J., da Silva Filho, D. A., Olivier, Y., Silbey, R., and Brédas, J.-L. (2007). Charge transport in organic semiconductors, , 4, 926–952.

Daizadeh, I., Gehlen, J. N., and Stuchebrukhov, A. A. (1997). Calculation ofJ. Chemelectronic. Phys tunneling., 106 matrix element in proteins: comparison of exact and approximate one-electron methods for Ru-modified azurin, , 13, 5658–5666. J. Phys. Chem., 87, 24, 4783–4790. Davidson, E. R., and Borden, W. T. (1983). Symmetry breaking in polyatomic Deng, W.-Q., and Goddard, W. A. (2004). Predictions of hole mobilities molecules: real and artifactual,

J. Phys. Chem. B, 108 in oligoacene organic semiconductors from quantum mechanical calculations, , 25, 8614–8621. transistors for large area electronics, Adv. Mater., 14 Dimitrakopoulos, C. D., and Malenfant, P. R. L. (2002). Organic thin film , 2, 99–117.

Faist, betweenM. A., Kirchartz, the charge T., Gong, transfer W., Ashraf,state and R. S.,the McCulloch, singlet states I., de of Mello, donor J. C.,or Ekins-Daukes, N. J., Bradley, D. D. C., and Nelson, J. (2011). CompetitionJ. Am. Chem. Soc., 134 acceptor limiting the efficiency in polymer: fullerene solar cells, , 1, 685–692. -electron systems Farazdel, A., Dupuis, M., Clementi, E., and Aviram, A. (1990). Electric-field inducedJ. Am intramolecular. Chem. Soc., 112 electron transfer in spiro and their suitability as molecular electronic devices. A theoretical Interface in Organic Semiconductor Devices: Dipole, Doping, study, , 11, 4206–4214. Band Bending, and Growth Gao, Y. (2010). (Taylor & Francis), ISBN 9781420072914, pp. 141–179. 26 Theoretical Modeling for Electron Transfer in Organic Materials

Gould,driving I. R., Young,force for R. electron H., Mueller, transfer, L. J.,J. Am and. Chem Farid,. Soc S. .,(1994). 116 Mechanisms of exciplex formation. Roles of superexchange, solvent polarity, and , 18, 8176–8187. Chem. Mater., 23, 3, Heimel, G., Salzmann, I., Duhm, S., and Koch, N. (2010). Design of organic semiconductors from molecular electrostatics, 359–377. conformation in the excited charge transfer singlet states of 9-acridyl Herbich,and J., other and Kapturkiewicz, aryl derivatives A. of (1998). aromatic Electronic amines, structure J. Am. Chem and. molecularSoc., 120,

5, 1014–1029. model, Ann. Phys., 8 Holstein, T. (1959a). Studies of polaron motion part I. The molecular-crystal , 325–342. Ann. Phys., 8, 343–389. Holstein, T. (1959b). Studies of polaron motion part II. The “small” polaron,

J. Mater. Res., 19 Hoppe, H., and Sariciftci, N. S. (2004). Organic solar cells: an overview, , 7, 1924–1945. energy transfer, Acc. Chem. Res., 42 Hsu, C.-P. (2009). The electronic couplings in electron transfer and excitation

, 4, 509–518.

Huang,entity S.-T., inHsu, the Y.-C., spacer Yen, for Y.-S., solar Chou, cells H. applications,H., Lin, J. T., Chang, J. Phys C.-W.,. Chem Hsu,. C, 112C.-P.,, Tsai, C., and Yin, D.-J. (2008). Organic dyes containing cyanovinyl

49, 19739–19747. Mater. Sci. Eng. R Rep., 39, Hung, L. S., and Chen, C. H. (2002). Recent progress of molecular organic electroluminescent materials and devices, Intervalence-Transfer Absorption, Part 2.e tTheorical 5–6, 143–222. Considerations and Spectroscopic Data Hush, N. S. (1967). (John Wiley & Sons, Inc.), pp. 391–444. electron transfer, Electrochim. Acta, 13 Hush, N. S. (1968). Homogeneous and heterogeneous optical and thermal , 5, 1005–1023.

Hutchison, G. R., Ratner, M.J. Am A.,. Chemand Marks,. Soc., 127 T. J. (2005a). Hopping transport in conductive heterocyclic oligomers: reorganization energies and substituent effects, , 7, 2339–2350.

Hutchison, G. R., Ratner, M. A., and Marks, T. J. (2005b). Intermolecular charge transferJ. Am. Chem between. Soc., 127 heterocyclic oligomers. Effects of heteroatom and molecular packing on hopping transport in organic semiconductors, , 48, 16866–16881. References 27

Ishii, H.,interfaces, Sugiyama, Adv K.,. Mater Ito, E.,., and11 Seki, K. (1999). Energy level alignment and interfacial electronic structures at organic/metal and organic/organic

, 12, 972–972. on the mobility of single crystal pentacene, Appl. Phys. Lett., 84 Jurchescu, O. D., Baas, J., and Palstra, T. T. M. (2004). Effect of impurities , 16, 3061–3063. 60 Kang, S. J., Yi, Y., Kim, C. Y., Cho, S. W., Noh, M., Jeong, K., and Whang, C. N. 60 Synth. Met., 156 (2006). Energy level diagrams of C /pentacene/Au and pentacene/ Synth. C /Au, , 1, 32–37. Met., 133–134 Karl, N. (2003). Charge carrier transport in organic semiconductors, , 649–657.

Kenkre,Phys V.. M.,Rev Andersen,. Lett., 62 J. D., Dunlap, D. H., and Duke, C. B. (1989). Unified theory of the mobilities of photoinjected electrons in , , 1165–1168. of Kim, E.-G.,the pentathienoacene Coropceanu, V., Gruhn, crystal, N. J . E.,Am Snchez-Carrera,. Chem. Soc., 129 R. S., Snoeberger, R., Matzger, A. J., and Brédas, J.-L. (2007). Charge transport parameters , 43, 13072–13081. Physica, 1 Koopmans, T. (1934). Über die zuordnung von wellenfunktionen und eigenwerten zu den einzelnen elektronen eines atoms, , 1–6, 104–113.

Krylov,diradicals, A. I. (2006). and Spin-flip triradicals, equation-of-motion Acc. Chem. Res., 39 coupled-cluster electronic structure method for a description of excited states, bond breaking, , 2, 83–91.

Kuciauskas, D., Freund, M. S., Gray, H. B., Winkler, J. R., and Lewis, N. S. (2000). JElectron. Phys. Chem transfer. B, 105 dynamics, 2, 392–403. in nanocrystalline titanium dioxide solar cells sensitized with ruthenium or osmium polypyridyl complexes,

60 Nano Lett., Kwiatkowski,9 J. J., Frost, J. M., and Nelson, J. (2009). The effect of morphology on electron field-effect mobility in disordered C thin films, , 3, 1085–1090.

Kwon,parameters O., Coropceanu, determining V., Gruhn, N. charge E., Durivage, transport J. C., Laquindanum, in anthradithiophene, J. G., Katz, JH.. Chem E., Cornil,. Phys J.,., and120 Brédas, J. L. (2004). Characterization of the molecular

, 17, 8186–8194. J. Chem. Phys., 85 Larsson, S., and Volosov, A. (1986). Distance dependence in photo-induced intramolecular electron transfer, , 5, 2548–2554.

Le Bahers,J. Phys T.,. Chem Pauporté,. Lett. (in T., press).Lainé, P. P., Labat, F., Adamo, C., and Ciofini, I. (2013). Modelling dye sensitized solar cells: from theory to experiment, 28 Theoretical Modeling for Electron Transfer in Organic Materials

Lee, S.-J., Chen, H.-C., You, Z.-Q., Liu, K.-L., Chow, T. J., Chen, I.-C., and Hsu, C.-P. (2010). Theoretical characterization of photoinduced electronMol. Phystransfer., 108 in rigidly linked donor-acceptor molecules: The fragment charge difference and the generalized Mulliken-Hush schemes, , 19–20, 2775–2789.

Liang,electron K.-K., Lin, transfer C.-K., Chang, rate constant H.-C., Villaeys, in dye-sensitized A. A., Hayashi, solar M., cells, and Phys Hsien. Chem Lin,. S.Chem (2007).. Phys Calculation., 9 of the vibrationally non-relaxed photo-induced

, 7, 853–861. Liao, S.-H., Shiu, J.-R., Liu, S.-W., Yeh, S.-J., Chen, Y.-H., Chen, C. T., Chow, T. J., 3 (tris(8- and Wu, C.-I. (2008). Hydroxynaphthyridine-derived group III metal organicchelates: light-emitting Wide band gap diodes, and deep J. Am blue. Chem analogues. Soc., 131 of ,green 2, 763–777. Alq hydroxyquinolate)aluminum) and their versatile applications for

the transports of holes and electrons in organic amines in organic Lin, B. C., Cheng, C. P., and Lao, Z. P. M. (2003). Reorganization energiesJ. Phys in. Chem. A, 107 electroluminescence studied by density functional theory, , 26, 5241–5251.

Lin, B.electron C., Cheng, transporter, C. P., You, J. AmZ.-Q.,. Chem and. Soc Hsu,., 127 C.-P. (2005). Charge transport properties of tris(8-hydroxyquinolinato)aluminum(III): why it is an – inter- , 1, 66–67. 

Lin, B.-C., Cheng, C.-P.,(III), You,Phys Z.-Q.,. Chem and. Chem Hsu,. C.-P.Phys (2011).., 13 The role of CH action in the charge transfer properties in tris(8-hydroxyquinolinato) aluminium , 46, 20704–20713.

Liu, T.,and Cheung, the charge-transfer D. L., and Troisi, rates A. (2011). in solar Structural cells, Phys variability. Chem. Chem and. dynamicsPhys., 13, of the P3HT/PCBM interface and its effects on the electronic structure

48, 21461–21470.

Löwdin,J. Chem P.-O.. (1950).Phys., 18 On the non-orthogonality problem connected with the use of atomic wave functions in the theory of molecules and crystals, , 3, 365–375. recombination rate in dye-sensitized solar cells from electronic Maggio, E., Martsinovich, N.,J. Phys and. Chem Troisi,. C , 116 A. (2012). Evaluating charge

structure calculations, , 14, 7638–7649.

Malagoli, M., and Brédas, J. L. (2000).Chem. Phys Density. Lett functional., 327 theory study of the geometric structure and energetics of triphenylamine-based hole- transporting molecules, , 1–2, 13–17. involving electron transfer. I, J. Chem. Phys., 24 Marcus, R. A. (1956). On the theory of oxidation-reduction reactions , 5, 966–978. References 29

experiment, Rev. Mod. Phys., 65 Marcus, R. A. (1993). Electron transfer reactions in chemistry. Theory and , 3, 599–610. concentrations, Phys. Rev., 120 Miller, A., and Abrahams, E. (1960). Impurity conduction at low , 745–755. J. Chem. Phys., 23 Mulliken, R. S. (1955). Electronic population analysis on LCAO-MO molecular wave functions. I, , 10, 1833–1840. 3 Nagata, Y., and Lennartz, C. (2008). JAtomistic. Chem. Phys simulation., 129, 3, 034709–9.on charge mobility of amorphous tris(8-hydroxyquinoline) aluminum (Alq ): origin of Poole-Frenkel-type behavior, Phys. Nan, G.,Rev Yang,. B, 79 X., Wang, L., Shuai, Z., and Zhao, Y. (2009). Nuclear tunneling effects of charge transport in rubrene, tetracene, and pentacene, , 11, 115203–9. charge transport in organic photovoltaic materials, Acc. Chem. Res., 42, Nelson, J., Kwiatkowski, J. J., Kirkpatrick, J., and Frost, J. M. (2009). Modeling

11, 1768–1778. Chem. Rev., 91 Newton,767–792. M. D. (1991). Quantum chemical probes of electron-transfer kinetics: the nature of donor-acceptor interactions, , 5,

Novikov,disordered S. V., Dunlap, organic D. materials,H., Kenkre, Phys V. M.,. Rev Parris,. Lett., P.81 E., and Vannikov, A. V. (1998). Essential role of correlations in governing charge transport in , 20, 4472–4475.

Ohta, K., Closs, G. L., Morokuma, K., and Green, N. J. (1986).J. Am .Stereoelectronic Chem. Soc., 108, effects in intramolecular long-distance electron transfer in radical anions as predicted by ab-initio MO calculations, 6, 1319–1320. Olivares-Amaya, R., Amador-Bedolla, C., Hachmann, J., Atahan-Evrenk, S., photovoltaicsSánchez-Carrera, by means R. S., Vogt, of cheminformatics, L., and Aspuru-Guzik, Energy A. (2011). Environ Accelerated. Sci., 4 computational discovery of high-performance materials for organic , 12, 4849–4861. transfer in model bioinspired carotene-porphyrin dyads, J. Phys. Chem. Orian,A ,L., 116 Carlotto, S., Di Valentin, M., and Polimeno, A. (2012). Charge

, 15, 3926–3933.

Ortmann,Phys . F.,Rev Bechstedt,. B, 79 F., and Hannewald, K. (2009). Theory of charge transport in organic crystals: Beyond Holstein’s small-polaron model, , 23, 235206–11. Ostroverkhova, O., Cooke, D. G., Hegmann, F. A., Anthony, J. E., Podzorov, V., Gershenson, M. E., Jurchescu, O. D., and Palstra, T. T. M. (2006). Ultrafast 30 Theoretical Modeling for Electron Transfer in Organic Materials

Appl. Phys. Lett., 88 carrier dynamics in pentacene, functionalized pentacene, tetracene, and rubrene single crystals, , 16, 162101–3. Pasveer, W. F., Cottaar, J., Tanase, C., Coehoorn, R., Bobbert, P. A., Blom, P. W. PhysM., de. Rev Leeuw,. Lett .,D. 94 M., and Michels, M. A. J. (2005). Unified description of charge-carrier mobilities in disordered semiconducting polymers, Quantum Theory of Solids , 20, 206601–4. Peierls, R. E. (2001). (Oxford University Press: New York).

Perdew,energy, J. P., Parr,Phys .R. Rev G.,. LettLevy,., 49M., and Balduz, J. L. (1982). Density-functional theory for fractional particle number: derivative discontinuities of the , 1691–1694.

Podzorov, V., Menard, E., Borissov,Phys. Rev A.,. Lett Kiryukhin,., 93, 8, 086602–4. V., Rogers, J. A., and Gershenson, M. E. (2004). Intrinsic charge transport on the surface of organic semiconductors, Science, Prytkova,315 T. R., Kurnikov, I. V., and Beratan, D. N. (2007). Coupling coherence distinguishes structure sensitivity in protein electron transfer, , 5812, 622–625.

Rand, B. P., Burk, D. P., and Forrest, PhysS. R. . (2007).Rev. B, 75 Offset energies at organic semiconductor heterojunctions and their influence on the open-circuit voltage of thin-film solar cells, , 11, 115327–11. electron and H-atom transfer, Isr. J. Chem., 8 Rehm, D., and Weller, A. (1970). Kinetics of fluorescence quenching by , 2, 259–271.

Rust, M., Lappe, J., and Cave, R. J. (2002). MultistateJ. Phys. Chem effects. A, 106 in calculations of3940. the electronic coupling element for electron transfer using the generalized Mulliken-Hush method, , 15, 3930–

Scharber, M. C., Mühlbacher, D., Koppe, M., Denk, P., Waldauf,ciency, Adv C., Heeger,. Mater., A. 18 J.,, 6,and 789–794. Brabec, C. J. (2006). Design rules for donors in bulk-heterojunction solar cellstowards 10% energy-conversion effi

Sini, G., Sears, J. S., and Brédas, J.-L. (2011). Evaluating the performance of DFT functionals in assessing the interaction energy and ground-stateJ. Chem. chargeTheory Comput transfer., 7 of, 3, donor/acceptor602–609. complexes: tetrathiafulvalene- tetracyanoquinodimethane (TTF-TCNQ) as a model case,

J. Chem. Tawada,Phys Y.,., Tsuneda,120 T., Yanagisawa, S., Yanai, T., and Hirao, K. (2004). A long- range-corrected time-dependent density functional theory, , 18, 8425–8433. References 31

transport in disordered organic materials and its relevance to thin- Tessler, N., Preezant, Y., Rappaport,Adv N.,. Mater and Roichman,., 21 Y. (2009). Charge

film devices: a tutorial review, , 27, 2741–2761. J. Phys. Chem. B, 106 Tong, G. S. M., Kurnikov, I. V., and Beratan, D. N. (2002). Tunneling energy effects on GC oxidation in DNA, , 9, 2381–2392. classical models and new theories, Chem. Soc. Rev., 40 Troisi, A. (2011). Charge transport in high mobility molecular semiconductors: , 5, 2347–2358. Chem. Phys. Lett., 344 Troisi, A., and Orlandi, G. (2001). The hole transfer in DNA: calculation of electron coupling between close bases, , 5–6, 509–518. J. Phys. Chem. A, 110, Troisi, A., and Orlandi, G. (2006). Dynamics of the intermolecular transfer integral in crystalline organic semiconductors, 11, 4065–4070.

Troisi, A., Ratner, M. A., andJ. Am Zimmt,. Chem M.. Soc B.., (2004).126 Dynamic nature of the intramolecular electronic coupling mediated by a solvent molecule: a computational study, , 7, 2215–2224.

Tsutsumi, J., Matsui, H., Yamada, T., Kumai, R., and Hasegawa,J. Phys T.. Chem (2012).. C, 116Generation and diffusion of photocarriers in molecular donor-acceptor systems: dependence on charge-transfer gap energy, , 45, 23957–23964.

Valeev, E. F., Coropceanu, V., da Silva Filho, D. A., Salman,J. Am S., .and Chem Brédas,. Soc., 128J.-L. , (2006).30, 9882–9886. Effect of electronic polarization on charge-transport parameters in molecular organic semiconductors,

J. Am. Vehoff,Chem T., .Baumeier, Soc., 132 B., Troisi, A., and Andrienko, D. (2010). Charge transport in organic crystals: role of disorder and topological connectivity, , 33, 11702–11708.

Voityuk, A. A., Jortner, J., Bixon,J. M.,Chem and. Phys Rösch,., 114 N. (2001). Electronic coupling between Watson-Crick pairs for hole transfer and transport in

desoxyribonucleic acid, , 13, 5614–5620.

Voityuk,-stacks, A. A., J and. Chem Rösch,. Phys N.., 117 (2002). Fragment charge difference method for estimating donor-acceptor electronic coupling: application to DNA , 12, 5607–5616. for charge transfer and transport in DNA, J. Phys. Chem. B, 104 Voityuk, A. A., Rösch, N., Bixon, M., and Jortner, J. (2000). Electronic coupling , 41, 9740–9745.

Wen, S.-H., Li, A., Song, JJ.,. Phys Deng,. Chem W.-Q.,. B ,Han, 113 K.-L., and Goddard, W. A. (2009). First-principles investigation of anistropic hole mobilities in organic semiconductors, , 26, 8813–8819. 32 Theoretical Modeling for Electron Transfer in Organic Materials

J. Chem. Phys., 122, Xu, R. X., Cui, P., Li, X. Q., Mo, Y., and Yan, Y. J. (2005). Exact quantum master equation via the calculus on path integrals, 041103.

Yanai, T., Tew,Chem D. P.,. Phys and. Lett Handy,., 393 N. C. (2004). A new hybrid exchange- correlation functional using the Coulomb-attenuating method (CAM- B3LYP), , 1–3, 51–57. J. Chem. Phys., 124, 24, Yang, C.-H., and Hsu, C.-P. (2006). The dynamical correlation in spacer- mediated electron transfer couplings, 244507–244510.

Yang, dimethoxybenzene), J., Zhang, W., Si, Y., J and. Phys Zhao,. Chem Y.. B (2012)., 116 Intramolecular electronic couplings in class II/III organic mixed-valence systems of bis(1,4- , 48, 14126–14135.

Yang, X., Wang, L., Wang, C., Long, W., andChem Shuai,. Mater Z.., 20 (2008). Influences of crystal structures and molecular sizes on the charge mobility of organic semiconductors: oligothiophenes, , 9, 3205–3211. J. Phys. Yang, ChemY., Geng,. B, 110H., Yin, S., Shuai, Z., and Peng, J. (2006). First-principle band structure calculations of tris(8-hydroxyquinolinato)aluminum, , 7, 3180–3184. Pyrrole-based organic dyes for dye-sensitized solar cells, J. Phys. Chem. Yen, Y.-S.,C, 112 Hsu, Y.-C., Lin, J. T., Chang, C.-W., Hsu, C.-P., and Yin, D.-J. (2008).

, 32, 12557–12567. 60 Yi, Y.,theoretical Coropceanu, insight V., and into Brédas, the impact J.-L. of (2009). interface Exciton-dissociation geometry, J. Am. Chem and. Soccharge-recombination., 131 processes in pentacene/C solar cells:

, 43, 15777–15783. J. Chem. Phys., 124 You, Z.-Q., Hsu, C.-P., and Fleming, G. R. (2006). Triplet-triplet energy-transfer coupling: Theory and calculation, , 4, 044506.

You, Z.-Q., Shao, Y., andChem Hsu,. Phys C.-P.. Lett (2004).., 390 Calculating electron transfer couplings by the spin-flip approach: energy splitting and dynamical correlation effects, , 1–3, 116–123.

Zhang, L. Y., Friesner,J. Chem R.. Phys A., and., 107 Murphy, R. B. (1997). Ab initio quantum chemical calculation of electron transfer matrix elements for large molecules, , 2, 450–459. References

1 Chapter 1 - Theoretical Modeling for Electron Transfer in Organic Materials

Adams, D. M., Brus, L., Chidsey, C. E. D., Creager, S., Creutz, C., Kagan, C. R., Kamat, P. V., Lieberman, M., Lindsay, S., Marcus, R. A., Metzger, R. M., Michel-Beyerle, M. E., Miller, J. R., Newton, M. D., Rolison, D. R., Sankey, O., Schanze, K. S., Yardley, J., and Zhu, X. (2003). Charge transfer on the nanoscale: current status, J. Phys. Chem. B, 107, 28, 6668–6697.

Al-Mahboob, A., Sadowski, J. T., Fujikawa, Y., and Sakurai, T. (2009). The growth mechanism of pentacene-fullerene heteroepitaxial films, Surf. Sci., 603, 8, L53–L56.

Bässler , H. (1993). Charge transport in disordered organic photoconductors a Monte Carlo simulation study, Phys. Status Solidi B, 175, 1, 15–56.

Becke, A. D. (1988). A multicenter numerical integration scheme for polyatomic molecules, J. Chem. Phys., 88, 4, 2547–2553.

Bixon, M., Jortner, J., and Verhoeven, J. W. (1994). Lifetimes for radiative charge recombination in donor-acceptor molecules, J. Am. Chem. Soc., 116, 16, 7349–7355.

Bouhassoune, M., Mensfoort, S. L. M. V., Bobbert, P. A., and Coehoorn, R. (2009). Carrier-density and field-dependent charge-carrier mobility in organic semiconductors with correlated Gaussian disorder, Org. Electron., 10, 3, 437–445.

Braga, D., and Horowitz, G. (2009). High-performance organic field-effect transistors, Adv. Mater., 21, 14–15, 1473–1486.

Brédas, J. L., Calbert, J. P., da Silva Filho, D. A., and Cornil, J. (2002). Organic semiconductors: a theoretical characterization of the basic parameters governing charge transport, Proc. Natl. Acad. Sci. U. S. A., 99, 9, 5804–5809.

Brédas, J.-L., Norton, J. E., Cornil, J., and Coropceanu, V. (2009). Molecular understanding of organic solar cells: the challenges, Acc. Chem. Res., 42, 11, 1691–1699. Broo, A., and Larsson, S. (1990). Electron transfer due to through-bond interactions. Study of aliphatic chains, Chem. Phys., 148, 1, 103–115.

Cantrell, R. A., and Clancy, P. (2012). A new kinetic Monte Carlo algorithm for heteroepitactical growth: case study of C 60 growth on pentacene, J. Chem. Theory Comput., 8, 3, 1048–1057.

Caruso, D., and Troisi, A. (2012). Long-range exciton dissociation in organic solar cells, Proc. Natl. Acad. Sci. U. S. A., 109, 34, 13498–13502.

Casida, M. E., and Salahub, D. R. (2000). Asymptotic correction approach t o improving approximate exchange-correlation potentials: timedependent density-functional theory calculations of molecular excitation spectra, J. Chem. Phys., 113, 20, 8918–8935.

Cave, R. J., and Newton, M. D. (1996). Generalization of the Mulliken-Hush treatment for the calculation of electron transfer matrix elements, Chem. Phys. Lett., 249, 1–2, 15–19.

Cave, R. J., and Newton, M. D. (1997). Calculation of electronic coupling matrix elements for ground and excited state electron transfer reactions: comparison of the generalized Mulliken-Hush and block diagonalization methods, J. Chem. Phys., 106, 22, 9213–9226.

Chai, S., Wen, S.-H., and Han, K.-L. (2011). Understanding electronwithdrawing substituent effect on structural, electronic and charge transport properties of perylene bisimide derivatives, Org. Electron., 12, 11, 1806–1814.

Chang, Y.-C., and Chao, I. (2010). An important key to design molecules with small internal reorganization energy: strong nonbonding character in frontier orbitals, J. Phys. Chem. Lett., 1, 1, 116–121.

Chen, H.-C., and Hsu, C.-P. (2005). Ab Initio characterization of electron transfer coupling in photoinduced systems: generalized MullikenHush with configuration-interaction singles, J. Phys. Chem. A, 109, 51, 11989–11995.

Chen, H.-Y., and Chao, I. (2005). Effect of perfluorination on the chargetransport properties of organic semiconductors: density functional theory study of perfluorinated pentacene and sexithiophene, Chem. Phys. Lett., 401, 4–6, 539–545.

Cheng, Y.-C., and Silbey, R. J. (2008). A unified theory for charge-carrier transport in organic crystals, J. Chem. Phys., 128, 11, 114713–114718.

Cheng, Y. C., Silbey, R. J., da Silva Filho, D. A., Calbert, J. P., Cornil, J., and Brédas, J. L. (2003). Three-dimensional band structure and bandlike mobility in oligoacene single crystals: a theoretical investigation, J. Chem. Phys., 118, 8, 3764–3774.

Clarke, T. M., and Durrant, J. R. (2010). Charge photogeneration in organic solar cells, Chem. Rev., 110, 11, 6736–6767.

Coropceanu, V., Cornil, J., da Silva Filho, D. A., Olivier, Y., Silbey, R., and Brédas, J.-L. (2007). Charge transport in organic semiconductors, Chem. Rev., 107, 4, 926–952.

Daizadeh, I., Gehlen, J. N., and Stuchebrukhov, A. A. (1997). Calculation of electronic tunneling matrix element in proteins: comparison of exact and approximate one-electron methods for Ru-modified azurin, J. Chem. Phys., 106, 13, 5658–5666.

Davidson, E. R., and Borden, W. T. (1983). Symmetry breaking in polyatomic molecules: real and artifactual, J. Phys. Chem., 87, 24, 4783–4790. Deng, W.-Q., and Goddard, W. A. (2004). Predictions of hole mobilities in oligoacene organic semiconductors from quantum mechanical calculations, J. Phys. Chem. B, 108, 25, 8614–8621.

Dimitrakopoulos, C. D., and Malenfant, P. R. L. (2002). Organic thin film transistors for large area electronics, Adv. Mater., 14, 2, 99–117.

Faist, M. A., Kirchartz, T., Gong, W., Ashraf, R. S., McCulloch, I., de Mello, J. C., Ekins-Daukes, N. J., Bradley, D. D. C., and Nelson, J. (2011). Competition between the charge transfer state and the singlet states of donor or acceptor limiting the efficiency in polymer: fullerene solar cells, J. Am. Chem. Soc., 134, 1, 685–692.

Farazdel, A., Dupuis, M., Clementi, E., and Aviram, A. (1990). Electric-field induced intramolecular electron transfer in spiro �-electron systems and their suitability as molecular electronic devices. A theoretical study, J. Am. Chem. Soc., 112, 11, 4206–4214. Gao, Y. (2010). Interface in Organic Semiconductor Devices: Dipole, Doping, Band Bending, and Growth (Taylor & Francis), ISBN 9781420072914, pp. 141–179.

Gould, I. R., Young, R. H., Mueller, L. J., and Farid, S. (1994). Mechanisms of exciplex formation. Roles of superexchange, solvent polarity, and driving force for electron transfer, J. Am. Chem. Soc., 116, 18, 8176–8187.

Heimel, G., Salzmann, I., Duhm, S., and Koch, N. (2010). Design of organic semiconductors from molecular electrostatics, Chem. Mater., 23, 3, 359–377.

Herbich, J., and Kapturkiewicz, A. (1998). Electronic structure and molecular conformation in the excited charge transfer singlet states of 9-acridyl and other aryl derivatives of aromatic amines, J. Am. Chem. Soc., 120, 5, 1014–1029.

Holstein, T. (1959a). Studies of polaron motion part I. The molecular-crystal model, Ann. Phys., 8, 325–342.

Holstein, T. (1959b). Studies of polaron motion part II. The “small” polaron, Ann. Phys., 8, 343–389.

Hoppe, H., and Sariciftci, N. S. (2004). Organic solar cells: an overview, J. Mater. Res., 19, 7, 1924–1945.

Hsu, C.-P. (2009). The electronic couplings in electron transfer and excitation energy transfer, Acc. Chem. Res., 42, 4, 509–518.

Huang, S.-T., Hsu, Y.-C., Yen, Y.-S., Chou, H. H., Lin, J. T., Chang, C.-W., Hsu, C.-P., Tsai, C., and Yin, D.-J. (2008). Organic dyes containing cyanovinyl entity in the spacer for solar cells applications, J. Phys. Chem. C, 112, 49, 19739–19747.

Hung, L. S., and Chen, C. H. (2002). Recent progress of molecular organic electroluminescent materials and devices, Mater. Sci. Eng. R Rep., 39, 5–6, 143–222.

Hush, N. S. (1967). Intervalence-Transfer Absorption, Part 2. Theor etical Considerations and Spectroscopic Data (John Wiley & Sons, Inc.), pp. 391–444.

Hush, N. S. (1968). Homogeneous and heterogeneous optical and thermal electron transfer, Electrochim. Acta, 13, 5, 1005–1023. Hutchison, G. R., Ratner, M. A., and Marks, T. J. (2005a). Hopping transport in conductive heterocyclic oligomers: reorganization energies and substituent effects, J. Am. Chem. Soc., 127, 7, 2339–2350.

Hutchison, G. R., Ratner, M. A., and Marks, T. J. (2005b). Intermolecular charge transfer between heterocyclic oligomers. Effects of heteroatom and molecular packing on hopping transport in organic semiconductors, J. Am. Chem. Soc., 127, 48, 16866–16881.

Ishii, H., Sugiyama, K., Ito, E., and Seki, K. (1999). Energy level alignment and interfacial electronic structures at organic/metal and organic/organic interfaces, Adv. Mater., 11, 12, 972–972.

Jurchescu, O. D., Baas, J., and Palstra, T. T. M. (2004). Effect of impurities on the mobility of single crystal pentacene, Appl. Phys. Lett., 84, 16, 3061–3063.

Kang, S. J., Yi, Y., Kim, C. Y., Cho, S. W., Noh, M., Jeong, K., and Whang, C. N. (2006). Energy level diagrams of C 60 /pentacene/Au and pentacene/ C 60 /Au, Synth. Met., 156, 1, 32–37.

Karl, N. (2003). Charge carrier transport in organic semiconductors, Synth. Met., 133–134, 649–657.

Kenkre, V. M., Andersen, J. D., Dunlap, D. H., and Duke, C. B. (1989). Unified theory of the mobilities of photoinjected electrons in naphthalene, Phys. Rev. Lett., 62, 1165–1168.

Kim, E.-G., Coropceanu, V., Gruhn, N. E., Snchez-Carrera, R. S., Snoeberger, R., Matzger, A. J., and Brédas, J.-L. (2007). Charge transport parameters of the pentathienoacene crystal, J. Am. Chem. Soc., 129, 43, 13072–13081.

Koopmans, T. (1934). Über die zuordnung von wellenfunktionen und eigenwerten zu den einzelnen elektronen eines atoms, Physica, 1, 1–6, 104–113.

Krylov, A. I. (2006). Spin-flip equation-of-motion coupled-cluster electronic structure method for a description of excited states, bond breaking, diradicals, and triradicals, Acc. Chem. Res., 39, 2, 83–91.

Kuciauskas, D., Freund, M. S., Gray, H. B., Winkler, J. R., and Lewis, N. S. (2000). Electron transfer dynamics in nanocrystalline titanium dioxide solar cells sensitized with ruthenium or osmium polypyridyl complexes, J. Phys. Chem. B, 105, 2, 392–403.

Kwiatkowski, J. J., Frost, J. M., and Nelson, J. (2009). The effect of morphology on electron field-effect mobility in disordered C 60 thin films, Nano Lett., 9, 3, 1085–1090.

Kwon, O., Coropceanu, V., Gruhn, N. E., Durivage, J. C., Laquindanum, J. G., Katz, H. E., Cornil, J., and Brédas, J. L. (2004). Characterization of the molecular parameters determining charge transport in anthradithiophene, J. Chem. Phys., 120, 17, 8186–8194.

Larsson, S., and Volosov, A. (1986). Distance dependence in photo-induced intramolecular electron transfer, J. Chem. Phys., 85, 5, 2548–2554.

Le Bahers, T., Pauporté, T., Lainé, P. P., Labat, F., Adamo, C., and Ciofini, I. (2013). Modelling dye sensitized solar cells: from theory to experiment, J. Phys. Chem. Lett. (in press).

Lee, S.-J., Chen, H.-C., You, Z.-Q., Liu, K.-L., Chow, T. J., Chen, I.-C., and Hsu, C.-P. (2010). Theoretical characterization of photoinduced electron transfer in rigidly linked donor-acceptor molecules: The fragment charge difference and the generalized Mulliken-Hush schemes, Mol. Phys., 108, 19–20, 2775–2789.

Liang, K.-K., Lin, C.-K., Chang, H.-C., Villaeys, A. A., Hayashi, M., and Hsien Lin, S. (2007). Calculation of the vibrationally non-relaxed photo-induced electron transfer rate constant in dye-sensitized solar cells, Phys. Chem. Chem. Phys., 9, 7, 853–861.

Liao, S.-H., Shiu, J.-R., Liu, S.-W., Yeh, S.-J., Chen, Y.-H., Chen, C. T., Chow, T. J., and Wu, C.-I. (2008). Hydroxynaphthyridine-derived group III metal chelates: Wide band gap and deep blue analogues of green Alq 3 (tris(8hydroxyquinolate)aluminum) and their versatile applications for organic light-emitting diodes, J. Am. Chem. Soc., 131, 2, 763–777.

Lin, B. C., Cheng, C. P., and Lao, Z. P. M. (2003). Reorganization energies in the transports of holes and electrons in organic amines in organic electroluminescence studied by density functional theory, J. Phys. Chem. A, 107, 26, 5241–5251.

Lin, B. C., Cheng, C. P., You, Z.-Q., and Hsu, C.-P. (2005). Charge transport properties of tris(8-hydroxyquinolinato)aluminum(III): why it is an electron transporter, J. Am. Chem. Soc., 127, 1, 66–67.

Lin, B.-C., Cheng, C.-P., You, Z.-Q., and Hsu, C.-P. (2011). The role of CH–� interaction in the charge transfer properties in tris(8-hydroxyquinolinato) aluminium (III), Phys. Chem. Chem. Phys., 13, 46, 20704–20713.

Liu, T., Cheung, D. L., and Troisi, A. (2011). Structural variability and dynamics of the P3HT/PCBM interface and its effects on the electronic structure and the charge-transfer rates in solar cells, Phys. Chem. Chem. Phys., 13, 48, 21461–21470.

Löwdin, P.-O. (1950). On the non-orthogonality problem connected with the use of atomic wave functions in the theory of molecules and crystals, J. Chem. Phys., 18, 3, 365–375.

Maggio, E., Martsinovich, N., and Troisi, A. (2012). Evaluating charge recombination rate in dye-sensitized solar cells from electronic structure calculations, J. Phys. Chem. C, 116, 14, 7638–7649.

Malagoli, M., and Brédas, J. L. (2000). Density functional theory study of the geometric structure and energetics of triphenylamine-based holetransporting molecules, Chem. Phys. Lett., 327, 1–2, 13–17.

Marcus, R. A. (1956). On the theory of oxidation-reduction reactions involving electron transfer. I, J. Chem. Phys., 24, 5, 966–978.

Marcus, R. A. (1993). Electron transfer reactions in chemistry. Theory and experiment, Rev. Mod. Phys., 65, 3, 599–610.

Miller, A., and Abrahams, E. (1960). Impurity conduction at low concentrations, Phys. Rev., 120, 745–755.

Mulliken, R. S. (1955). Electronic population analysis on LCAO-MO molecular wave functions. I, J. Chem. Phys., 23, 10, 1833–1840.

Nagata, Y., and Lennartz, C. (2008). Atomistic simulation on charge mobility of amorphous tris(8-hydroxyquinoline) aluminum (Alq 3 ): origin of Poole-Frenkel-type behavior, J. Chem. Phys., 129, 3, 034709–9.

Nan, G., Yang, X., Wang, L., Shuai, Z., and Zhao, Y. (2009). Nuclear tunneling effects of charge transport in rubrene, tetracene, and pentacene, Phys. Rev. B, 79, 11, 115203–9.

Nelson, J., Kwiatkowski, J. J., Kirkpatrick, J., and Frost, J. M. (2009). Modeling charge transport in organic photovoltaic materials, Acc. Chem. Res., 42, 11, 1768–1778.

Newton, M. D. (1991). Quantum chemical probes of electron-transfer kinetics: the nature of donor-acceptor interactions, Chem. Rev., 91, 5, 767–792.

Novikov, S. V., Dunlap, D. H., Kenkre, V. M., Parris, P. E., and Vannikov, A. V. (1998). Essential role of correlations in governing charge transport in disordered organic materials, Phys. Rev. Lett., 81, 20, 4472–4475.

Ohta, K., Closs, G. L., Morokuma, K., and Green, N. J. (1986). Stereoelectronic effects in intramolecular long-distance electron transfer in radical anions as predicted by ab-initio MO calculations, J. Am. Chem. Soc., 108, 6, 1319–1320.

Olivares-Amaya, R., Amador-Bedolla, C., Hachmann, J., Atahan-Evrenk, S., Sánchez-Carrera, R. S., Vogt, L., and Aspuru-Guzik, A. (2011). Accelerated computational discovery of high-performance materials for organic photovoltaics by means of cheminformatics, Energy Environ. Sci., 4, 12, 4849–4861.

Orian, L., Carlotto, S., Di Valentin, M., and Polimeno, A. (2012). Charge transfer in model bioinspired carotene-porphyrin dyads, J. Phys. Chem. A, 116, 15, 3926–3933.

Ortmann, F., Bechstedt, F., and Hannewald, K. (2009). Theory of charge transport in organic crystals: Beyond Holstein’s small-polaron model, Phys. Rev. B, 79, 23, 235206–11.

Ostroverkhova, O., Cooke, D. G., Hegmann, F. A., Anthony, J. E., Podzorov, V., Gershenson, M. E., Jurchescu, O. D., and Palstra, T. T. M. (2006). Ultrafast carrier dynamics in pentacene, functionalized pentacene, tetracene, and rubrene single crystals, Appl. Phys. Lett., 88, 16, 162101–3.

Pasveer, W. F., Cottaar, J., Tanase, C., Coehoorn, R., Bobbert, P. A., Blom, P. W. M., de Leeuw, D. M., and Michels, M. A. J. (2005). Unified description of charge-carrier mobilities in disordered semiconducting polymers, Phys. Rev. Lett., 94, 20, 206601–4.

Peierls, R. E. (2001). Quantum Theory of Solids (Oxford University Press: New York).

Perdew, J. P., Parr, R. G., Levy, M., and Balduz, J. L. (1982). Density-functional theory for fractional particle number: derivative discontinuities of the energy, Phys. Rev. Lett., 49, 1691–1694.

Podzorov, V., Menard, E., Borissov, A., Kiryukhin, V., Rogers, J. A., and Gershenson, M. E. (2004). Intrinsic charge transport on the surface of organic semiconductors, Phys. Rev. Lett., 93, 8, 086602–4.

Prytkova, T. R., Kurnikov, I. V., and Beratan, D. N. (2007). Coupling coherence distinguishes structure sensitivity in protein electron transfer, Science, 315, 5812, 622–625.

Rand, B. P., Burk, D. P., and Forrest, S. R. (2007). Offset energies at organic semiconductor heterojunctions and their influence on the open-circuit voltage of thin-film solar cells, Phys. Rev. B, 75, 11, 115327–11.

Rehm, D., and Weller, A. (1970). Kinetics of fluorescence quenching by electron and H-atom transfer, Isr. J. Chem., 8, 2, 259–271.

Rust, M., Lappe, J., and Cave, R. J. (2002). Multistate effects in calculations of the electronic coupling element for electron transfer using the generalized Mulliken-Hush method, J. Phys. Chem. A, 106, 15, 3930– 3940.

Scharber, M. C., Mühlbacher, D., Koppe, M., Denk, P., Waldauf, C., Heeger, A. J., and Brabec, C. J. (2006). Design rules for donors in bulk-heterojunction solar cellstowards 10% energy-conversion efficiency, Adv. Mater., 18, 6, 789–794.

Sini, G., Sears, J. S., and Brédas, J.-L. (2011). Evaluating the performance of DFT functionals in assessing the interaction energy and ground-state charge transfer of donor/acceptor complexes: tetrathiafulvalenetetracyanoquinodimethane (TTF-TCNQ) as a model case, J. Chem. Theory Comput., 7, 3, 602–609.

Tawada, Y., Tsuneda, T., Yanagisawa, S., Yanai, T., and Hirao, K. (2004). A longrange-corrected time-dependent density functional theory, J. Chem. Phys., 120, 18, 8425–8433.

Tessler, N., Preezant, Y., Rappaport, N., and Roichman, Y. (2009). Charge transport in disordered organic materials and its relevance to thinfilm devices: a tutorial review, Adv. Mater., 21, 27, 2741–2761.

Tong, G. S. M., Kurnikov, I. V., and Beratan, D. N. (2002). Tunneling energy effects on GC oxidation in DNA, J. Phys. Chem. B, 106, 9, 2381–2392.

Troisi, A. (2011). Charge transport in high mobility molecular semiconductors: classical models and new theories, Chem. Soc. Rev., 40, 5, 2347–2358.

Troisi, A., and Orlandi, G. (2001). The hole transfer in DNA: calculation of electron coupling between close bases, Chem. Phys. Lett., 344, 5–6, 509–518.

Troisi, A., and Orlandi, G. (2006). Dynamics of the intermolecular transfer integral in crystalline organic semiconductors, J. Phys. Chem. A, 110, 11, 4065–4070.

Troisi, A., Ratner, M. A., and Zimmt, M. B. (2004). Dynamic nature of the intramolecular electronic coupling mediated by a solvent molecule: a computational study, J. Am. Chem. Soc., 126, 7, 2215–2224.

Tsutsumi, J., Matsui, H., Yamada, T., Kumai, R., and Hasegawa, T. (2012). Generation and diffusion of photocarriers in molecular donor-acceptor systems: dependence on charge-transfer gap energy, J. Phys. Chem. C, 116, 45, 23957–23964.

Valeev, E. F., Coropceanu, V., da Silva Filho, D. A., Salman, S., and Brédas, J.-L. (2006). Effect of electronic polarization on charge-transport parameters in molecular organic semiconductors, J. Am. Chem. Soc., 128, 30, 9882–9886.

Vehoff, T., Baumeier, B., Troisi, A., and Andrienko, D. (2010). Charge transport in organic crystals: role of disorder and topological connectivity, J. Am. Chem. Soc., 132, 33, 11702–11708.

Voityuk, A. A., Jortner, J., Bixon, M., and Rösch, N. (2001). Electronic coupling between Watson-Crick pairs for hole transfer and transport in desoxyribonucleic acid, J. Chem. Phys., 114, 13, 5614–5620.

Voityuk, A. A., and Rösch, N. (2002). Fragment charge difference method f or estimating donor-acceptor electronic coupling: application to DNA �-stacks, J. Chem. Phys., 117, 12, 5607–5616.

Voityuk, A. A., Rösch, N., Bixon, M., and Jortner, J. (2000). Electronic coupling for charge transfer and transport in DNA, J. Phys. Chem. B, 104, 41, 9740–9745.

Wen, S.-H., Li, A., Song, J., Deng, W.-Q., Han, K.-L., and Goddard, W. A. (2009). First-principles investigation of anistropic hole mobilities in organic semiconductors, J. Phys. Chem. B, 113, 26, 8813–8819.

Xu, R. X., Cui, P., Li, X. Q., Mo, Y., and Yan, Y. J. (2005). Exact quantum master equation via the calculus on path integrals, J. Chem. Phys., 122, 041103.

Yanai, T., Tew, D. P., and Handy, N. C. (2004). A new hybrid exchangecorrelation functional using the Coulomb-attenuating method (CAMB3LYP), Chem. Phys. Lett., 393, 1–3, 51–57.

Yang, C.-H., and Hsu, C.-P. (2006). The dynamical correlation in spacermediated electron transfer couplings, J. Chem. Phys., 124, 24, 244507–244510.

Yang, J., Zhang, W., Si, Y., and Zhao, Y. (2012). Intramolecular electronic couplings in class II/III organic mixed-valence systems of bis(1,4dimethoxybenzene), J. Phys. Chem. B, 116, 48, 14126–14135.

Yang, X., Wang, L., Wang, C., Long, W., and Shuai, Z. (2008). Influences of crystal structures and molecular sizes on the charge mobility of organic semiconductors: oligothiophenes, Chem. Mater., 20, 9, 3205–3211.

Yang, Y., Geng, H., Yin, S., Shuai, Z., and Peng, J. (2006). First-principle band structure calculations of tris(8-hydroxyquinolinato)aluminum, J. Phys. Chem. B, 110, 7, 3180–3184.

Yen, Y.-S., Hsu, Y.-C., Lin, J. T., Chang, C.-W., Hsu, C.-P., and Yin, D.-J. (2008). Pyrrole-based organic dyes for dye-sensitized solar cells, J. Phys. Chem. C, 112, 32, 12557–12567.

Yi, Y., Coropceanu, V., and Brédas, J.-L. (2009). Exciton-dissociation and charge-recombination processes in pentacene/C 60 solar cells: theoretical insight into the impact of interface geometry, J. Am. Chem. Soc., 131, 43, 15777–15783.

You, Z.-Q., Hsu, C.-P., and Fleming, G. R. (2006). Triplet-triplet energy-transfer coupling: Theory and calculation, J. Chem. Phys., 124, 4, 044506.

You, Z.-Q., Shao, Y., and Hsu, C.-P. (2004). Calculating electron transfer couplings by the spin-flip approach: energy splitting and dynamical correlation effects, Chem. Phys. Lett., 390, 1–3, 116–123.

Zhang, L. Y., Friesner, R. A., and Murphy, R. B. (1997). Ab initio quantum chemical calculation of electron transfer matrix elements for large molecules, J. Chem. Phys., 107, 2, 450–459. 2 Chapter 2 - Organic Structure Design and Applications in Solution-Processed Organic Micro- and Nanomaterial

1. Hodes, G. (2007). When small is different: some recent advances in concepts and applications of nanoscale phenomena, Adv. Mater., 19, 639–655.

2. Vollath, D (2008). Nanomaterials: An Introduction to Synthesis, Properties and Applications, 1st ed. (Wiley-VCH).

3. Hu, J., Odom, T. W., and Lieber, C. M. (1999). Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes, Acc. Chem. Res., 32, 435–445.

4. Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim, F., and Yan, H. (2003). One-dimensional nanostructures: synthesis, characterization, and applications, Adv. Mater., 15, 353–389.

5. Nozik, A. J., Beard, M. C., Luther, J. M., Law, M., Ellingson, R. J., and Johnson, J. C. (2010). Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to thirdgeneration photovoltaic solar cells, Chem. Rev., 110, 6873–6890.

6. Harris, P. J. F. (1999). Carbon Nanotubes and Related Structures: New Materials for the Twenty-First Century (Cambridge University Press).

7. Rao, C. N. R., and Kalyanikutty, K. P. (2008). The liquid–liquid interface as a medium to generate nanocrystalline films of inorganic materials, Acc. Chem. Res., 41, 489–499.

8. Murray, R. W. (2008). Nanoelectrochemistry: metal nanoparticles, nanoelectrodes, and nanopores. Chem. Rev., 108, 2688–2720.

9. Burda, C., Chen, X., Narayanan, R., and El-Sayed, M. A. (2005). Chemistry and properties of nanocrystals of different shapes, Chem. Rev., 105, 1025–1102.

10. Klauk, H. (2006). Organic Electronics: Materials, Manufacturing, and Applications (Wiley-VCH).

11. http://www.samsungdisplay.com/.

12. Li, J., Zhao, Y., Tan, H. S., Guo, Y., Di, C.-A., Yu, G., Liu, Y., Lin, M., Lim, S. H., Zhou, Y., Su, H., and Ong, B. S. (2012). A stable solution-processed polymer semiconductor with record high-mobility for printed transistors. Sci. Rep., 2, 754.

13. Wang, C., Dong, H., Hu, W., Liu, Y., and Zhu, D. (2012). Semiconducting p-conjugated systems in field-effect transistors: a material odyssey of organic electronics, Chem. Rev., 112, 2208–2267.

14. He, Z., Zhong, C., Su, S., Xu, M., Wu, H., and Cao, Y. (2012). Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure, Nat. Photon., 6, 591–595.

15. Dou, L., You, J., Yang, J., Chen, C.-C., He, Y., Murase, S., Moriarty, T., Emery, K., Li, G., Yang, Y. (2012). Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer, Nat. Photon., 6, 180–185.

16. Reese, C., Roberts, M., Ling, M. M., and Bao, Z. (2004). Organic thin film transistors, Mater. Today, 7, 20–27.

17. Moonen, P. F., Yakimets, I., and Huskens, J. (2012). Fabrication of transistors on flexible substrates: from mass-printing to highresolution alternative lithography strategies, Adv. Mater., 24, 5526–5541.

18. Gelinck, G. H., Huitema, H. E. A., Veenendaal, E. V., Cantatore, E., Schrijnemakers, L., van der Putten, L. J. B. P. H., Geuns, T. C. T., Beenhakkers, M., Giesbers, J. B., Huisman, B.-H., Meijer, E. J., Benito, E. M., Touwslager, F. J., Marsman, A. W., van Rens B. J. E., and de Leeuw, D. M. (2004). Flexible active-matrix displays and shift registers based on solution-processed organic transistors, Nat. Mater. 9, 32–37.

19. Myny, K., Steudel, S., Smout, S., Vicca, P., Furthner, F., van der Putten, B., Tripathi, A. K., Gelinck, G. H., Genoe, J., Dehaene, W., Heremans, P. (2010). Organic RFID transponder chip with data rate compatible with electronic product coding, Org. Electron., 11, 1176–1179.

20. Kim, J. Y., Lee, K., Coates, N. E., Moses, D., Nguyen, T.-Q., Dante, M., Heeger, A. J. (2007). Efficient tandem polymer solar cells fabricated by all-solution processing, Science, 13, 222–225.

21. Street, R. A., Wong, W. S., Ready, S. E., Chabinyc, M. L., Arias, A. C., Limb, S., Salleo, A., and Lujan, R. (2006). Jet printing flexible displays, Mater. Today, 9, 32–37.

22. Krebs, F. C. (2009). Polymer solar cell modules prepared using rollto-roll methods: knife-over-edge coating, slot-die coating and screen printing, Sol. Energy Mater. Sol. Cells, 93, 465–475.

23. Zhao, Y. S., Fu, H., Peng, A., Ma, Y., Liao, Q., and Yao, J. (2010). Construction and optoelectronic properties of organic one-dimensional nanostructures, Acc. Chem. Res., 43, 409–418.

24. Kim, F. S., Ren, G., and Jenekhe, S. A. (2011). One-dimensional nanostructures of p-conjugated molecular systems: assembly, properties, and applications from photovoltaics, sensors, and nanophotonics to nanoelectronics, Chem. Mater., 23, 682–732.

25. Li, R., Hu, W., Liu, Y., and Zhu, D. (2010). Micro- and nanocrystals of organic semiconductors, Acc. Chem. Res., 43, 529–540.

26. Jiang, L., Dong, H., and Hu, W. (2010). Organic single crystal fieldeffect transistors: advances and perspectives, J. Mater. Chem., 20, 4994–5007.

27. Zang, L., Che, Y., and Moore, J. S. (2008). One-dimensional self-assembly of planar p-conjugated molecules: adaptable building blocks for organic nanodevices, Acc. Chem. Res., 41, 1596–1608.

28. Pramod, P., Thomas, K. G., and George, M. V. (2009). Organic nanomaterials: morphological control for charge stabilization and charge transport, Chem. Asian J., 4, 806–823.

29. Martin, C. R. (1995). Template synthesis of electronically conductive polymer nanostructures, Acc. Chem. Res., 28, 61–68.

30. Li, D., Xia, Y. (2004). Electrospinning of nanofibers: reinventing the wheel? Adv. Mater., 16, 1151–1170.

31. Gates, B. D., Xu, Q., Love, J. C., Wolfe, D. B., Whitesides, G. M. (2004). Unconventional nanofabrication, Annu. Rev. Mater. Res., 34, 339–372.

32. Kloc, C., Simpkins, P. G., Siegrist, T., Laudise, R. A. (1997). Physical vapor growth of centimeter-sized crystals of α-hexathiophene, J. Cryst. Growth, 182, 416–427.

33. Lei, T., Pei, J. (2012). Solution-processed organic nano- and micromaterials: design strategy, growth mechanism and applications, J. Mater. Chem., 22, 785–798.

34. Masuda, H., Fukuda, K. (1995). Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina, Science, 268, 1466–1468.

35. Wu, C.-G., and Bein, T. (1994). Conducting polyaniline filaments in a mesoporous channel host, Science, 264, 1757–1759.

36. Parthasarathy, R. V., and Martin, C. R. (1994). Template-synthesized polyaniline microtubules, Chem. Mater., 6, 1627–1632.

37. Hurst, S. J., Payne, E. K., Qin, L., and Mirkin, C. A. (2006). Multisegmented one-dimensional nanorods prepared by hard-template synthetic methods, Angew. Chem. Int. Ed., 45, 2672–2692.

38. Nguyen, T.-Q., Wu, J., Doan, V. Schwartz, B. J., and Tolbert, S. H. (2000). Control of energy transfer in oriented conjugated polymer-mesoporous silica composites, Science, 288, 652–656.

39. Martin, C. R. (1994). Nanomaterials: a membrane-based synthetic approach, Science, 266, 1961–1966

40. Massuyeau, F., Duvail, J. L., Athalin, H., Lorcy, J. M., Lefrant, S., Wéry, J., and Faulques, E. (2009). Elaboration of conjugated polymer nanowires and nanotubes for tunable photoluminescence properties, Nanotechnology, 20, 155701.

41. Li, X., Tian, S., Ping, Y., Kim, D. H., and Knoll, W. (2005). One-step route to the fabrication of highly porous polyaniline nanofiber films by using PS-b-PVP diblock copolymers as templates, Langmuir, 21, 9393–9397.

42. Yoon, H., Chang, M., and Jang, J. (2007). Formation of 1D poly(3,4ethylenedioxythiophene) nanomaterials in reverse microemulsions and their application to chemical sensors, Adv. Funct. Mater., 17, 431–436.

43. Samitsu, S., Takanishi, Y., and Yamamoto, J. (2009). Self-assembly and one-dimensional alignment of a conducting polymer nanofiber in a nematic liquid crystal, Macromolecules, 42, 4366–4368.

44. Ma, Y., Zhang, J., Zhang, G., and He, H. (2004). Polyaniline nanowires on surfaces fabricated with DNA templates, J. Am. Chem. Soc., 126, 7097–7101.

45. Hamley, I. W. (2004). Developments in Block Copolymer Science and Technology (Wiley-VCH).

46. Formalas, A. (1934). US patent 1975504.

47. Greiner, A., and Wendorff, J. (2007). Electrospinning: a fascinating method for the preparation of ultrathin fibers, Angew. Chem., Int. Ed., 46, 5670–5703.

48. Di Benedetto, F., Camposeo, A., Pagliara, S., Mele, E., Persano, L., Stabile, R., Cingolani, R., and Pisignano, D. (2008). Patterning of light-emitting conjugated polymer nanofibres, Nat. Nanotech., 3, 614–619.

49. Gates, B. D., Xu, Q., Stewart, M., Ryan, D., Willson, C. G., Whitesides, G. M. (2005). New approaches to nanofabrication: molding, printing, and other techniques, Chem. Rev., 105, 1171–1196.

50. Dong, B., Zhong, D. Y., Chi, L. F., and Fuchs, H. (2005). Patterning of conducting polymers based on a random copolymer strategy: toward the facile fabrication of nanosensors exclusively based on polymers, Adv. Mater., 17, 2736–2741.

51. Persson, S. H. M., Dyreklev, P., and Inganäs, O. (1996). Patterning of poly(3-octylthiophene) conducting polymer films by electron beam exposure, Adv. Mater., 8, 405–408.

52. Tseng, A. A., Notargiacomo, A., and Chen, T. P. (2005). Nanofabrication by scanning probe microscope lithography: a review, J. Vac. Sci. Technol., B, 23, 877–894.

53. Piner, R. D., Zhu, J., Xu, F., Hong, S., and Mirkin, C. A. (1999). "Dip-Pen" nanolithography, Science, 283, 661–663.

54. Ginger, D. S., Zhang, H., and Mirkin, C. A. (2004). The evolution of dip-pen nanolithography, Angew. Chem. Int. Ed., 43, 30–45. 55. Salaita, K., Wang, Y., and Mirkin, C. A. (2007). Applications of dip-pen nanolithography, Nat. Nanotech., 2, 145–155.

56. Hu, Z., Muls, B., Gence, L., Serban, D. A., Hofkens, J., Melinte, S., Nysten, B., Demoustier-Champagne, S., and Jonas, A. M. (2007). High- throughput fabrication of organic nanowire devices with preferential internal alignment and improved performance, Nano Lett., 7, 3639–3644.

57. Reese, C., and Bao, Z. (2007). Organic single-crystal field-effect transistors, Mater. Today, 10, 20–27.

58. Tang, M. L., Bao, Z. (2010). Halogenated materials as organic semiconductors, Chem. Mater., 23, 446–455.

59. Jiang, L., Dong, H., and Hu, W. (2010). Organic single crystal field- effect transistors: advances and perspectives, J. Mater. Chem., 20, 4994–5007.

60. Tang, Q., Li, H., Liu, Y., and Hu, W. (2006). High-performance air-stable n-type transistors with an asymmetrical device configuration based on organic single-crystalline submicrometer/nanometer ribbons, J. Am. Chem. Soc., 128, 14634–14639.

61. Tang, Q., Li, L., Song, Y., Liu, Y., Li, H., Xu, W., Liu, Y., Hu, W., and Zhu, D. (2007). Photoswitches and phototransistors from organic single-crystalline sub-micro/nanometer ribbons, Adv. Mater., 19, 2624–2628.

62. Sze, S. M. (1981). Physics of Semiconductor Devices, 2nd ed. (Wiley: New York).

63. Zhang, Y., Dong, H., Tang, Q., Ferdous, S., Liu, F., Mannsfeld, S. C. B., Hu, W., Briseno, A. L. (2010). Organic single-crystalline p–n junction nanoribbons, J. Am. Chem. Soc., 132, 11580–11584.

64. Balakrishnan, K., Datar, A., Zhang, W., Yang, X., Naddo, T., Huang, J., Zuo, J., Yen, M., Moore, J. S., and Zang, L. (2006). Nanofibril self-assembly of an arylene ethynylene macrocycle, J. Am. Chem. Soc., 128, 6576–6577.

65. Steed, J. W., and Atwood, J. L. (2009). Supramolecular Chemistry, 2nd ed. (John Wiley & Sons Ltd., Publication).

66. Coropceanu, V., Cornil, J., da Silva Filho, D. A., Olivier, Y., Silbey, R., and Brédas, J.-L. (2007). Charge transport in organic semiconductors, Chem. Rev., 107, 926–952.

67. Hoeben, F. J. M., Jonkheijm, P., Meijer, E. W., and Schenning, A. P. H. J. (2005). About supramolecular assemblies of p-conjugated systems, Chem. Rev., 105, 1491–1546.

68. Wu, J., Pisula, W., Müllen, K. (2007). Graphenes as potential material for electronics, Chem. Rev., 107, 718–747.

69. Sergeyev, S., Pisula, W., and Geerts, Y. H. (2007). Discotic liquid crystals: a new generation of organic semiconductors, Chem. Soc. Rev., 36, 1902–1929.

70. Kastler, M., Pisula, W., Wasserfallen, D., Pakula, T., and Müllen, K. (2005). Influence of alkyl substituents on the solution- and surfaceorganization of hexa-peri-hexabenzocoronenes, J. Am. Chem. Soc., 127, 4286–4296.

71. Xiao, S., Tang, J., Beetz, T., Guo, X., Tremblay, N., Siegrist, T., Zhu, Y., Steigerwald, M., Nuckolls, C. (2006). Transferring self-assembled, nanoscale cables into electrical devices, J. Am. Chem. Soc., 128, 10700–10701.

72. Zhou, Y., Liu, W.-J., Ma, Y., Wang, H., Qi, L., Cao, Y., Wang, J., Pei, J. (2007). Single microwire transistors of oligoarenes by direct solution process, J. Am. Chem. Soc., 129, 12386–12387.

73. Liu, W.-J., Zhou, Y., Ma, Y., Cao, Y., Wang, J., Pei, J. (2007). Thin film organic transistors from air-stable heteroarenes: Anthra[1,2-b:4,3b�:5,6-b�:8,7-b��]tetrathiophene derivatives, Org. Lett., 9, 4187–4190.

74. Wang, J.-Y., Zhou, Y., Yan, J., Ding, L., Ma, Y., Cao, Y., Wang, J., Pei, J. (2009). New fused heteroarenes for high-performance field-effect transistors, Chem. Mater., 21, 2595–2597.

75. Godoi, B., Schumacher, R. F., and Zeni, G. (2011). Synthesis of heterocycles via electrophilic cyclization of containing heteroatom, Chem. Rev., 111, 2937–2980.

76. Yao, T., Yue, D., and Larock, R. C. (2005). An efficient synthesis of coumestrol and coumestans by iodocyclization and Pd-catalyzed intramolecular lactonization, J. Org. Chem., 70, 9985–9989.

77. Chen, H.-B., Yin, J., Wang, Y., and Pei, J. (2008). Unsaturated strained cyclophanes based on dibenz[a,j] by an intramolecular Mcmurry olefination, Org. Lett., 10, 3113–3116.

78. Yin, J., Zhou, Y., Lei, T., and Pei, J. (2011). A butterfly-shaped amphiphilic molecule: solution-transferable and free-standing bilayer films for organic transistors, Angew. Chem., Int. Ed., 50, 6320–6323.

79. Dou, C., Saito, S., Gao, L., Matsumoto, N., Karasawa, T., Zhang, H., Fukazawa, A., and Yamaguchi, S. (2012). Sequential electrophilic and photochemical cyclizations from bis(bithienyl)acetylene to a tetrathienonaphthalene core, Org. Lett., 15, 80–83.

80. Wang, C., Yin, S., Chen, S., Xu, H., Wang, Z., and Zhang, X. (2008). Controlled self-assembly manipulated by charge-transfer interactions: from tubes to vesicles, Angew. Chem., Int. Ed., 47, 9049–9052.

81. Zhang, W., Dichtel, W. R., Stieg, A. Z., Benítez, D., Gimzewski, J. K., Heath, J. R., and Stoddart, J. F. (2008). Folding of a donor–acceptor polyrotaxane by using noncovalent bonding interactions, Proc. Natl. Acad. Sci., 105, 6514–6519.

82. Clarke, T. M., and Durrant, J. R. (2010). Charge photogeneration in organic solar cells, Chem. Rev., 110, 6736–6767.

83. Wang, J.-Y., Yan, J., Ding, L., Ma, Y., and Pei, J. (2009). One-dimensional microwires formed by the co-assembly of complementary aromatic donors and acceptors, Adv. Funct. Mater., 19, 1746–1752.

84. Yu, W., Wang, X.-Y., Li, J., Li, Z.-T., Yan, Y.-K., Wang, W., and Pei, J. (2013). A photoconductive charge-transfer crystal with mixed-stacking donor-acceptor heterojunctions within the lattice, Chem. Commun., 49, 54–56.

85. Anthony, J. E. (2008). The larger acenes: versatile organic semiconductors, Angew. Chem. Int. Ed., 47, 452–483.

86. Anthony, J. E., Brooks, J. S., Eaton, D. L., and Parkin, S. R. (2001). Functionalized pentacene: improved electronic properties from control of solid-state order, J. Am. Chem. Soc., 123, 9482–9483.

87. Lei, T., Zhou, Y., Cheng, C.-Y., Cao, Y., Peng, Y., Bian, J., and Pei, J. (2011). Aceno[2,1,3]thiadiazoles for field-effect transistors: synthesis and crystal packing, Org. Lett., 13, 2642–2645.

88. Valeev, E. F., Coropceanu, V., da Silva Filho, D. A., Salman, S., and Brédas, J.-L. (2006). Effect of electronic polarization on charge-transport parameters in molecular organic semiconductors, J. Am. Chem. Soc., 128, 9882–9886.

89. Mas-Torrent, M., Durkut, M., Hadley, P., Ribas, X., and Rovira, C. (2004). High mobility of dithiophene-tetrathiafulvalene single-crystal organic field effect transistors, J. Am. Chem. Soc., 126, 984–985.

90. Ebata, H., Izawa, T., Miyazaki, E., Takimiya, K., Ikeda, M., Kuwabara, H., and Yui, T. (2007). Highly soluble benzothieno[3,2-b]benzothiophene (BTBT) derivatives for high-performance, solution-processed organic field-effect transistors, J. Am. Chem. Soc., 129, 15732–15733.

91. Brusso, J. L., Hirst, O. D., Dadvand, A., Ganesan, S., Cicoira, F., Robertson, C. M., Oakley, R. T., Rosei, F., and Perepichka, D. F. (2008). Twodimensional structural motif in thienoacene semiconductors: synthesis, structure, and properties of tetrathienoanthracene isomers, Chem. Mater., 20, 2484–2494.

92. Sun, Y., Tan, L., Jiang, S., Qian, H., Wang, Z., Yan, D., Di, C., Wang, Y., Wu, W., Yu, G., Yan, S., Wang, C., Hu, W., Liu, Y., and Zhu, D. (2007). High-performance transistor based on individual single-crystalline micrometer wire of perylo[1,12-b,c,d]thiophene, J. Am. Chem. Soc., 129, 1882–1883.

93. Jiang, W., Zhou, Y., Geng, H., Jiang, S., Yan, S., Hu, W., Wang, Z., Shuai, Z., and Pei, J. (2010). Solution-processed, high-performance nanoribbon transistors based on dithioperylene, J. Am. Chem. Soc., 133, 1–3.

94. Privalov, P. L., and Gill, S. J. (1988). Stability of protein structure and hydrophobic interaction, Adv. Protein Chem., 39, 191–234. 95. Kim, H.-J., Kim, T., and Lee, M. (2010). Responsive nanostructures from aqueous assembly of rigid−flexible block molecules, Acc. Chem. Res., 44, 72–82.

96. Palmer, L. C., and Stupp, S. I. (2008). Molecular self-assembly into onedimensional nanostructures, Acc. Chem. Res., 41, 1674–1684.

97. Hill, J. P., Jin, W., Kosaka, A., Fukushima, T., Ichihara, H., Shimomura, T., Ito, K., Hashizume, T., Ishii, N., and Aida, T. (2004). Self-assembled hexa-peri-hexabenzocoronene graphitic nanotube, Science, 304, 1481–1483.

98. Jin, W., Yamamoto, Y., Fukushima, T., Ishii, N., Kim, J., Kato, K., Takata, M., and Aida, T. (2008). Systematic studies on structural parameters for nanotubular assembly of hexa-peri-hexabenzocoronenes, J. Am. Chem. Soc., 130, 9434–9440.

99. De Greef, T. F. A., Smulders, M. M. J., Wolffs, M., Schenning, A. P. H. J., Sijbesma, R. P., and Meijer, E. W. (2009). Supramolecular polymerization, Chem. Rev., 109, 5687–5754.

100. Bong, D. T., Clark, T. D., Granja, J. R., and Ghadiri, M. R. (2001). Selfassembling organic nanotubes, Angew. Chem. Int. Ed., 40, 988–1011.

101. Luo, J., Lei, T., Wang, L., Ma, Y., Cao, Y., Wang, J., and Pei, J. (2009). Highly fluorescent rigid supramolecular polymeric nanowires constructed through multiple hydrogen bonds, J. Am. Chem. Soc., 131, 2076–2077.

102. Lei, T., Cheng, C.-Y., Guo, Z.-H., Zheng, C., Zhou, Y., Liang, D., and Pei, J. (2012). Supramolecular polymeric nanowires: preparation and orthogonal modification of their photophysical properties, J. Mater. Chem., 22, 4306–4311.

103. Saito, S., Nakakura, K., and Yamaguchi, S. (2012). Macrocyclic restriction with flexible alkylene linkers: A simple strategy to control the solidstate properties of p-conjugated systems, Angew. Chem. Int. Ed., 51, 714–717.

104. Bagnis, D., Beverina, L., Huang, H., Silvestri, F., Yao, Y., Yan, H., Pagani, G. A., Marks, T. J., and Facchetti, A. (2010). Marked alkyl- vs alkenylsubstitutent effects on squaraine dye solid-state structure, carrier mobility, and bulk-heterojunction solar cell efficiency, J. Am. Chem. Soc., 132, 4074–4075.

105. Bronstein, H., Leem, D. S., Hamilton, R., Woebkenberg, P., King, S., Zhang, W., Ashraf, R. S., Heeney, M., Anthopoulos, T. D., de Mello, J., and McCulloch, I. (2011). Indacenodithiophene-co-benzothiadiazole copolymers for high performance solar cells or transistors via alkyl chain optimization, Macromolecules, 44, 6649–6652.

106. Lei, T., Dou, J.-H., and Pei, J. (2012). Influence of alkyl chain branching positions on the hole mobilities of polymer thin-film transistors, Adv. Mater., 24, 6457–6461.

107. Balakrishnan, K., Datar, A., Naddo, T., Huang, J., Oitker, R., Yen, M., Zhao, J., and Zang, L. (2006). Effect of side-chain substituents on self-assembl y of perylene diimide molecules: morphology control, J. Am. Chem. Soc., 128, 7390–7398.

108. Wang, J.-Y., Yan, J., Li, Z., Han, J.-M., Ma, Y., Bian, J., and Pei, J. (2008). Isomeric effect on microscale self-assembly: interplay between molecular property and solvent polarity in the formation of 1D n-type microbelts, Chem. Euro. J., 14, 7760–7764.

109. Nelson, D. L., and Cox, M. M. (2005). Lehninger Principles of Biochemistry, 4th ed. (W. H. Freeman: New York).

110. Praveen, V. K., Babu, S. S., Vijayakumar, C., Varghese, R., and Ajayaghosh, A. (2008). Helical supramolecular architectures of self-assembled linear p-systems, Bull. Chem. Soc. Jpn., 81, 1196–1211. 111. Chen, H.-B., Zhou, Y., Yin, J., Yan, J., Ma, Y., Wang, L., Cao, Y., Wang, J., and Pei, J. (2009). Single organic microtwist with tunable pitch, Langmuir, 25, 5459–5462. 112. Zhang, X., Zhang, X., Shi, W., Meng, X., Lee, C., and Lee, S. (2007). Singlecrystal organic microtubes with a rectangular cross section, Angew. Chem. Int. Ed., 46, 1525–1528. 113. Nakanishi, T., Michinobu, T., Yoshida, K., Shirahata, N., Ariga, K., Möhwald, H., and Kurth, D. G. (2008). Nanocarbon superhydrophobic surfaces created from fullerene-based hierarchical supramolecular assemblies, Adv. Mater., 20, 443–446.

114. Yin, J., Yan, J., He, M., Song, Y., Xu, X., Wu, K., and Pei, J. (2010). Solutionprocessable flower-shaped hierarchical structures: self-assembly, formation, and state transition of biomimetic superhydrophobic surfaces, Chem.—A Eur. J., 16, 7309–7318. 115. Nakanishi, T., Ariga, K., Michinobu, T., Yoshida, K., Takahashi, H., Teranishi, T., Möhwald, H. G., and Kurth, D. (2007). Flower-shaped supramolecular assemblies: hierarchical organization of a fullerene bearing long aliphatic chains, Small, 3, 2019–2023. 116. Shimizu, T., Masuda, M., and Minamikawa, H. (2005). Supramolecular nanotube architectures based on amphiphilic molecules, Chem. Rev., 105, 1401–1444. 117. Gulik-Krzywicki, T., Fouquey, C., and Lehn, J. (1993). Electron microscopic study of supramolecular liquid crystalline polymers formed by molecular-recognition-directed self-assembly from complementary chiral components, Proc. Natl. Acad. Sci., 90, 163–167. 118. Jonkheijm, P., van der Schoot, P., Schenning, A. P. H. J., and Meijer, E. W. (2006). Probing the solvent-assisted nucleation pathway in chemical self-assembly, Science, 313, 80–83.

119. Zhao, D., and Moore, J. S. (2002). Reversible polymerization driven by folding, J. Am. Chem. Soc., 124, 9996–9997.

120. Zhao, D., and Moore, J. S. (2003). Nucleation−elongation polymerization under imbalanced stoichiometry, J. Am. Chem. Soc., 125, 16294–16299. 121. Dirksen, J. A., and Ring, T. A. (1991). Fundamentals of crystallization: Kinetic effects on particle size distributions and morphology, Chem. Eng. Sci., 46, 2389–2427.

122. Penn, R. L., and Banfield, J. F. (1998). Imperfect oriented attachment: dislocation generation in defect-free nanocrystals, Science, 281, 969–971. 123. Banfield, J. F., Welch, S. A., Zhang, H., Ebert, T. T., and Penn, R. L. (2000). Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products, Science, 289, 751–754.

124. Chen, S.-F., Zhu, J.-H., Jiang, J., Cai, G.-B., and Yu, S.-H. (2010). Polymercontrolled crystallization of unique mineral superstructures, Adv. Mater., 22, 540–545. 125. Cölfen, H., and Mann, S. (2003). Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures, Angew. Chem. Int. Ed., 42, 2350–2365. 126. Burda, C., Chen, X., Narayanan, R., and El-Sayed, M. A. (2005). Chemistry and properties of nanocrystals of different shapes, Chem. Rev., 105, 1025–1102. 127. Yang, H. G., and Zeng, H. C. (2004). Self-construction of hollow SnO 2 octahedra based on two-dimensional aggregation of nanocrystallites, Angew. Chem. Int. Ed., 43, 5930–5933. 128. Tsuruoka, T., Furukawa, S., Takashima, Y., Yoshida, K., Isoda, S., and Kitagawa, S. (2009). Nanoporous nanorods fabricated by coordination modulation and oriented attachment growth, Angew. Chem. Int. Ed., 48, 4739–4743.

129. Lei, T., Guo, Z.-H., Zheng, C., Cao, Y., Liang, D., and Pei, J. (2012). How does a supramolecular polymeric nanowire form in solution? Chem. Sci., 3, 1162–1168.

130. Takeya, J., Yamagishi, M., Tominari, Y., Hirahara, R., Nakazawa, Y., Nishikawa, T., Kawase, T., Shimoda, T., and Ogawa, S. (2007). Very high-mobility organic single-crystal transistors with in-crystal conduction channels, Appl. Phys. Lett., 90, 102120. 131. Briseno, A. L., Miao, Q., Ling, M.-M., Reese, C., Meng, H., Bao, Z., and Wudl, F. (2006). Hexathiapentacene: structure, molecular packing, and thin-film transistors, J. Am. Chem. Soc., 128, 15576–15577. 132. Briseno, A. L., Mannsfeld, S. C. B., Lu, X., Xiong, Y., Jenekhe, S. A., Bao, Z., and Xia, Y. (2007). Fabrication of field-effect transistors from hexathiapentacene single-crystal nanowires, Nano Lett., 7, 668–675. 133. Zhou, Y., Lei, T., Wang, L., Pei, J., Cao, Y., and Wang, J. (2010). Highperformance organic field-effect transistors from organic singlecrystal microribbons formed by a solution process, Adv. Mater., 22, 1484–1487.

134. Anthony, J. E. (2008). The larger acenes: versatile organic semiconductors, Angew. Chem. Int. Ed., 47, 452–483. 135. Park, S. K., Jackson, T. N., Anthony, J. E., and Mourey, D. A. (2007). High mobility solution processed 6,13-bis(triisopropyl-silylethynyl) pentacene organic thin film transistors, Appl. Phys. Lett., 91, 063514. 136. Kim, D. H., Lee, D. Y., Lee, H. S., Lee, W. H., Kim, Y. H., Han, J. I., and Cho, K. (2007). High-mobility organic transistors based on single- crystalline microribbons of triisopropylsilylethynyl pentacene via solution-phase self-assembly, Adv. Mater., 19, 678–682. 137. Lei, T., Zhou, Y., Cheng, C.-Y., Cao, Y., Peng, Y., Bian, J., and Pei, J. (2011). Aceno[2,1,3]thiadiazoles for field-effect transistors: synthesis and crystal packing, Org. Lett., 13, 2642–2645. 138. Briseno, A. L., Mannsfeld, S. C. B., Reese, C., Hancock, J. M., Xiong, Y., Jenekhe, S. A., Bao, Z., and Xia, Y. (2007). Perylenediimide nanowires and their use in fabricating field-effect transistors and complementary inverters, Nano Lett., 7, 2847–2853.

139. Dong, H., Jiang, S., Jiang, L., Liu, Y., Li, H., Hu, W., Wang, E., Yan, S., Wei, Z., Xu, W., and Gong, X. (2009). Nanowire crystals of a rigid rod conjugated polymer, J. Am. Chem. Soc., 131, 17315–17320.

140. Ranjan, N., Vinzelberg, H., and Mertig, M. (2006). Growing onedimensional metallic nanowires by dielectrophoresis, Small, 2, 1490–1496.

141. Huang, J., Fan, R., Connor, S., and Yang, P. (2007). One-step patterning of aligned nanowire arrays by programmed dip coating, Angew. Chem., Int. Ed., 46, 2414–2417.

142. Liu, N., Zhou, Y., Wang, L., Peng, J., Wang, J., Pei, J., and Cao, Y. (2008). In situ growing and patterning of aligned organic nanowire arrays via dip coating, Langmuir, 25, 665–671.

143. Oh, J. H., Lee, H. W., Mannsfeld, S., Stoltenberg, R. M., Jung, E., Jin, Y. W., Kim, J. M., Yoo, J.-B., and Bao, Z. (2009). Solution-processed, high-performance n-channel organic microwire transistors, Proc. Natl. Acad. Sci., 106, 6065–6070.

144. Niu, Q., Zhou, Y., Wang, L., Peng, J., Wang, J., Pei, J., and Cao, Y. (2008). Enhancing the performance of polymer light-emitting diodes by integrating self-assembled organic nanowires, Adv. Mater., 20, 964–969.

145. Dennler, G., Scharber, M. C., and Brabec, C. J. (2009). Polymer-fullerene bulk-heterojunction solar cells, Adv. Mater., 21, 1323–1338.

146. Gorodetsky, A. A., Chiu, C.-Y., Schiros, T., Palma, M., Cox, M., Jia, Z., Sattler, W., Kymissis, I., Steigerwald, M., and Nuckolls, C. (2010). Reticulated heterojunctions for photovoltaic devices, Angew. Chem. Int. Ed., 49, 7909–7912.

147. Kang, S. J., Kim, J. B., Chiu, C.-Y., Ahn, S., Schiros, T., Lee, S. S., Yager, K. G., Toney, M. F., Loo, Y.-L., and Nuckolls, C. (2012). A supramolecular complex in small-molecule solar cells based on contorted aromatic molecules, Angew. Chem. Int. Ed., 51, 8594–8597.

148. Zhou, Y., Wang, L., Wang, J., Pei, J., and Cao, Y. (2008). Highly sensitive, air-stable photodetectors based on single organic sub-micrometer ribbons self-assembled through solution processing, Adv. Mater., 20, 3745–3749. 149. Wang, X., Zhou, Y., Lei, T., Hu, N., Chen, E.-Q., and Pei, J. (2010). Structural−property relationship in pyrazino[2,3-g]quinoxaline derivatives: morphology, photophysical, and waveguide properties, Chem. Mater., 22, 3735–3745.

150. Lei, T., Chen, H.-B., Yin, J., Huang, S., Zhu, X., and Pei, J. (2011). Microwires and microtwists from X-shaped conjugated molecules as low-loss, long distance photo waveguide materials, Org. Electron., 12, 453–460. 151. Crooks, R. M., and Ricco, A. J. (1998). New organic materials suitable for use in chemical sensor arrays, Acc. Chem. Res., 31, 219–227. 152. Thomas, S. W., Joly, G. D., and Swager, T. M. (2007). Chemical sensors based on amplifying fluorescent conjugated polymers, Chem. Rev., 107, 1339–1386. 153. Wang, L., Zhou, Y., Yan, J., Wang, J., Pei, J., and Cao, Y. (2008). Organic supernanostructures self-assembled via solution process for explosive detection, Langmuir, 25, 1306–1310.

154. Feng, X. J., and Jiang, L. (2006). Design and creation of superwetting/ antiwetting surfaces, Adv. Mater., 18, 3063–3078. 155. Jiang, L., Yao, X., Li, H., Fu, Y., Chen, L., Meng, Q., Hu, W., and Jiang, L. (2010). “Water strider” legs with a self-assembled coating of singlecrystalline nanowires of an organic semiconductor, Adv. Mater., 22, 376–379. 156. Yamamoto, Y., Fukushima, T., Suna, Y., Ishii, N., Saeki, A., Seki, S., Tagawa, S., Taniguchi, M., Kawai, T., and Aida, T. (2006). Photoconductive coaxial nanotubes of molecularly connected electron donor and acceptor layers, Science, 314, 1761–1764.

157. Wang, X., Yan, J., Zhou, Y., and Pei, J. (2010). Surface modification of selfassembled one-dimensional organic structures: white-light emission and beyond, J. Am. Chem. Soc., 132, 15872–15874. 158. Che, Y., Huang, H., Xu, M., Zhang, C., Bunes, B. R., Yang, X., and Zang, L. (2010). Interfacial engineering of organic nanofibril heterojunctions into highly photoconductive materials, J. Am. Chem. Soc., 133, 1087–1091. 3 Chapter 3 - Synthesis, Structure, and Electronic and Photophysical Properties of Donor–Acceptor Cyclophanes

20. Watanabe, M., Goto, K., Shibahara, M., Shinmyozu, T. J. Org. Chem., 2010, 75, 6104–6114. 21. Possel, O., van Leusen, A. M. Tetrahedron Lett., 1977, 18, 4229–4232. 22. (a) Kurosawa, K., Suenaga, M., Inazu, T., Yoshino, T. Tetrahedron Lett., 1982, 23, 5335–5338. (b) Shinmyozu, T., Hirai, Y., Inazu, T. J. Org. Chem., 1986, 51, 1551–1555. (c) Sasaki, H., Kitagawa, T. Chem. Pharm. Bull., 1983, 31, 2868–2878. (d) Breitenbach, J., Vögtle, F. Synthesis 1992, 41–42. (e) Sentou, W., Satou, T., Yasutake, M., Lim, C., Sakamoto, Y., Itoh, T., Shinmyozu, T. Eur. J. Org. Chem., 1999, 1223–1231.

23. EbsMIC was synthesized by modified procedures started from . (a) Clarke, H. T., Babcook, G. S., Murray, T. F. Organic Syntheses, Wiley: New York, 1967, Collect. vol. 1, 2nd ed. 85–87. (b) Field, L., Clark, R. D. Organic Syntheses, Wiley: New York, 1963; Collect. vol. 4, 674–677. (c) Hoogenboom, B. E., Oldenziel, O. H., van Leusen, A. M. Organic Syntheses, Wiley: New York, 1988, Collect. vol. 6, 987–990. 24. Gantzel, P. K., Trueblood, K. N. Acta. Cryst., 1965, 18, 958–968. 25. (a) Brown, C. J. J. Chem. Soc. 1953, 3265–3270. (b) Hope, H., Bernstein, J., Trueblood, K. N. Acta. Cryst.,1972, B28, 1733–1743. 26. Otsubo, T., Horita, H., Koizumi, Y., Misumi, S. Bull. Chem. Soc. Jpn., 1980, 53, 1677–1682. 27. Mizuno, H., Nishiguchi, K., Otsubo, T., Misumi, S. Tetrahedron Lett., 1972, 13, 4981–4984. 28. (a) Cram, D. J., Bauer, R. H. J. Am. Chem. Soc. 1959, 81, 5971–5977. (b) Sheehan, M., Cram, D. J. J. Am. Chem. Soc., 1969, 91, 3553–3558. 29. Bernstein, J., Trueblood, K. N. Acta. Cryst., 1971, B27, 2078–2089. 30. (a) Otsubo, T., Kohda, T., Misumi, S. Tetrahedron Lett. 1978, 19, 2507–2510. (b) Otsubo, T., Kohda, T., Misumi, S. Bull. Chem. Soc. Jpn., 1980, 53, 512–517. 31. Shibahara, M., Watanabe, M., Chang, Y., Goto, K., Shinmyozu, T. Tetrahedron Lett., 2011, 52, 3371–3375. 32. Shibahara, M., Watanabe, M., Chang Y., Shinmyozu, T. Tetrahedron Lett., 2011, 52, 5012–5015. 33. (a) Kanbara, T., Yamamoto, T. Chem. Lett., 1993, 419–422. (b) Campbell, A. J., Bradley, D. D. C. Appl. Phys. Lett., 2001, 79, 2133–2135. (c) Akhtaruzzaman, M., Kamata, N., Nishida, J., Ando, S., Tada, H., Tomura, M., Yamashita, Y. Chem. Commun., 2005, 3183–3185. (d) Zaumseil, J., Donley, C. L., Kim, J. S., Friend, R. H., Sirringhaus, H. Adv. Mater., 2006, 18, 2708–2712. (e) Kono, T., Kumaki, D., Nishida, J., Sakanoue, T., Kakita, M., Tada, H., Tokito, S., Yamashita, Y. Chem. Mater., 2007, 19, 1218–1220. (f) Zhang, M., Tsao, H. N., Pisula, W., Yang, C., Mishra, A. K., Müllen, K. J. Am. Chem. Soc., 2007, 129, 3472–3473. (g) Cheng, X., Noh, Y. Y., Wang, J., Tello, W., Frisch, J., Blum, R. P., Vollmer, A., Rabe, J. P., Koch, N., Sirringhaus, H. Adv. Funct. Mater., 2009, 19, 2407–2415. 34. Vooren, A. V., Kim, J. S., Cornil, J. Chem. Phys. Chem., 2008, 9, 989–993. 35. Fujita, M., Ishida, A., Majima, T., Takamuku, S. J. Phys. Chem., 1996, 100, 5382–5387. 36. T. Shida, Electronic Absorption Spectra of Radical Ions, Elsevier, Amsterdam, 1988. 37. The stabilization energy (E CR ) of the dimer radical anion was estimated from the half energy of the charge resonance band. 38. (a) Staab, H. A., Zapf, U. Gurke, A. Angew. Chem. Int. Ed. Engl., 1977, 16, 801–803. (b) Staab, H. A., Zapf, U. Angew. Chem. Int. Ed. Engl., 1978, 17, 757–758. (c) Machida, H., Tatemithu, H., Otsubo, T., Sakata, Y., Misumi, S. Bull. Chem. Soc. Jpn., 1980, 53, 2943–2952. (d) Staab, H. A., Feurer, A., Hauck, R. Angew. Chem. Ine. Ed. Engl., 1994, 33, 2428–2431. (e) Stabb, H. A., Terecel, M., Fischer, R., Krieger, C. Angew. Chem. Int. Engl., 1994, 33, 1463–1646. (f) Staab, H. A., Wahl, P., Kay, K. Y. Chem. Ber., 1987, 120, 541–549. (g) Staab, H. A.,Krieger, C., Wahl, P., Kay, K. Y. Chem. Ber., 1987, 120, 551–558. (h) Tatemitsu, H., Natsume, B., Yoshida, M., Sakata, Y., Misumi, S. Tetrahedron Lett., 1978, 19, 3459–3462. (i) Staab, H. A., Knaus, G. H., Henke, H. E., Krieger, C. Chem. Ber., 1983, 116, 2785–2807. (j) Staab, H. A., Hinz, R., Knaus, G. H., Krieger, C. Chem. Ber., 1983, 116, 2835–2847. 39. Miyazaki, T., Goto, K., Shinmyozu, T. unpublished results. 4 Chapter 4 - Light- and Electricity-Gated Internal Rotation of Molecular Rotors: Toward Artificial Molecular Machines

12. Credi A (2006). Artificial molecular motors powered by light. Aust. J. Chem., 59, 157–169. 13. Saha S and Stoddart JF (2007). Photo-driven molecular devices. Chem. Soc. Rev., 36, 77–92. 14. Silvi S, et al. (2007). A simple molecular machine operated by photoinduced proton transfer. J. Am. Chem. Soc., 129, 13378–13379. 15. Bonnet S and Collin JP (2008). Ruthenium-based light-driven molecular machine prototypes: synthesis and properties. Chem. Soc. Rev., 37, 1207–1217. 16. Coskun A, Banaszak M, Astumian RD, Stoddart JF, and Grzybowski BA (2012). Great expectations: can artificial molecular machines deliver on their promise? Chem. Soc. Rev., 41, 19–30. 17. Schoevaars AM, et al. (1997). Toward a switchable molecular rotor. Unexpected dynamic behavior of functionalized overcrowded . J. Org. Chem., 62, 4943–4948. 18. Koumura N, Zijlstra RWJ, van Delden RA, Harada N, and Feringa BL (1999). Light-driven monodirectional molecular rotor. Nature, 401, 152–155. 19. Koumura N, Geertsema EM, Meetsma A, and Feringa BL (2000). Lightdriven molecular rotor: unidirectional rotation controlled by a single stereogenic center. J. Am. Chem. Soc., 122, 12005–12006. 20. Pijper D, van Delden RA, Meetsma A, and Feringa BL (2005). Acceleration of a nanomotor: electronic control of the rotary speed of a light-driven molecular rotor. J. Am. Chem. Soc., 127, 17612–17613. 21. Iwamura H and Mislow K (1988). Stereochemical consequences of dynamic gearing. Acc. Chem. Res., 21, 175–182.

22. Yamamoto G (1990) Dynamic stereochemistry of molecular gears, 9-benzyltriptycene and 9-phenoxytriptycene. Studied by 13 C dynamic NMR spectroscopy and molecular mechanics calculations. Tetrahedron, 46, 2761–2772. 23. Stevens AM and Richards CJ (1997). A metallocene molecular gear. Tetrahedron Lett., 38, 7805–7808. 24. Clayden J and Pink JH (1998). Concerted rotation in a tertiary aromatic amide: towards a simple molecular gear. Angew. Chem. Int. Ed., 37, 1937–1939. 25. Harrington LE, Cahill LS, and McGlinchey MJ (2004). Toward an organometallic molecular brake with a metal foot pedal: synthesis, dynamic behavior, and X-ray crystal structure of [(9-indenyl)triptycene]chromium tricarbonyl. Organometallics, 23, 2884–2891.

26. Eryazici I, et al. (2007). Design, characterization, and X-ray structure of an interlocked dinuclear chair-like metallomacrocycle: [Fe II 2 (3,5bis(2,2�:6�,2�-terpyridin-4�-phen-3-yl)) 2 ][4P F 6 – ]. Dalton Trans., 626–628. 27. Setaka W, Nirengi T, Kabuto C, and Kira M (2008). Introduction of clutch function into a molecular gear system by silane−silicate interconversion. J. Am. Chem. Soc., 130, 15762–15763. 28. Sestelo JP and Kelly TR (2002). A prototype of a rationally designed chemically powered Brownian motor. Appl. Phys. A, 75, 337–343. 29. Hawthorne MF, et al. (2004). Electrical or photocontrol of the rotary motion of a metallacarborane. Science, 303, 1849–1851. 30. Feringa BL (2007). The art of building small: From molecular switches to molecular motors. J. Org. Chem., 72, 6635–6652. 31. Pollard MM, Lubomska M, Rudolf P, and Feringa BL (2007). Controlled rotary motion in a monolayer of molecular motors. Angew. Chem. Int. Ed., 46, 1278–1280. 32. London G, et al. (2009). Light-driven altitudinal molecular motors on surfaces. Chem. Commun., 1712–1714. 33. Geertsema EM, van der Molen SJ, Martens M, and Feringa BL (2009). Optimizing rotary processes in synthetic molecular motors. Proc. Natl. Acad. Sci. USA, 106, 16919–16924. 34. Ruangsupapichat N, Pollard MM, Harutyunyan SR, and Feringa BL (2011). Reversing the direction in a light-driven rotary molecular motor. Nat Chem, 3, 53–60. 35. Eelkema R, et al. (2006). Molecular machines: Nanomotor rotates microscale objects. Nature, 440, 163–163. 36. Wang J and Feringa BL (2011). Dynamic control of chiral space in a catalytic asymmetric reaction using a molecular motor. Science 331, 1429–1432. 37. Kelly TR, et al. (1994). J.Am.Chem.Soc., 116, 3657–3658. 38. Jog PV, Brown RE, and Bates DK (2003). A Redox-mediated molecular brake: dynamic NMR study of 2-[2-(methylthio)phenyl]isoindolin-1one and S-oxidized counterparts. J. Org. Chem., 68, 8240–8243. 39. Annunziata R, Benaglia M, Cinquini M, Raimondi L, and Cozzi F (2004). A molecular gate: control of free intramolecular rotation by application of an external signal. J. Phys. Org. Chem., 17, 749–751. 40. Alfonso I, Burguete MI, and Luis SV (2006). A Hydrogen-bondingmodulated molecular rotor: environmental effect in the conformational stability of peptidomimetic macrocyclic cyclophanes. J. Org. Chem., 71, 2242–2250.

41. Nikitin K, Müller-Bunz H, Ortin Y, and McGlinchey MJ (2009). A molecular paddlewheel with a sliding organometallic latch: syntheses, X-ray crystal structures and dynamic behaviour of [Cr(CO) 3 {h 6 -2- (9-triptycyl)indene}], and of [M(CO) 3 {h 5 -2-(9-triptycyl)indenyl}] (M = Mn, Re). Chem. Eur. J., 15, 1836–1843. 42. Comotti A, Bracco S, Valsesia P, Beretta M, and Sozzani P (2010). Fast molecular rotor dynamics modulated by guest inclusion in a highly organized nanoporous organosilica. Angew. Chem. Int. Ed., 49, 1760–1764. 43. Murakami H, Kawabuchi A, Matsumoto R, Ido T, and Nakashima N (2005). A multi-mode-driven molecular shuttle: photochemically and thermally reactive azobenzene rotaxanes. J. Am. Chem. Soc., 127, 15891–15899. 44. Zhou W, et al. (2007). Photoisomerization of spiropyran for driving a molecular shuttle. Org. Lett., 9, 3929–3932.

45. Hirose K, Shiba Y, Ishibashi K, Doi Y, and Tobe Y (2008). A shuttling molecular machine with reversible brake function. Chem. Eur. J., 14, 3427–3433. 46. Coskun A, et al. (2009). A light-gated STOP-GO molecular shuttle. J. Am. Chem. Soc., 131, 2493–2495. 47. Muraoka T, Kinbara K, and Aida T (2007). Reversible operation of chiral molecular scissors by redox and UV light. Chem. Commun., 1441–1443. 48. Shinkai S, Nakaji T, Ogawa T, Shigematsu K, and Manabe O (1981). Photoresponsive crown ethers. 2. Photocontrol of ion extraction and ion transport by a bis(crown ether) with a butterfly-like motion. J. Am. Chem. Soc., 103, 111–115. 49. Shinkai S, Ishihara M, Ueda K, and Manabe O (1985). Photoresponsive crown ethers. Part 14. Photoregulated crown-metal complexation by competitive intramolecular tail(ammonium)-biting. J. Chem. Soc., Perkin Trans. 2, 511–518.

50. Shinkai S, Honda Y, Kusano Y, and Manabe O (1982). A photoresponsive cylindrical ionophore. J. Chem. Soc. Chem. Commun., 848–850.

51. Ueno A, Yoshimura H, Saka R, and Osa T (1979). Photocontrol of binding ability of capped cyclodextrin. J. Am. Chem. Soc., 101, 2779–2780.

52. Muraoka T, Kinbara K, Kobayashi Y, and Aida T (2003). Light-driven open−close motion of chiral molecular scissors. J. Am. Chem. Soc., 125, 5612–5613.

53. Muraoka T, Kinbara K, Wakamiya A, Yamaguchi S, and Aida T (2007). Crystallographic and chiroptical studies on tetraarylferrocenes for use as chiral rotary modules for molecular machines. Chem. Eur. J., 13, 1724–1730. 54. Schierling B, et al. (2010). Controlling the enzymatic activity of a restriction enzyme by light. Proc. Natl. Acad. Sci. USA, 107, 1361–1366.

55. Norikane Y and Tamaoki N (2004). Light-driven molecular hinge: a new molecular machine showing a light-intensity-dependent photoresponse that utilizes the trans−cis isomerization of azobenzene. Org. Lett., 6, 2595–2598. 56. Maldovan M (2013). Narrow low-frequency spectrum and heat management by thermocrystals. Phys. Rev. Lett., 110, 025902. 57. McCarthy DD and Seidelmann PK (2009). Time: From Earth Rotation to Atomic Physics (Wiley-VCH, Weinheim). 58. Hirose K (2010). Molecular brake systems controlled by light and heat. J. Incl. Phenom. Macrocycl. Chem., 68, 1–24. 59. Kelly TR (2001). Progress toward a rationally designed molecular motor. Acc. Chem. Res., 34, 514–522. 60. Turro NJ, Ramamurthy V, and Scaiano JC (2010). Modern Molecular Photochemistry of Organic Molecules (University Science Books, Sausalito, Calif.) p. xxxiii, 1084 p.

61. Likhtenshteĭn GI (2010). Stilbenes: Applications in Chemistry, Life Sciences and Materials Science (Wiley-VCH, Weinheim) p. xii, 348 p. 62. Saltiel J and Charlton JL (1980). Rearrangements in ground and excited states. Organic Chemistry, A Series of Monographs, (ed De Mayo P), Academic Press, New York, pp. 25–89.

63. Saltiel J and Sun Y-P (1990). Photochromism, molecules and system. Photochromism, Molecules and System, (ed Dürr H and Bouas- Laurent H), Elsevier, Amsterdam, pp. 64–164. 64. Waldeck DH (1991). Photoisomerization dynamics of stilbenes. Chem. Rev., 91, 415–436. 65. Görner H and Kuhn HJ (1995). Cis-trans photoisomerization of stilbenes and stilbene-like molecules. Adv. Photochem., 19, 1–117.

66. Cox MJ and Crim FF (2005). Vibrational energy flow rates for cis- and trans-stilbene isomers in solution. J. Phys. Chem. A, 109, 11673–11678. 67. Görner H and Kuhn HJ (2007). Cis-trans photoisomerization of stilbenes and stilbene-like molecules. Adv. Photochem., (John Wiley & Sons, Inc.), pp. 1–117. 68. Zimmer M (2006). Cis-trans isomerization in biochemistry (ed Dugave C), Wiley-VCH, Weinheim.

69. Yang J-S, Chiou S-Y, and Liau K-L (2002). Fluorescence enhancement of trans-4-aminostilbene by N-phenyl substitutions: the “amino conjugation effect”. J. Am. Chem. Soc., 124, 2518–2527. 70. Gegiou D, Muszkat KA, and Fischer E (1968). Temperature dependence of photoisomerization. V. Effect of substituents on the photoisomerization of stilbenes and azobenzenes. J. Am. Chem. Soc., 90, 3907–3918.

71. Yang J-S, Liau K-L, Hwang C-Y, and Wang C-M (2006). Photoinduced single- versus double-bond torsion in donor−acceptor−substituted trans-stilbenes. J. Phys. Chem. A, 110, 8003–8010.

72. Lin C-J, Liu Y-H, Peng S-M, and Yang J-S (2012). Photoluminescence and trans � cis photoisomerization of aminostyrene-conjugated phenylpyridine C^N ligands and their complexes with platinum(II): the styryl position and the amino substituent effects. J. Phys. Chem. B, 116, 8222–8232. 73. Haskins-Glusac K, Ghiviriga I, Abboud KA, and Schanze KS (2004). Photophysics and photochemistry of stilbene-containing platinum acetylides. J. Phys. Chem. B, 108, 4969–4978.

74. Yin B, et al. (2006). Synthesis, structure, and photophysical properties of luminescent platinum(II) complexes containing cyclometalated 4-styryl-functionalized 2-phenylpyridine ligands. Inorg. Chem., 45, 8584–8596.

75. Yang J-S, Liau K-L, Wang C-M, and Hwang C-Y (2004). Substituentdependent photoinduced intramolecular charge transfer in N-arylsubstituted trans-4-aminostilbenes. J. Am. Chem. Soc., 126, 12325– 12335.

76. Yang J-S, et al. (2009). Effect of ground-state twisting on the trans � cis photoisomerization and TICT state formation of aminostilbenes. J. Phys. Chem. A, 113, 4868–4877. 77. Saltiel J and D’Agostino JT (1972). Separation of viscosity and temperature effects on the singlet pathway to stilbene photoisomerization. J. Am. Chem. Soc., 94, 6445–6456.

78. Tamai N and Miyasaka H (2000). Ultrafast dynamics of photochromic systems. Chem. Rev., 100, 1875–1890. 79. Bandara HMD and Burdette SC (2012). Photoisomerization in different classes of azobenzene. Chem. Soc. Rev., 41, 1809–1825. 80. Merino, E and Ribagorda, M (2012). Control over molecular motion using the cis-trans photoisomerization of the azo group. Beilstein J. Org. Chem., 8, 1071–1090. 81. Cembran A, Bernardi F, Garavelli M, Gagliardi L, and Orlandi G (2004). On the mechanism of the cis−trans isomerization in the lowest electronic states of azobenzene: S 0 , S 1 , and T 1 . J. Am. Chem. Soc., 126, 3234–3243. 82. Hagiri M, et al. (2004). Sub-picosecond time-resolved absorption spectroscopy of a push–pull type p,p�-substituted trans-azobenzene. Chem. Phys. Lett., 391, 297–301. 83. Toro C, Thibert A, De Boni L, Masunov AE, and Hernandez FE (2008). Fluorescence emission of disperse red 1 in solution at room temperature. J. Phys. Chem. B, 112, 929–937. 84. De Boni L, Toro C, Masunov AE, and Hernandez FE (2008). Untangling the excited states of DR1 in solution: an experimental and theoretical study. J. Phys. Chem. A, 112, 3886–3890.

85. Dokić J, et al. (2009). Quantum chemical investigation of thermal cis-to-trans isomerization of azobenzene derivatives: substituent effects, solvent effects, and comparison to experimental data. J. Phys. Chem. A, 113, 6763–6773.

86. Garcia-Amorós J, Martínez M, Finkelmann H, and Velasco D (2010). Kinetico-mechanistic study of the thermal cis-to-trans isomerization of 4,4�-dialkoxyazoderivatives in nematic liquid crystals. J. Phys. Chem. B, 114, 1287–1293. 87. Garcia-Amoros J and Velasco D (2012). Recent advances towards azobenzene-based light-driven real-time information-transmitting materials. Beilstein J. Org. Chem., 8, 1003–1017. 88. Hsieh BR, Désilets D, and Kazmaier PM (1990). Azo-hydrazone tautomerism of an o,o�-dihydroxy azo dye-a spectroscopic study. Dyes Pigm., 14, 165–189. 89. Siewertsen R, et al. (2009). Highly efficient reversible Z−E photoisomerization of a bridged azobenzene with visible light through resolved S 1 (n–p*) absorption bands. J. Am. Chem. Soc., 131, 15594–15595.

90. Siewertsen R, Schonborn JB, Hartke B, Renth F, and Temps F (2011). Superior Z � E and E � Z photoswitching dynamics of dihydrodibenzodiazocine, a bridged azobenzene, by S1(np*) excitation at l = 387 and 490 nm. Phys. Chem. Chem. Phys., 13, 1054–1063.

91. Zhang D, Zhang Q, Sua JH, and Tian H (2009). A dual-ion-switched molecular brake based on ferrocene. Chem. Commun., 1700–1702.

92. Chong YS, Dial BE, Burns WG, and Shimizu KD (2012). Covalent locking and unlocking of an atropisomeric molecular switch. Chem. Commun., 48, 1296–1298. 93. Busseron E, Romuald C, and Coutrot F (2010). Bistable or oscillating state depending on station and temperature in three-station glycorotaxane molecular machines. Chem. Eur. J., 16, 10062–10073.

94. Crowley JD, Hänni KD, Leigh DA, and Slawin AMZ (2010). Diels−alder active-template synthesis of rotaxanes and metal-ion-switchable molecular shuttles. J. Am. Chem. Soc., 132, 5309–5314. 95. Leigh DA, Lusby PJ, McBurney RT, and Symes MD (2010). Improved dynamics and positional bias with a second generation palladium(II)-complexed molecular shuttle. Chem. Commun., 46, 2382–2384. 96. Fioravanti G, et al. (2008). Three state redox-active molecular shuttle that switches in solution and on a surface. J. Am. Chem. Soc., 130, 2593–2601. 97. Barrell MJ, Leigh DA, Lusby PJ, and Slawin AMZ (2008). An ionpair template for rotaxane formation and its exploitation in an orthogonal interaction anion-switchable molecular shuttle. Angew. Chem. Int. Ed., 47, 8036–8039. 98. Saha S, et al. (2007). A redox-driven multicomponent molecular shuttle. J. Am. Chem. Soc., 129, 12159–12171. 99. Scarel F, et al. (2012). A molecular shuttle driven by fullerene radicalanion recognition. Chem. Eur. J., 18, 14063–14068.

100. Zhu L, Yan H, Wang X-J, and Zhao Y (2012). Light-controllable cucurbit[7]uril-based molecular shuttle. J. Org. Chem., 77, 10168–10175. 101. Gao C, et al. (2011). A light-powered stretch-contraction supramolecular system based on cobalt coordinated [1]rotaxane. Org. Biomol. Chem., 9, 1126–1132. 102. Mateo-Alonso A, et al. (2007). An electrochemically driven molecular shuttle controlled and monitored by C 60 . Chem. Commun., 1945–1947.

103. Wang Q-C, Qu D-H, Ren J, Chen K, and Tian H (2004). A lockable light-driven molecular shuttle with a fluorescent signal. Angew. Chem. Int. Ed., 43, 2661–2665. 104. Dial BE, et al. (2011). Guest-accelerated molecular rotor. Org. Lett., 13, 244–247. 105. Dial BE, Pellechia PJ, Smith MD, and Shimizu KD (2012). Proton grease: an acid accelerated molecular rotor. J. Am. Chem. Soc., 134, 3675–3678. 106. ter Wiel MKJ, van Delden RA, Meetsma A, and Feringa BL (2005). Control of rotor motion in a light-driven molecular motor: towards a molecular gearbox. Org. Biomol. Chem., 3, 4071–4076. 107. Feringa BL (2001). In control of motion: from molecular switches to molecular motors. Acc. Chem. Res., 34, 504–513. 108. Kudernac T, et al. (2011). Electrically driven directional motion of a four-wheeled molecule on a metal surface. Nature, 479, 208–211.

109. Qu DH and Feringa BL (2010). Controlling molecular rotary motion with a self-complexing lock. Angew. Chem. Int. Ed., 49, 1107–1110. 110. Koumura N, Geertsema EM, van Gelder MB, Meetsma A, and Feringa BL (2002). Second generation light-driven molecular motors. unidirectional rotation controlled by a single stereogenic center with near-perfect photoequilibria and acceleration of the speed of rotation by structural modification. J. Am. Chem. Soc., 124, 5037–5051.

111. Yang J-S, et al. (2008). A pentiptycene-derived light-driven molecular brake. Org. Lett., 10, 2279–2282. 112. Sun WT, et al. (2010). Pentiptycene-derived light-driven molecular brakes: substituent effects of the brake component. Chem. Eur. J., 16, 11594–11604. 113. Sun W-T, et al. (2012). An antilock molecular braking system. Org. Lett., 14, 4154–4157.

114. Basheer MC, Oka Y, Mathews M, and Tamaoki N (2010). A lightcontrolled molecular brake with complete ON–OFF rotation. Chem. Eur. J., 16, 3489–3496. 115. Champin B, Mobian P, and Sauvage JP (2007). Transition metal complexes as molecular machine prototypes. Chem. Soc. Rev., 36, 358–366. 116. Durola F, Lux J, and Sauvage JP (2009). A fast-moving copper-based molecular shuttle: synthesis and dynamic properties. Chem. Eur. J., 15, 4124–4134.

117. Korybut-Daszkiewicz B, Wieckowska A, Bilewicz R, Domagala S, and Wozniak K (2004). An electrochemically controlled molecular shuttle. Angew. Chem. Int. Ed., 43, 1668–1672. 118. Mateo-Alonso A, et al. (2007). An electrochemically driven molecular shuttle controlled and monitored by C 60 . Chem. Commun., p. 1945. 119. Balch AL and Olmstead MM (1998). Reactions of transition metal complexes with fullerenes (C 60 , C 70 , etc.) and related materials. Chem. Rev., 98, 2123–2166. 120. Collier CP, et al. (2000). A [2]catenane-based solid state electronically reconfigurable switch. Science, 289, 1172–1175. 121. Juluri BK, et al. (2009). A mechanical actuator driven electrochemically by artificial molecular muscles. Acs Nano, 3, 291–300. 122. Bryce MR, Devonport W, Goldenberg LM, and Wang C (1998). Macromolecular tetrathiafulvalene chemistry. Chem. Commun., 945–952. 123. Katz E, Lioubashevsky O, and Willner I (2004). Electromechanics of a redox-active rotaxane in a monolayer assembly on an electrode. J. Am. Chem. Soc., 126, 15520–15532. 124. Lee JW, et al. (2008). Synthetic molecular machine based on reversible end-to-interior and end-to-end loop formation triggered by electrochemical stimuli. Chem. Asian J., 3, 1277–1283. 125. Bird CL and Kuhn AT (1981). Electrochemistry of the viologens. Chem. Soc. Rev., 10, 49–82. 126. Altieri A, et al. (2003). Electrochemically switchable hydrogen-bonded molecular shuttles. J. Am. Chem. Soc., 125, 8644–8654. 127. Martyín E and Weigand R (1998). A correlation between redox potentials and photophysical behaviour of compounds with intramolecular charge transfer: application to N-substituted 1,8-naphthalimide derivatives. Chem. Phys. Lett., 288, 52–58. 128. Sobransingh D and Kaifer AE (2006). Electrochemically switchable cucurbit[7]uril-based pseudorotaxanes. Org. Lett., 8, 3247–3250. 129. Yang C-H, et al. (2011). A redox-gated slow-fast-stop molecular rotor. Org. Lett., 13, 5632–5635. 130. Kaufman FB (1976). Molecular criteria of solid-state structure in organic charge-transfer salts. 2. Effect of methyl substitution on stacking interactions of p-phenylenediamine cation radicals. J. Am. Chem. Soc., 98, 5339–5344.

131. Chen Y-C, et al. (2011). A pentiptycene-derived molecular brake: photochemical E � Z and electrochemical Z � E switching of an enone module. Chem. Eur. J., 17, 1193–1200. 132. Chandrasekhar S and Karri P (2007). Erlenmeyer azlactone synthesis with aliphatic aldehydes under solvent-free microwave conditions. Tetrahedron Lett., 48, 785–786.

133. Norikane Y, Nakayama N, Tamaoki N, Arai T, and Nagashima U (2003). Quantum chemical studies on photoinduced cis−trans isomerization and intramolecular hydrogen atom transfer of 2�-hydroxychalcone. J. Phys. Chem. A, 107, 8659–8664. 134. Dürr H and Bouas-Laurent H (1990). Photochromism: Molecules and Systems (Elsevier, Amsterdam). 135. Pina F, Melo MJ, Laia CAT, Parola AJ, and Lima JC (2012). Chemistry and applications of flavylium compounds: a handful of colours. Chem. Soc. Rev., 41, 869–908. 136. Natali M and Giordani S (2012). Molecular switches as photocontrollable “smart” receptors. Chem. Soc. Rev., 41, 4010–4029. 137. Perrier A, Maurel F, and Jacquemin D (2012). Single molecule multiphotochromism with diarylethenes. Acc. Chem. Res., 45, 1173–1182. 138. Irie M (2010). Photochromism of diarylethene single molecules and single crystals. Photochem. Photobiol. Sci., 9, 1535–1542. 5 Chapter 5 - Supramolecular Assemblies of Organogels Featuring p-Conjugated Framework with Long-Chain Dicarboxamides

Rudolph, C. (2007). Targeted delivery of magnetic aerosol droplets to the lung, Nat. Nanotechnol., 2, 495–499. 22. Ge, J., Neofytou, E., Cahill, III, T. J., Beygui, R. E., and Zare, R, N. (2012). Drug release from electric-field-responsive nanoparticles, ACS nano, 6, 227–233. 23. Weng, W., Beck, J. B, Jamieson, A. M., and Rowan, S. J. (2006). Understanding the mechanism of gelation and stimuli-responsive nature of a class of metallo-supramolecular Gels, J. Am. Chem. Soc., 128, 11663–11672. 24. Zhou, J., and Li, H. (2012). Highly fluorescent fluoride-responsive hydrogels embedded with CdTe quantum dots, ACS Appl. Mater. Interfaces, 4, 721–724. 25. Yavuz, M. S., Cheng, Y., Chen, J., Cobley, C. M., Zhang, Q., Rycenga, M., Xie, J., Kim, C., Song, K. H., Schwartz, A. G. Wang, L. V., and Xia, Y. (2009). Gold nanocages covered by smart polymers for controlled release with near-infrared light, Nat. Mater., 8, 935–939. 26. Choi, S. W., Zhang, Y., and Xia, Y. A. (2010). A temperature-sensitive drug release system based on phase-change materials, Angew. Chem. Int. Ed., 49, 7904–7908. 27. Wang, S., Shen, W., Feng, Y., and Tian, H. (2006). A multiple switching bisthienylethene and its photochromic fluorescent organogelator, Chem. Commun., 1497–1499. 28. Dvir, T., Banghart, M. R., Timko, B. P., Langer, R., and Kohane, D. S. (2010). Photo-targeted nanoparticles, Nano Lett., 10, 250–254. 29. Bommel, K. J. C. V., Stuart, M. C. A., Feringa, B. L., and Esch, J. V. (2005). Two-stage enzyme mediated drug release from LMWG hydrogels, Org. Biomol. Chem., 3, 2917–2920. 30. Viau, L., Tourne-Peteilh, C., Devoisselle, J.-M., Vioux, A. Ionogels as drug delivery system: one-step sol-gel synthesis using imidazoliumibuprofenate ionic liquid, Chem. Commun., 46, 228–230. 31. Greenfield, M. A., Hoffman, R., Olvera de la Cruz, M., and Stupp, S. I. (2009). Tunable mechanics of peptide nanofiber gels, Langmuir, 26, 3641–3647. 32. Funkhouser, G. P., Tonmukayakul, N., Liang, F. (2009). Rheological comparison of organogelatorsbased on iron and aluminium complexes of dodecylmethylphosphinic acid and methyl dodecanephosphonic acid, Langmuir, 25, 8672–8677.

33. Rodriguez-Llansola, F., Escuder, B. Mira and vet, J. F. (2009). Switchable performance of an L-proline-derived basic catalyst controlled by supramolecular gelation, J. Am. Chem. Soc., 131, 11478–11484. 34. Mohmeyer, N., Kuang, D., Wang, P., Schmidt, H.-W., Zakeeruddin, S. M., and Grätzel, M. J. (2006). An efficient organogelator for ionic liquids to prepare stable quasi-solid-state dye-sensitized solar cells, Mater. Chem., 16, 2978–2983. 35. Wicklein, A., Ghosh, A., Sommer, M., Würthner, F., and Thelakkat, M. (2009). Self-assembly of semiconductor organogelator nanowires for photo induced charge separation, ACS Nano, 3, 1107–1114. 36. Kuang, G.-C., Jia, X.-R., Teng, M.-J., Chen, E.-Q., Li, W.-S., and Ji, G. (2012). Organogels and liquid crystalline properties of amino acid-based dendrons: a systematic study on structure-property relationship, Mater. Chem., 24, 71–80. 37. Qu, S., Wang, L., Liu, X., and Li, M. (2011). Evolution from lyotropic liquid crystal to helical fibrous organogel of an achiral fluorescent twin-tapered bi-1,3,4-oxadiazole derivative, Chem. Eur. J., 3512–3518. 38. Iwaura, R., and Shimizu, T. (2006). Polyhedral silver nanocrystals with distinct Scattering signatures, Angew. Chem., Int. Ed., 45, 4601–4604. 39. Wang, C., Zhang, D. Q., Xiang, J. F., and Zhu, D. B. (2007). New organogels based on an anthracene derivative with one urea group and its phot odimer: Fluorescence enhancement after gelation, Langmuir, 23, 9195–9200. 40. Ji, Y., Kuang, G. C., Jia, X. R., Chen, E. Q., Wang, B. B., Li, W. S., Wei, Y., and Lei, J. (2007). Photoreversible dendritic organogel, Chem. Commun., 4233–4235. 41. Bastiat, G., and Leroux, J. C. (2009). Pharmaceutical organogels prepared from aromatic amino acid derivatives, J. Mater. Chem., 19, 3867–3877. 42. Sugiyasu, K., Fujita, N., and Shinkai, S. (2004). Visible-light-harvesting organogel composed of cholesterol-based perylene derivatives, Angew. Chem. Int. Ed., 43, 1229–1233. 43. Anilkumar, P., and Jayakannan, M. (2010). Molecular template approach for evolution of conducting polymer nanostructures: Tracing the role of morphology on conductivity and solid state srdering, J. Phys. Chem. B, 114, 728–736. 44. Dutta, S., Das, D., Dasgupta, A., and Das, P. K. (2010). Amino acid based low-molecular-weight ionogels as efficient dye-adsorbing agents and templates for the synthesis of TiO 2 nanoparticles, Chem. Eur. J., 16, 1493–1505. 45. Yang, Z. M., Xu, K. M., Guo, Z. F., Guo, Z. H., and Xu, B. (2007). Intracellular enzymatic formation of nanofibers results in hydrogelation and regulated cell death, Adv. Mater., 19, 3152–3156. 46. Abdallah, D. J., and Weiss, R. G. (2000). n- gel n-alkanes (and many other organic liquids), Langmuir, 16, 352–355. 47. Twieg, R. J., Russell, T. P., Siemens, R., and Rabolt, J. F. (1985). Observations of a gel phase in binary mixtures of semifluorinated polyethylene oligomers, Macromolecules, 18, 1361–1362. 48. Mieden-Gundert, G., Klein, L., Fischer, M., Vögtle, F., Heuzé, K., Pozzo, J.-L., Vallier, M., and Fages, F. (2001). Rational design of low molecular mass organogelators: Toward a library of functional N-acyl-1,w-amino acid derivatives, Angew. Chem. Int. Ed., 40, 3164–3166. 49. Huo, Z., Dai, S., Zhang, C., Kong, F., Fang, X., Guo, L., Liu, W., Hu, L., Pan, X., and Wang, K. (2008). Low molecular mass organogelator based gel electrolyte with effective charge transport property for long- term stable quasi-solid-state dye-sensitized solar cells, J. Phys. Chem. B, 112, 12927–12933. 50. Knight, D. W., and Morgan, I. R. (2009). A new organogelator effective at both extremes of solvent polarity, Tetrahedron Lett., 50, 6610–6612. 51. Côte, M., Nicholls, T., Knight, D. W., Morgan, I. R., Rogueda, P. G. A., King, S. M., Heenan, R. K., and Griffiths, P. C. (2009). Self-assembling chiral gelators for fluorinated media, Langmuir, 25, 8678–8684. 52. Pati, D., Kalva, N., Das, S., Kumaraswamy, G., Gupta, S. S., and Ambade. A. V. (2012). Multiple topologies from glycopolypeptide-dendron conjugate self-assembly: nanorods, micelles and organogels, J. Am. Chem. Soc., 134, 7796–7802. 53. Chen, Q., Lv, Y., Zhang, D., Zhang, G., Liu, C., and Zhu, D. (2010). Cysteine and pH-responsive hydrogel based on a saccharide derivative with an aldehyde group, Langmuir, 26, 3165–3168. 54. Kawano, S.-I., Tamaru, S.-I., Fujita, N., and Shinkai, S. (2004). Sol-gel polycondensation of tetraethyl orthosilicate (TEOS) in sugar-based porphyrino rganogels: inorganic conversion of a sugar-directed porphyrinic fiber library through sol-gel transcription processes, Chem. Eur. J., 10, 343–351. 55. Gronwald, O., Sakurai, K., Luboradzki, R., Kimura, T., and Shinkai, S. (2001). Further evidence for the gelation ability-structure correlation in sugar-based gelators, Carbohydr. Res., 331, 307–318.

56. John, G., Zhu, G., Li, J., and Dordick, J. S. (2006). Enzymatically derived sugar-containing self-assembled organogels with nanostructured morphologies, Angew. Chem. Int. Ed., 45, 4772–4775. 57. Kumar, K. K., Elango, M., Subramanian, V., and Das, T. M. (2009). Novel saccharide-pyridine based gelators: selective gelation and diversity in superstructures, New J. Chem., 33, 1570–1577. 58. Tamaru, S.-I., Nakamura, M., Takeuchi, M., and Shinkai, S. (2001). Rational design of a sugar-appended porphyrin gelator that is forced to assemble into a one-dimensional aggregate, Org. Lett., 3, 3631–3634. 59. Martin-Borret, O., Ramasseul, R., and Rassat, R. (1979). Bull. Soc. Chim. Fr., 7–8, II-401-II-408. 60. Technical Bulletin from Nikko Chemicals Co., Ltd., (1989). 1-4-8 Nihonbashi-Bakurocho, Japan. 61. Ishi-I, T., Iguchi, R., Snip, E., Ikeda, M., and Shinkai, S. (2001). [60]fullerene can reinforce the organogel structure of porphyrinappended cholesterol derivatives: novel odd-even effect of the (CH 2 ) n spacer on the organogel stability, Langmuir, 17, 5825–5833. 62. Kartha, K. K., Babu, S. S., Srinivasan, S., and Ajayaghosh, A. (2012). Attogram sensing of TNT with a self-assembled molecular gelator, J. Am. Chem. Soc., 134, 4834–4841. 63. Zhang, X., Lu, R., Jia, J., Liu, X., Xue, P., Xu, D., and Zhou, H. (2010). Organogel based on b-diketone-boron difluoride without alkyl chain and H-bonding unit directed by optimally balanced p–p interaction, Chem. Commun., 46, 8419–8421. 64. Hirst, A. R., and Smith, D. K. (2005). Two-component gel-phase materials-highly tunable self-assembling systems, Chem. Eur. J., 11, 5496–5508. 65. Suzuki, M., Saito, H., and Hanabusa, K. (2009). Two-component organogelators based on two L-amino acids: effect of combination of L-lysine with various L-amino acids on organogelation behavior, Langmuir, 25, 8579–8585. 66. Yagai, S., Karatsu, T., and Kitamura, A. Melamine-barbiturate/cyanurate binary organogels possessing rigid azobenzene-tether moiety, Langmuir, 21, 11048–11052. 67. Terech, P., Gebel, G., and Ramasseul, R. (1996). Molecular rods in a zinc(II) porphyrin/cyclohexane physical gel: Neutron and X-ray scattering characterizations, Langmuir, 12, 4321–4323. 68. Cardolaccia, T., Li, Y., and Schanze, K. S. (2008). Phosphorescent platinum acetylide organogelators, J. Am. Chem. Soc., 130, 2535–2545.

69. Vintiloiu, A., and Leroux, J.-C. (2008). Organogels and their use in drug delivery—A review, J. Controlled Release, 125, 179–192. 70. Shchipunov, Y. A., Shumilina, E. V., and Hoffmann, H. (1998). Lecithin organogels with alkylglucosides, J. Colloid Interface Sci., 199, 218–221. 71. Hanabusa, K., Fukui, H., Suzuki, M., and Shirai, H. (2005). Specialist gelator for ionic liquids, Langmuir, 21, 10383–10390. 72. Duan, P., and Liu, M. (2009). Design and self-assembly of L-glutamatebased aromatic dendrons as ambidextrous gelators of water and organic solvents, Langmuir, 25, 8706–8713. 73. Würthner, F., Hanke, B., Lysetska, M., Lambright, G., and Harms, G. S. (2005). Gelation of a highly fluorescent urea-functionalized perylenebisimide dye, Org. Lett., 7, 967–970. 74. Tsou, C.-C., and Sun, S.-S. New fluorescent amide-functionalized phenylethynyl thiophene low molecular weight gelator, Org. Lett., 8, 387–390. 75. Shen, Y.-T., Li, C.-H., Chang, K.-C., Chin, S.-Y., Lin, H.-A., Liu, Y.-M., Hung, C.-Y., Hsu, H.-F., and Sun, S.-S. (2009). Synthesis, optical, and mesomorphic properties of self-assembled organogels featuring phenylethynyl framework with elaborated long-chain pyridine-2,6dicarboxamides, Langmuir, 25, 8714–8722. 76. Li, C.-H., Chang, K.-C., Tsou, C.-C., Lan, Y., Yang, H.-C., and Sun, S.-S. (2011). Chiral amplification in one-dimensional helical nanostructures self-organized from phenylethynylthiophene with elaborated longchain dicarboxamides, J. Org. Chem., 76, 5524–5530. 77. Diring, S., Camerel, F., Donnio, B., Dintzer, T., Toffanin, S., Capelli, R., Muccini, M., and Ziessel, R. (2009). Luminescent ethynyl- liquid crystals and gels for optoelectronic devices, J. Am. Chem. Soc., 131, 18177–18185. 78. Tam, A. Y.-Y., Wong, K. M.-C., and Yam, V. W.-W. (2009). Unusual luminescence enhancement of metallogels of alkynylplatinum(II) 2,6-bis(N-alkylbenzimidazol-2�-yl)pyridine Complexes upon a gel-tosol phase transition at elevated temperatures, J. Am. Chem. Soc., 131, 6253–6260. 79. Camerel, F., Ziessel, R., Donnio, B., Bourgogne, C., Guillon, D., Schmutz, M., Iacovita, C., and Bucher, J. P. (2007). Formation of gels and liquidcrystals induced by Pt … Pt and p–p* interactions in luminescent s-alkynylplatinum(II) terpyridine complexes, Angew. Chem. Int. Ed., 46, 2659–2662.

80. Cardolaccia, T., Li, Y., and Schanze, K. S. (2008). Phosphorescent platinum acetylide organogelators, J. Am. Chem. Soc., 130, 2535–2545. 81. Chang, K.-C., Lin, J.-L., Shen, Y.-T., Hung, C.-Y., and Sun, S.-S. (2012). Synthesis and photophysical properties of self-assembled metallogels of platinum(II) acetylide complexes with elaborate long-chain pyridine-2,6-dicarboxamides, Chem. Eur. J., 18, 1312–1321. 82. Xu, X,-D., Zhang, J., Chen, L.-J., Zhao, X.-L., Wang, D.-X., and Yang, H.-B. (2012). Large-scale honeycomb microstructures constructed by platinum-acetylide gelators through supramolecular self-assembly, Chem. Eur. J., 18, 1659–1667. 83. Liu, J.-W., Yang, Y., Chen, C.-F., and Ma, J.-T. (2010). Novel anion-tuning supramolecular gels with dual-channel response: reversible sol-gel transition and color Changes, Langmuir, 26, 9040–9044. 84. Zhang, Y., and Jiang, S. (2012). Fluoride-responsive gelator and colorimetric sensor based on simple and easy-to-prepare cyanosubstituted amide, Org. Biomol. Chem., 10, 6973–6979. 85. Shirakawa, M., Fujita, N., and Shinkai, S. (2005). A stable single piece of unimolecularly p-stacked porphyrin aggregate in a thixotropic lo w molecular weight gel: a one-dimensional molecular template for polydiacetylene wiring up to several tens of micrometers in length, J. Am. Chem. Soc., 127, 4164–4165. 86. Kishida, T., Fujita, N., Sada, K., and Shinkai, S. (2005). Sol-gel reaction of porphyrin-based superstructures in the organogel phase: Creation of mechanically reinforced porphyrin hybrids, J. Am. Chem. Soc., 127, 7298–7299. 87. Shirakawa, M., Fujita, N., and Shinkai, S. (2003). [60]Fullerenemotivated organogel formation in a porphyrin derivative bearing programmed hydrogen-bonding sites, J. Am. Chem. Soc., 125, 9902– 9903. 88. Camerel, F., Ulrich, G., and Ziessel, R. New platforms integrating ethynylgrafted modules for organogels and mesomorphic superstructures, Org. Lett., 6, 4171–4174. 89. Simalou, O., Zhao, X., Lu, R., Xue, P., Yang, X., and Zhang, X. (2009). Strategy to control the chromism and fluorescence emission of a perylene dye in composite organogel phases, Langmuir, 25, 11255–11260. 90. Tam, A. Y.-Y., Wong, K. M.-C., Zhu, N., Wang, G., and Yam, V. W.-W. (2009). Luminescent alkynyl platinum(II) terpyridyl metallogels stabilized by Pt···Pt, p–p, and hydrophobic–hydrophobic interactions, Langmuir, 25, 8685–8695.

91. Chen, Y., Lv, Y., Han, Y., Zhu, B., Zhang, F., Bo, Z., and Liu, C.-Y. (2009). Dendritic effect on supramolecular self-Assembly: organogels with strong fluorescence emission induced by aggregation, Langmuir, 25, 8548–8555. 92. Babu, S. S., Mahesh, S., Kartha, M. K., and Ajayaghosh, A. (2009). Solvent directed Self-assembly of gelators to hierarchical macroporous structures and aligned fiber bundles, Chem. Asian J., 4, 824–829. 93. Vijayakumar, C., Praveen, V. K., Kartha, K. K., and Ajayaghosh, A. (2011). Excitation energy migration in oligo(p-phenylenevinylene) based organogels: structure-property relationship and FRET efficiency, Phys. Chem. Chem. Phys., 13, 4942–4949. 94. Samanta, S. K., Pal, A., and Bhattacharya, S. (2009). Choice of the end functional groups in tri(p-phenylenevinylene) derivatives controls its physical gelation abilities, Langmuir, 25, 8567–8578. 95. Srinivasan, S., Babu, P. A., Mahesh, S., and Ajayaghosh, A. (2009). Reversible self-assembly of entrapped fluorescent gelators in polymerized styrene gel matrix: erasable thermal imaging via recreation of supramolecular architectures, J. Am. Chem. Soc., 131, 15122–15123. 96. Ajayaghosh, A., and Praveen, V. K. (2007). p-Organogels of selfassembled p-phenylenevinylenes: soft materials with distinct size, shape and functions, Acc. Chem. Res., 40, 644–656. 97. Yang, X., Zhang, G., Zhang, D., Xiang, J., Yang, G., and Zhu, D. (2011). Self-assembly of a new C 60 compound with a L-glutamid-derived lipid unit: formation of organogels and hierarchically structured spherical particles, Soft Matter, 7, 3592–3598. 98. Kitahara, T., Michihiro, S., Kawano, S.-I., Beginn, U., Fujita, N., and Shinkai, S. (2005). Creation of a mixed-Valence state from one-dimensionally aligned TTF utilizing the self-assembling nature of a low molecularweight gel, J. Am. Chem. Soc., 127, 14980–14981. 6 Chapter 6 - Quinoxaline-Based Polycyclic Molecules Having Defined Shapes: From Orthocyclophanes to Polyazaacenes

1. Brown, D. J. (2004) Quinoxalines: Supplement II. In The Chemistry of Heterocyclic Compounds (eds Taylor, E. C. and Wipf, P.), John Wiley& Sons, New Jersey.

2. Bunz, U. H. F. (2010). The larger N-heteroacenes, Pure Appl. Chem., 82, 953–968.

3. Husain, A., and Madhesia, D. (2011). Recent advances in pharmacological activities of quinoxaline derivatives, J. Pharm. Res., 4, 924–929.

4. Corona, P., Carta, A., Loriga, M., Vitale, G., and Paglietti, G. (2009). Synthesis and in vitro antitumor activity of new quinoxaline derivatives, Eur. J. Med. Chem., 44, 1579–1591.

5. Tandon, V. K., Yadav, D. B., Maurya, H. K., Chaturvedi, A. K., and Shuklab, P. K. (2006). Design, synthesis, and biological evaluation of

6. Seitz, L. E., Suling, W. J., and Reynolds, R. C. (2002). Synthesis and antimycobacterial activity of pyrazine and quinoxaline derivatives, J. Med. Chem., 45, 5604–5606.

7. Székelyhidi, Z., Pató, J., Wáczek, F., Bánhegyi, P., Hegymegi-Barakonyi, B., Erős, D., Mészáros, G., Hollósy, F., Hafenbradl, D., Obert, S., Klebl, B., Kéria, G., and Őrfia, L. (2005). Synthesis of selective SRPK-1 inhibitors: novel tricyclic quinoxaline derivatives, Bioorg. Med. Chem. Lett., 15, 3241–3246.

8. Gazit, A., Yee, K., Uecker, A., Böhmer, F., Sjöblom, T., Östman, A., Waltenberger, J., Golomb, G., Banai, S., Heinrich, M., and Levitzkia, A. (2003). Tricyclic quinoxalines as potent kinase inhibitors of PDGFR kinase, Flt3 and Kit, Bioorg. Med. Chem., 11, 2007–2018.

9. Ortega, M., Montoya, M. E., Zarranz, B., Jaso, A., Aldana, I., Leclerc, S., Meijer, L., and Mongea, A. (2002). Pyrazolo[3,4-b]quinoxalines. A new class of cyclin-dependent kinases inhibitors, Bioorg. Med. Chem., 10, 2177–2184.

10. Kuhl, A., Kolkhof, P., Telan, L., Peters, J. G., Lustig, K., Kast, R., Müenter, K., Stasch, J.-P., and Tinel, H. (2005). Tetrahydroquinoxalines and Their Use as M2 Acetylcholine Receptor Agonists, Patent WO 2005028451.

11. Amin, K. M., Ismail, M. M. F., Noaman, E., Soliman, D. H., and Ammard, Y. A. (2006). New quinoxaline 1,4-di-N-oxides. Part 1: hypoxia-selective cytotoxins and anticancer agents derived from quinoxaline 1,4-di- N-oxides, Bioorg. Med. Chem., 14, 6917–6923.

12. Chen, C.-J., Wu, Y.-C., Sheu, H.-S., Lee, G.-H., and Lai, C. K. (2011). Synthesis of quinoxalin–benzoxale conjugates and mesomorphic properties, Tetrahedron, 67, 114–124.

13. Klein, D. J., Modarelli, D. A., and Harris, F. W. (2010). Synthesis of poly(phenylquinoxaline)s via self-polymerizable quinoxaline monomers, Macromolecules, 34, 2427–2437.

14. Bangcuyo, C. G., Ellsworth, J. M., Evans, U., Myrick, M. L., and Bunz, U. H. F. (2003). Quinoxaline-based poly(aryleneethynylene)s, Macromolecules, 36, 546–548. 15. Ishi-i, T., Amemori, S., Okamura, C., Yanaga, K., Kuwahara, R., Mataka S., and Kamada, K. (2013). Self-assembled triphenylaminehexaazatriphenylene two-photon absorption dyes, Tetrahedron, 69, 29–37.

16. Koti, A. S. R., Bhattacharjee, B., Harama, N. S., Dasa, R., Periasamy, N., Sonawane, N. D., and Rangnekar, D. W. (2000). Photophysics of some styryl thiazolo quinoxaline dyes in organic media, J. Photochem. Photobiol. A, 137, 115–123.

17. Yoo, J., Kim, M.-S., Hong, S.-J., Sessler, J. L., and Lee, C.-Hee. (2009). Selective sensing of anions with calix[4]pyrroles strapped with chromogenic dipyrrolylquinoxalines, J. Org. Chem., 74, 1065–1069.

18. Singh, N. J., Jun, E. J., Chellappan, K., Thangadurai, D., Chandran, R. P., Hwang, I.-C., Yoon, J., and Kim, K. S. (2007). Quinoxaline-imidazolium receptors for unique sensing of pyrophosphate and acetate by charge transfer, Org. Lett., 9, 485–488.

19. Aldakov, D., Palacios, M. A., and Anzenbacher, Jr. P. (2005), Benzothiadiazoles and dipyrrolyl quinoxalines with extended conjugated chromophores-fluorophores and anion sensors, Chem. Mater., 17, 5238–5241. 20. Thomas, K. R. J., Lin, J. T., Tao, Y.-T., and Chuen, C.-H. (2002). Quinoxalines incorporating triarylamines: Potential electroluminescent materials with tunable emission characteristics, Chem. Mater., 14, 2796–2802.

21. Sendt, K., Johnston, L. A., Hough, W. A., Crossley, M. J., Hush, N. S., and Reimers, J, R. (2002). Switchable electronic coupling in model oligoporphyrin molecular wires examined through the measurement and assignment of electronic absorption spectra, J. Am. Chem. Soc., 124, 9299–9309.

22. Huang, T.-H., Whang, W.-T., Shen, J. Y., Wen, Y.-S., Lin, J. T., Ke, T.-H., Chen, L.-Y., and Wu, C.-C. (2006). Dibenzothiophene/oxide and quinoxaline/ pyrazine derivatives serving as electron-transport materials, Adv. Funct. Mater., 16, 1449–1456.

23. Karastatiris, P., Mikroyannidis, J. A., Spiliopoulos, I. K., Kulkarni, A. P., and Jenekhe, S. A. (2004). Synthesis, photophysics, and electroluminescence of new quinoxaline-containing poly(p-phenylenevinylene)s, Macromolecules, 37, 7867–7878.

24. Jandke, M., Strohriegl, P., Berleb, S., Werner, E., and Brütting, W. (1998). Phenylquinoxaline polymers and low molar mass glasses as electrontransport materials in organic light-emitting diodes, Macromolecules, 31, 6434–6443. 25. Yamamoto, T., Sugiyama, K., Kushida, T., Inoue, T., and Kanbara, T. (1996). Preparation of new electron-accepting p-conjugated polyquinoxalines. Chemical and electrochemical reduction, electrically conducting properties, and use in light-emitting diodes, J. Am. Chem. Soc., 118, 3930–3937.

26. Li, H., Tam, T. L., Lam, Y. M., Mhaisalkar, S. G., and Grimsdale, A. C. (2011). Synthesis of low band gap [1,2,5]-thiadiazolo[3,4-g]quinoxaline and pyrazino[2,3-g]quinoxaline derivatives by selective reduction of benzo[1,2-c;4,5-c¢]bis[1,2,5]thiadiazole, Org. Lett., 13, 46–49.

27. Weng, S.-Z., Shukla, P., Kuo, M.-Y., Chang, Y.-C., Sheu, H.-S., Chao, I., and Tao, Y.-T. (2009). Diazapentacene derivatives as thin-film transistor materials: morphology control in realizing high-field-effect mobility, Appl. Mater. Interfaces, 1, 2071–2079.

28. Jonforsen, M., Johansson, T., Inganäs, O., and Andersson, M. R. (2002). Synthesis and characterization of soluble and n-dopable poly(quinoxaline vinylene)s and poly(pyridopyrazine vinylene)s with relatively small band gap, Macromolecules, 35, 1638–1643.

29. Mastalerz, M., Fischer, V., Ma, C.-Q., Janssen, R. A. J., and Bäuerle, P. (2009). Conjugated oligothienyl dendrimers based on a pyrazino [2,3-g]quinoxaline core, Org. Lett., 11, 4500–4503.

30. Chong, J. H., and MacLachlan, M. J. (2007). Synthesis and structural investigation of new triptycene-based ligands: en route to shapepersistent dendrimers and macrocycles with large free volume, J. Org. Chem., 72, 8683–8690.

31. Tong, C., Zhao, W., Luo, J., Mao, H., Chen, W., Chan, H. S. O., and Chi, C. (2012). Large-size linear and star-shaped dihydropyrazine fused pyrazinacenes, Org. Lett., 14, 494–497.

32. Gawrys, P., Marszalek, T., Bartnik,E., Kucinska, M., Ulanski, J., and Zagorska, M. (2011). Novel, low-cost, highly soluble n-type semiconductors: tetraazaanthracene Tetraesters, Org. Lett., 13, 6090–6093.

33. Richards, G. J., Hill, J. P., Subbaiyan, N. K., D’Souza, F., Karr, P. A., Elsegood, M. R. J., Teat, S. J., Mori, T., and Ariga, K. (2009). Pyrazinacenes: aza analogues of acenes, J. Org. Chem., 74, 8914–8923.

34. Richards, G. J., Hill, J. P., Okamoto, K., Shundo, A., Akada, M., Elsegood, M. R. J., Mori, T., and Ariga, K. (2009). Diverse self-assembly in soluble oligoazaacenes: a microscopy study, Langmuir, 25, 8408–8413.

35. Stöckner, F., Beckert, R., Gleich, D., Birckner, E., Günther, W., Görls, H., and Vaughan, G. (2007). Polyazaacenes—On the way to stable, fluorescent and redox-active derivatives, Eur. J. Org. Chem., 1237–1243.

36. Winkler, M., and Houk, K. N. (2007). Nitrogen-rich oligoacenes: candidates for n-channel organic semiconductors, J. Am. Chem. Soc., 129, 1805–1815.

37. Zhang, D., Yang, Y., Gao, M., Shu, W., Wu, L., Zhu, Y., Wu, A. (2013). A new route to construct 1,2-dihydroquinoxalineand 1,4-benzoxazine derivatives stereoselectively and its application to novel pyrazolo [1,5-a]quinoxaline oxides, Tetrahedron, 69, 1849–1856.

38. Heravi, M. M., Baghernejad, B., and Oskooie, H. A. (2009). A novel three-component reaction for the synthesis of N-cyclohexyl-3-arylquinoxaline-2-amines, Tetrahedron Lett., 50, 767–769.

39. Aparicio, D., Attanasi, O. A., Filippone, P., Ignacio, R., Lillini, S., Mantellini, F., Palacios, F., and de los Santos, J. M. (2006). Straightforward access to pyrazines, piperazinones, and quinoxalines by reactions of 1,2-diaza1,3- with 1,2-diamines under solution, solvent-Free, or solid-phase conditions, J. Org. Chem., 71, 5897–5905.

40. Xekoukoulotakis, N. P., Hadjiantoniou-Maroulis, C. P., and Maroulis, A. J. (2000). Synthesis of quinoxalines by cyclization of a-arylimino oximes of a-dicarbonyl compounds, Tetrahedron Lett., 41, 10299–10302.

41. Cai, J.-J., Zou, J.-P., Pan, X.-Q., and Zhang, W. (2008). Gallium(III) triflatecatalyzed synthesis of quinoxaline derivatives, Tetrahedron Lett., 49, 7386–7390.

42. Bhosale, R. S., Sarda, S. R., Ardhapure, S. S., Jadhav, W. N., Bhusare, S. R., and Pawar, R. P. (2005), An efficient protocol for the synthesis of quinoxaline derivatives at room temperature using molecular iodine as the catalyst, Tetrahedron Lett., 46, 7183–7186.

43. Newcomer, J. S., and McBee, E. T. (1949). The chemical behavior of hexachlorocyclopentadiene. I. Transformation to octachloro-3a,4,7, 7a-tetrahydro-4,7-methanoindene-1,8-dione, J. Am. Chem. Soc., 71, 946–951.

44. Ungnade, H. E., and McBee, E. T. (1958). The chemistry of perchlorocyclopentadiene and cyclopentadienes, Chem. Rev., 58, 249–320.

45. Khan, F. A., Prabhudas, B., and Dash, J. (2000). 1,2,3,4-Tetrachloro-5,5dimethoxycyclopenta-1,3-: diels–Alder reactions and applications of the products formed, J. Prakt. Chem., 342, 512–517.

46. Marchand, A. P., and Chou, T.-C. (1973). Base-promoted rearrangement of 2,3,5,6-tetrachloro- pentacyclo[5.4.0.0 2,6 .0 3,10 .0 5,9 ]undecane-4,8,11trione, J. Chem. Soc. Perkin Transactions I, 1948–1951.

47. Jung, M. E., and Hudspeth, J. P. (1977). Three-carbon annulation. Formation of five-membered rings from olefins via Diels–Alder reactions, J. Am. Chem. Soc., 99, 5508–5510.

48. Chou, T.-C., and Chiou, J.-H. (1986). Studies on cage compounds. Synthesis of

49. Chou, T.-C., Hong, P.-C., Wu, Y.-F., Chang, W.-Y., Lin, C.-T., and Lin, K.-J. (1996). Diels–Alder reactions of a cage-annulated cyclohexa-1,3-diene. Synthesis and crystal structure of a doubly-caged sterically-congested tetraol, Tetrahedron, 52, 6325–6338.

50. Chou, T.-C., Hsu, C.-J., and Chen, J.-Y. (2004), Benzoannulation of quinones by a cycloaddition-fragmentation approach. A simple synthesis of methoxycarbonyl-substituted polyacenoquinones, J. Chin. Chem. Soc., 51, 167–174.

51. Chou, T.-C., and Liu, N.-Y. (2006). Synthesis of singly and doubly cageannulated bicyclo[2.2.2]octenes derived from triptycene skeleton, J. Chin. Chem. Soc., 53, 1477–1490. 52. Gassman, P. G., and Pape, P. G. (1964). The chemistry of 7-substituted norbornenes. The reaction of bicyclo[2.2.1]hept-2-en-7-one with peracid, J. Org. Chem., 29, 160–163.

53. Allen, C. F. H., and Vanallan, J. A. (1950). Dimerization of cyclopentadienones, J. Am. Chem. Soc., 72, 5165–5167.

54. Ogliaruso, M. A., Romanelli, M. G., and Becker, E. I. (1965). Chemistry of cyclopentadienones, Chem. Rev., 65, 261–367.

55. Dauben, W. G., and Kellogg, M. S. (1980). Photochemistry of cis-fused bicyclo[4.n.0]-2,4-. Ground state conformational control, J. Am. Chem. Soc., 102, 4456–4463.

56. Nelsen, S. F., Trieber, II, D. A., Wolff, J. J., Powell, D. R., and RogersCrowley, S. (1997). Intramolecular electron transfer between doubly six p-bond-linked trialkyldiazenium cation and diazenyl radical units, J. Am. Chem. Soc., 119, 6873–6882.

57. Lin, C.-T., Wang, N.-J., Yeh, Y.-L., and Chou, T.-C. (1995). Synthesis, reactions and thermal properties of

58. Chou, T.-C., Yeh, Y.-L., and Lin, G.-H. (1996). A fragmentation-photocyclization approach towards homosecohexaprismane skeleton, Tetrahedron Lett., 37, 8779–8782.

59. Forman M. A., and Dailey, W. D. (1993). Convenient synthesis of the 1,4-bishomo-6-secoheptaprismane ring system, J. Org. Chem., 58, 1501–1507.

60. Chou, T.-C., Yang, M.-S., and Lin, C.-T. (1994). Synthesis and NMR spectral analysis of hexac yclo[6.6.2.0 2,7 .0 3,12 .0 6,11 .0 9,14 ] hexadeca-4,15-diene, J. Org. Chem., 59, 661–663. 61. Fessner, W.-D., Sedelmeier, G., Spurr, P. R., Rihs, G., and Prinzbach, H. (1987). “Pagodane”: the efficient synthesis of a novel, versatile molecular framework, J. Am. Chem. Soc., 109, 4626–4642.

62. Paquette, L. A., Romine, J. L., Lin, H.-S., and Wright, J.(1990). Total synthesis of (+)-ikarugamycin. 1. Stereocontrolled construction of the decahydro-as-indacene subunit, J. Am. Chem. Soc., 112, 9284–9292.

63. Clive, D. L. J., Sun, S., He, X., Zang, J., and Gagliardini, V. (1999). Synthesis of tricyclic bridgehead olefins related to the core structure of CP225,917 and CP-263,114―solvent, strain, and substitution effects on siloxy-Cope rearrangements, Tetrahedron Lett., 40, 4605–4609.

64. Khan, F. A., Das, B. P., Dash, J., and Sahu, N. (2000). A Rutheniumcatalyzed, novel and facile procedure for the conversion of vicinal dihaloalkenes to a-diketones, J. Am. Chem. Soc., 122, 9558–9559.

65. Khan, F. A., and Dash, J. (2002). Synthesis of a novel, highly symmetric bis-oxa-bridged compound, J. Am. Chem. Soc., 124, 2424–2425.

66. Khan, F. A., Dash, J., Sudheer, Ch., Sahu, N., and Parasuraman, K. (2005). Concise synthesis of novel oxa-bridged compounds, J. Org. Chem., 70, 7565–7577.

67. Chou, T.-C., Jiang, T.-S., Hwang, J.-T., Lin, K.-J., and Lin, C.-T. (1999). Laticyclic conjugated polyenes. Study on the Diels–Alder cycloadditions of a facially dissymmetric maleic anhydride, J. Org. Chem., 64, 4874–4883.

68. Lin, C.-T., Chen, K.-Z., and Chou, T.-C. (2003). Synthesis and chracterization of tetramethylene-syn-sesterbicyclo[2.2.2]octene, Tetrahedeon, 59, 1493–1500.

69. Chou, T.-C., and Lin, G.-H. (2004). Bicyclo[2.2.2]octene-based molecular spacers. Construction of U-shaped syn-facial etheno-bridged polyhydrononacenyl frameworks, Tetrahedeon, 60, 7907–7920.

70. Chou, T.-C., Hwa, C.-L., Lin, J.-J., Liao, K.-C., and Tseng, J.-C. (2005). Bicyclo[2.2.2]octene-based “crab-like” molecules: synthesis, complexation, luminescence properties, and solid-state structures, J. Org. Chem., 70, 9717–9726.

71. Lin, J.-J. (2003). Construction of U-Shaped Molecules. Synthesis of UShaped Molecules Containing Parallel Benzopyrazine Rings. Masterdegree Thesis, National Chung Cheng University. (unpublished).

72. Liao, K.-C. (2005). Molecular Architecture. Synthesis and Physical Properties of U-Shaped and Z-Shaped Polycyclic Molecules Containing Functionalized Quinoxaline Rings, Master-degree Thesis, National Chung Cheng University. (unpublished). 73. Gleiter, R., and Kratz, D. (1993). “Super” Phanes, Acc. Chem. Res., 26, 311–318. 74. Kleinpeter, E., and Holzberger, A. (2001). Theoretical study of conformation and dynamic behavior of [3.3]orthocyclophane and hetrocyclic analogues, Tetrahedron, 57, 6941–6946.

75. Kurebayashi, H., Mine, T., Harada, K., Usui, S., Okajima, T., and Fukazawa, Y. (1998). Conformational analysis of dioxa[2.2]orthocyclophanes, Tetrahedron, 54, 13495–13504.

76. Mataka, S., Takahashi, K., Mimura, T., Hirota, T., Takuma, K., Kobayashi, H., Tashiro, M., Imada, K., and Kuniyoshi, M. (1987). [3.3]Orthocyclophanes with facing and naphthalene rings, J. Org. Chem., 52, 2653–2656.

77. Leblond, J., and Petitjean, A. (2011). Molecular tweezers: concepts and applications, Chem. Phys. Chem., 12, 1043–1051.

78. Harmata, M. (2004). Chiral molecular tweezers, Acc. Chem. Res., 37, 862–873.

79. Hof, F., Craig, S. L., Nuckolls, C., and Rebek, Jr. J. (2002). Molecular encapsulation, Angew. Chem. Int. Ed., 41, 1488–1508.

80. Klärner, F.-G., and Kahlert, B. (2003). Molecular tweezers and clips as synthetic receptors. Molecular recognition and dynamics in receptorsubstrate complexes, Acc. Chem. Res., 36, 919–932.

81. Branchi, B., Balzani, V., Ceroni, P., Kuchenbrandt, M. C., Klärner, F.-G., Bläser, D., and Boese, R. (2008). Molecular clips with extended aromatic sidewalls as receptors for electron-acceptor molecules. Synthesis and NMR, photophysical, and electrochemical properties, J. Org. Chem., 73, 5839–5851.

82. Head, N. J., Oliver, A. M., Look, K., Lokan, N. R., Jones, G. A., and PaddonRow, M. N. (1999). Novel U-shaped systems containing an imidefunctionalized cleft for the study of solvent-mediated electron transfer and energy transfer: synthesis and binding studies, Angew. Chem. Int. Ed., 38, 3219–3222.

83. Jordan, K. D., and Paddon-Row, M. N. (1992). Analysis of the interactions responsible for long-range through-bond-mediated electronic coupling between remote chromophores attached to rigid polynorbornyl bridges, Chem. Rev., 92, 395–410.

84. Chen, K.-Y., Chow, T. J., Chou, P.-T., Cheng, Y.-M., and Tsai, S.-H. (2002). Photoinduced electron transfer reactions across rigid linear spacer groups of high symmetry, Tetrahedron Lett., 43., 8115–8119.

85. Chou, T.-C., Liao, K.-C., and Lin, J.-J. (2005). Synthesis and luminescence properties of U-shaped polycyclic molecules containing syn-facial functionalized quinoxaline rings, Org. Lett., 7, 4843–4846.

86. Chou, T.-C., and Liao, K.-C. (2011). Quinoxaline-annelated Z-shaped quadruple-bridged orthocyclophanes: synthesis and crystal structures, Tetrahedron, 67, 236–249.

87. Garcia, J. G., Fronczek, F. R., and McLaughlin, M. L. (1991). Tandem reverse-electron-demand Diels–Alder reactions of 1,5-cyclooctadiene, Tetrahedron Lett., 32, 3289–3292.

88. Etzkorn, M., Timmerman, J. C., M. D., Brooker, Yu, X., and Gerken, M. (2010). Preparation, structures and preliminary host–guest studies of fluorinated syn-bis-quinoxaline molecular tweezers, Beilstein J. Org. Chem., 6(39) (doi:10.3762/bjoc.6.39).

89. Chou, T.-C., Lin, G.-H., Wu, S.-C., and Bahekar, S. S. (2008). Synthesis of endo,endo-2.9-dihydroxypentacyclo[8.4.0.0 3,8 .0 4,14 .0 7,11 ]tetradeca5,12-diene, J. Chin. Chem. Soc., 55, 171–182.

90. Chen, S.-Y. (2004). Synthesis of the Quinoxaline Ring-Fused U-Shaped Polycyclic Molecules Having Pendant Aryl Group, Master-degree Thesis, National Chung Cheng University. (unpublished). 91. Warrener, R. N., Wang, S., and Russell, R. A. (1997). The synthesis of U-shaped cavity molecules with “inner-surface” functionality, Tetrahedron, 53, 3975–3990.

92. Chou, T.-C., Lin, K.-C., and Wu, C.-A. (2009). Quinoxaline-based Ushaped septuple-bridged [7,7]orthocyclophanes: synthesis, solid-state structure, and self-assembly, Tetrahedron, 65, 10243–10257.

93. Li, Y.-J. (2009) Bis-Quinoxaline Ring-Fused U-Shaped Molecules Bearing N-Arylimide: Synthesis and Molecular Assembly, Master-degree Thesis, National Chung Cheng University. (unpublished).

94. Chou, T.-C., Hong, P.-C., Lin, C.-T. (1991). A Diels–Alder cycloadditionCope rearrangement approach to the construction of C s - and C 2 symmetric hexacycloeicosatetraendiones, Tetrahedron Lett., 32, 6351–6354.

95. Shibata, K., Kulkarni, A. A., Ho, D. M., and Pascal, R. A. Jr. (1994). Perchlorotriphenylene, J. Am. Chem. Soc., 116, 5983–5984.

96. Meyer, E. A., Castellano, R. K., and Diederich, F. (2003). Interactions with aromatic rings in chemical and biological recognition, Angew. Chem. Int. Ed., 42, 1210–1250.

97. Hunter, C. A., Lawson, K. R., Perkins, J., Urch, C. J. (2001). Aromatic interactions, J. Chem. Soc., Perkin Trans., 2, 651–669.

98. Lima, C. F. R. A. C., Gomes, L. R., Low, J. N., Silva, A. M. S., and Santos, L. M. N. B. F. (2012). Elucidating the role of aromatic interactions in rotational barriers involving aromatic systems, J. Org. Chem., 77, 10422−10426.

99. Carroll, W. R., Zhao, C., Smith, M. D., Pellechia, P. J., and Shimizu, K. D. (2011). A molecular balance for measuring aliphatic CH–p interactions, Org. Lett., 13, 4320–4323. 100. Carroll, W. R., Pellechia, P., and Shimizu, K. D. (2008). A rigid molecular balance for measuring face-to-face arene-arene interactions, Org. Lett., 10, 3547–3550.

101. Chou, T.-C., Wu, R.-T., Liao, K.-C., and Wang, C.-H. (2011). N-1- and N-2Anthryl succinimide derivatives: C–N bond rotational behaviors and fluorescence energy transfer, J. Org. Chem., 76, 6813–6818.

102. Sankararaman, S., Venkataramana, G., Varghese, B. (2008). Conformational isomers from rotation of diacetylenic bond in an ethynylpyrenesubstituted molecular hinge, J. Org. Chem., 73, 2404–2407.

103. Lewis, F. D., Delos Santos, G. B., and Liu, W. (2005). Convergent synthesis of nonsymmetric p-stacked protophanes assembled with urea linkers, J. Org. Chem., 70, 2974–2979.

104. Lewis, F. D., Daublain, P., Delos Santos, G. B., Liu, W., Asatryan, A. M., Markarian, S. A., Fiebig, T., Raytchev, M., and Wang. Q. (2006). Dynamics and mechanism of bridge-dependent charge separation in pyrenylurea-nitrobenzene p-stacked protophanes, J. Am. Chem. Soc., 128, 4792–4801. 105. Nakano, T., and Yade, T. (2003). Synthesis, structure, and photophysical and electrochemical properties of a p-stacked polymer, J. Am. Chem. Soc., 125, 15474–15484. 106. Haino, T., Fujii, T., and Fukazawa, Y. (2006). Guest binding and new selfassembly of bisporphyrins, J. Org. Chem., 71, 2572–2580.

107. Hill, D. J., Mio, M. J., Prince, R. B., Hughes, T. S., Moore, J. S. (2001). A field guide to foldamers, Chem. Rev., 101, 3893–4012.

108. Hunang, J.-K. (2009) Quinoxaline-Based p,p-Stacked Molecules: Synthesis and Physicochemical Property, Master-degree Thesis, National Chung Cheng University. (unpublished).

109. Diekmann, J. (1963). Trimethyl trichlorohemimellitate from an unusual fragmentation reaction, J. Org. Chem., 58, 2880–2881.

110. Lemal, D. M., Gosselink, E. P., and McGregor, S. D. (1966). Thermal decomposition of substituted norbornadienone ketals, J. Am. Chem. Soc., 88, 582–600.

111. Chou, T.-C., Lin, K.-C., Kon-no, M., Lee, C.-C., and Shinmyozu, T. (2011). Quinoxaline-embedded polyacenoquinone esters: synthesis, electronic properties, and crystal structure, Org. Lett., 13, 4588–4591.

112. Huang, J.-K. (2012). Synthesis of Polyazaacenes: Study on One-Pot Reaction of Condensation-Fragmentation. Undergraduate research report, Chaoyang University of Technology. (unpublished).

113. Miao, S., Brombosz, S. M., Schleyer, P. V. R., Wu, J. I., Barlow, S., Marder, S. R., Hardcastle, K. I., and Bunz, U. H. F. (2008). Are N,N-dihydrodiazatetracene derivatives antiaromatic? J. Am. Chem. Soc., 130, 7339–7344. 114. Terrier, F. (1991). Nucleophilic Aromatic Displacement; (Verlag Chemie: Weinheim). 115. Gholap, A. R. (2011). Nucleophilic Aromatic Substitution of QuinoxalineEmbedded Chlorinated Pentaacenoquinone Esters,Part I: Amination. NSC research report, Chaoyang University of Technology. (unpublished).

116. Chen, J.-C. (2012). Amination of Quinoxaline-Embedded Chlorinated Pentaacenoquinone Ester via Nucleophilic Aaromatic Substitution, Master-degree Thesis, Chaoyang University of Technology. (unpublished). 7 Chapter 7 - Fluorogenic Sensors of Heavy Metal Ions Based on Calix[4]arenes Functionalized by 1,3-Dipolar Cycloaddition Reactions

Easton, C. J., Hughes, C. M. M., Savage, G. P., Simpson, G. W. (1994). Cycloaddition reactions of nitrile oxides with alkenes, Adv. Heterocyclic Chem., 60, 261–327. Easton, C. J., Lincoln, S. F. (1999). “Modified Cyclodextrins” Chapter 4.7, pp. 126–128, Imperial College Press, London. Guarna, A., Guidi, A., Goti, A., Brandi, A., De Sarlo, F. (1989). Cleavage of isoxazolines with tricarbonyltris(acetonitrile)molybdenum and silica gel. Synthesis of 1-(2-oxoalkyl)cyclopropanols from isoxazone-5spirocyclopropanes, Synthesis, 175–178. Gutsche, C. D., Dhawan, B., Levine, J. A., No, K. H., Bauer, L. J. (1983). Calix[4]arenes 9: conformational isomers of the ethers and esters of calixarenes, Tetrahedron, 39, 409–426. Gutsche, C. D., Lin, L.-G. (1986). Calix[4]arenes 12: the synthesis of functionalized calixarenes, Tetrahedron, 42, 1633–1640. Gutsche, C. D., (1989). Calixarenes (ed. Stoddart, J. F.), The Royal Society of Chemistry, Cambridge. Gutsche C. D. (1998). Calixarenes Revisited, in “Monograph in Supramolecular Chemistry”, (ed. by Stoddart, J. F.), The Royal Society of Chemistry: Cambridge. Gutsche, C. D. (2008). Calixarenes: An Introduction, 2nd ed., Monographs in Supramolecular Chemistry (ed. Stoddard J. F.), The Royal Society of Chemistry: Cambridge. Haverlock, T. J., Mirzadeh, S., Moyer, B. A. (2003). Selectivity of calix[4]arenebis(crown-6) in the complexation and transport of francium ion, J. Am. Chem. Soc., 125, 1126–1127.

Ho, I.-T., Chu, J.-H., Chung, W.-S. (2011). Calix[4]arenes with lower-rim betaamino-alpha, beta-unsaturated ketones containing bis-chelating sites as a highly selective fluorescence turn-on chemosensor for Cu(II) Ions, Eur. J. Org. Chem., 1472–1481.

Ho, I.-T., Haung, K.-C., Chung, W.-S. (2011). 1,3-Alternate calix[4]arene as a homobinuclear ditopic fluorescent chemosensor for Ag + Ions, Chem. Asian J., 6, 2738–2746. Hua, Y., Flood, A. H. (2010). Click chemistry generates privileged CH hydrogenbonding triazoles: the latest addition to anion supramolecular chemistry, Chem. Soc. Rev., 39, 1262–1271.

Hung, H.-C., Cheng, C.-W., Wang, Y.-Y., Cheng, Y.-J., Chung, W.-S. (2009). Highly selective fluorescence sensors for Hg 2+ and Ag + based on bistriazole coupled polyoxyethylenes in MeOH solution, Eur. J. Org. Chem. 6360–6366.

Ikeda, A., Shinkai, S. (1997). Novel cavity design using calix[n]arene skeletons: toward molecular recognition and metal binding, Chem. Rev., 97, 1713–1734.

Ji, H.-F., Dabestani, R., Brown, G. M. (2000). A Supramolecular fluorescent probe, activated by protons to detect cesium and potassium ions, mimics the function of a logic gate, J. Am. Chem. Soc., 122, 9306–9307.

Jin, T., Ichikawa, K., Koyana, T. (1992). A fluorescent calix[4]arene as an intramolecular excimer-forming Na + sensor in nonaqueous solution, J. Chem. Soc. Chem. Commun., 499–501. Jin, T. (1999). A new Na + sensor based on intramolecular fluorescence energy transfer derived from calix[4]arene, Chem. Commun., 2491–2492. Kim, J. S., Shon, O. J., Rim, J. A., Kim, K. S., Yoon, J. (2002). Pyrene-armed calix[4]azacrowns as new fluorescent ionophores: “molecular taekowndo” process via fluorescence change, J. Org. Chem., 67, 2348–2351. Kim, J. S., Noh, K. H., Lee, S. H., Kim, S. K., Kim, S. K., Yoon, J. (2003). Molecular taekowndo. 2. A new calix[4]azacrown bearing two different binding sites as a new fluorescent ionophore, J. Org. Chem., 68, 597–600. Kim, S. K., Lee, S. H., Lee, J. Y., Lee, J. Y., Bartsch, R. A., Kim, J. S. (2004). An excimer-based, binuclear, on−off switchable calix[4]crown chemosensor, J. Am. Chem. Soc., 126, 16499–16506.

Lau, Y. H., Rutledge, P. J., Watkinson, M., Todd, M. H. (2011). Chemical sensors that incorporate click-derived triazoles, Chem. Soc. Rev., 40, 2848– 2866.

Lee, J. Y., Kwon, J., Park, C. S., Lee, J.-E., Sim, W., Kim, J. S., Seo, J., Yoon, I., Jung, J. H., Lee, S. S. (2007). Calix[4]thiacrowns as ditopic hosts for homo- and heterobinuclear accommodation: first report of a chopsticks-type pi-coordination, Org. Lett., 9, 493–496. Lee, S. H., Kim, J. Y., Ko, J., Lee, J. Y., Kim, J. S. (2004). Regioselective complexation of metal ion in chromogenic calix[4]biscrowns, J. Org. Chem., 69, 2902–2905.

Leray, I., Lefevre, J.-P., Delouis, J.-F., Delaire, J., Valeur, B. (2001). Synthesis and photophysical and cation-binding properties of mono- and tetra naphthylcalix[4]arenes as highly sensitive and selective fluorescent sensors for sodium, Chem. Eur. J., 7, 4590–4598.

Li, G.-K., Xu, Z.-X., Chen, C.-F., Huang, Z.-T. (2008). A highly efficient and selective turn-on fluorescent sensor for Cu 2+ ion based on calix[4]arene bearing four iminoquinoline subunits on the upper rim, Chem. Commun., 1774–1776. Miao, F., Zhou, J., Tian, D., Li, H. (2012). Enantioselective recognition of mandelic acid with (R)-1,1-bi-2-naphthol-linded calix[4]arene via fluorescence and dynamic light scattering, Org. Lett., 14, 3572–3575.

Morales-Sanfrutos, J., Ortega-Muňoz, M., Lopez-Jaramillo, J., HernandezMateo, F., Santoyo-Gonzalez, F. (2010). Synthesis of calixarenebased cavitands and nanotubes by click chemistry, J. Org. Chem., 73, 7768–7771.

Ni, X.-L., Wang, S., Zeng, X., Tao, Z., Yamato, T. (2011). Pyrene-linked triazolemodified homooxacalix[3]arene: a unique C 3 symmetry ratiometric fluorescent chemosensor for Pb 2+ , Org. Lett., 13, 552–555. Ni, X.-L., Zeng, X., Redshaw, C., Yamato, T. (2011). Synthesis and evaluation of a novel pyrenyl-appended triazole−based thiacalix[4]arene as a fluorescent sensor for Ag + ion, Tetrahedron, 67, 3248−3253. Park, S. Y., Yoon, J. H., Hong, C. S., Souane, R., Kim, J. S., Matthews, S. E., Vicens, J. (2008). Pyrenyl-appended triazole-based calix[4]arene as a fluorescent sensor for Cd 2+ and Zn 2+ , J. Org. Chem., 73, 8212−8218. Pathak, R. K., Ibrahim, S. M., Rao, C. P. (2009). Selective recognition of Zn 2+ by Salicylaldimine appended triazole-linked di-derivatives of calix[4]arene by enhanced fluorescence emission in aqueous-organic solutions, Role of terminal –CH 2 OH moieties in conjunction with the imine in recognition, Tetrahedron Lett., 50, 2730–2734. Pathak, R. K., Dikundwar, A. G., Row, T. N. G., Rao, C. P. (2010). A lower rim triazole linked calix[4]arene conjugate as a fluorescence switch on sensor for Zn 2+ in blood serum milieu, Chem. Commun., 46, 4345–4347.

Piertrasik, U., Szydlowska, J., Krówczyński, A., Pociecha, D., Górecka, E., Guillon, D. (2002). Re-entrant isotropic phase between lamella and columnar mesophases, J. Am. Chem. Soc., 124, 8884–8890. Rostovtsev, V. V., Green, L. G., Fokin, V. V., Sharpless, K. B. (2002). A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective “Ligation” of azides and terminal alkynes, Angew. Chem. Int. Ed., 41, 2596–2599. Schazmann, B., Alhashimy, N., Diamond, D. (2006). Chloride selective calix[4]arene optical sensor combining urea functionality with pyrene excimer transduction, J. Am. Chem. Soc., 128, 8607–8614.

Senthilvelan, A., Lee, G.-H., Chung, W.-S. (2006). A novel photoinduced ring opening and isomerization of adamantane-2-spiro isoxazolines using Mo(CO) 6 , Tetrahedron Lett., 47, 7179–7183.

Senthilvelan, A., Tsai, M.-T., Chang, K.-C., Chung, W.-S. (2006). Mo(CO) 6 mediated synthesis of calix[4]arenes carrying b-hydroxy ketones or a,b-unsaturated-b-amino ketones, Tetrahedron Lett., 47, 9077–9081.

Senthilvelan, A., Ho, I.-T., Chang, K.-C., Lee, G.-H., Liu, Y.-H., Chung, W.-S. (2009). Cooperative recognition of a copper cation and anion by a calix[4]arene substituted at the lower rim by a beta-amino-alpha, beta-unsaturated ketone, Chem. Eur. J., 15, 6152–6160.

Shiao, Y.-J., Chiang, P.-C., Senthilvelan, A., Tsai, M.-T., Lee, G.-H., Chung, W.-S. (2006). Capping the upper and lower rims of calix[4]arenes by aryl dinitrile oxide reactions, Tetrahedron Lett., 47, 8383–8386. Shinkai, S., Ikeda, M., Sugasaki, A., Takeuchi, M. (2001). Positive allosteric systems designed on dynamic supramolecular scaffolds: toward switching and amplification of guest affinity and selectivity, Acc. Chem. Res., 34, 494–503.

Shu, C.-M., Lin, W.-L., Lee, G.-H., Peng, S.-M., Chung, W.-S. (2000). Calix[4]arenes with a lid in their upper rims: 1,3-dipolar cycloaddition reactions of benzonitrile oxides with 5-allyl-, 5,11-diallyl- and 5,17-diallylcalix[4]arenes, J. Chinese Chem. Soc., 47, 173–182. Takeuchi, M., Ikeda, M., Sugasaki, A., Shinkai, S. (2001). Molecular design of artificial molecular and ion recognition systems with allosteric guest responses, Acc. Chem. Res., 34, 865–873.

Tornøe, C. W., Christensen, C., Meldal, M. (2002). Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides, J. Org. Chem., 67, 3057–3064. Valeur, G. (2001). Molecular Fluorescence, Wiley−VCH, Weinheim, Germany.

Wang, N.-J., Sun, C.-M., Chung, W.-S. (2012). A highly selective fluorescent chemosensor for Ag + based on calix[4]arene with lower-rim proximal triazolylpyrenes, Sens. Actuator. B, 171–172, 984–993.

Wollenberg, R. H., Goldstein, J. E. (1980). Ring annulation by intramolecular nitrile oxide cycloaddition, Synthesis, 9, 757–758.

Xu, W., Vittal, J. J., Puddephatt, R. J., (1996). Propargyl calix[4]arenes and their complexes with Ag(I) and Au(I), Can. J. Chem., 74, 766–774. Zhu, L.-N., Gong, S.-L., Yang, C.-L., Qin, J.-G. (2008). Novel pyrene-armed calix[4]arenes through triazole connection: ratiometric fluorescent chemosensor for Zn 2+ and promising structure for integrated logic gates, Chin. J. Chem., 26, 1424−1430. 8 Chapter 8 - Electron Transport Materials in Organic Light-Emitting Diodes: Design Considerations and Structural Diversity

1. (a) Kraft, A., Grimsdale, A. C., Holmes, A. B. Angew. Chem. Int. Ed., 1998, 37, 402. (b) Bernius, M. T., Inbasekaran, M., O’Brien, J., Wu, W. Adv. Mater., 2000, 12, 1737. (c) Mitschke, U., Bauerle, P. J. Mater. Chem., 2000, 10, 1471. (d) Kim, D. Y., Cho, H. N., Kim, C. Y. Prog. Polym. Sci., 2000, 25, 1089. (e) Shirota, Y. J. Mater. Chem., 2000, 10, 1. (f) Rees, I. D., Robinson, K. L., Holmes, A. B., Towns, C. R., O’Dell, R. MRS Bull., 2002, 27, 451. (g) Hung, L. S., Chen, C. H. Mat. Sci. Eng. R., 2002, 39, 143. (h) Saragi, T. P. I., Siebert, A., Fuhrmann-Lieker, T., Salbeck, J. Chem. Rev., 2007, 107, 1011. (i) Hwang, S.-H., Moorefield, C. N., Newcome, G. R. Chem. Soc. Rev., 2008, 37, 2543.

2. (a) Kulkarni, A. P., Tonzola, C. J., Babel, A., Jenekhe, S. A. Chem. Mater., 2004, 16, 4556. (b) Hughes, G., Bryce, M. R. J. Mater. Chem., 2005, 15, 94. (c) Shirota, Y., Kageyama, H. Chem. Rev., 2007, 107, 953.

3. (a) Antoniadis, H., Abkowitz, M. A., Hsieh, B. R. Appl. Phys. Lett., 1994, 65, 2030. (b) Aziz, H., Popovic, Z. D., Hu, N. X., Hor, A. M., Xu, G. Science, 1999, 283, 1900.

4. Adachi, C., Tsutsui, T., Saito, S. Appl. Phys. Lett., 1990, 57, 531.

5. (a) Li, N., Lai, S.-L., Liu, W., Wang, P., You, J., Lee, C.-S., Liu, Z. J. Mater. Chem., 2011, 21, 12977. (b) Goel, A., Kumar, V., Nag, P., Bajpai, V., Kumar, B., Singh, C., Prakash, S., Anand, R. S. J. Org. Chem., 2011, 76, 7474. (c) Wu, Z., Yang, H., Duan, Y., Xie, W., Liu, S., Zhao, Y. Semicond. Sci. Technol., 2003, 18, L49.

6. Shirota, Y. Organic Electroluminescence, (ed. Kafafi, Z. H.), Taylor & Francis: Washington, DC, 2005, p. 147.

7. AlSalhi, M. S., Alam, J., Dass, L. A., Raja, M. Int. J. Mol. Sci., 2011, 12, 2036.

8. See: (a) Cambridge Display Technology Ltd., http://www.cdtltd. co.uk/(b) One Stop Displays, http://www.osddisplays.com/index.php (c) Orgalight, http://www.orgalight.com/(d) Philips, http://www. lighting.philips.com/main/index.wpd. 9. Nuyken, O., Jungermann, S., Wiederhirn, V., Bacher, E., Meerholz, K. Monatshefte für Chem., 2006, 137, 811.

10. (a) Figueira-Duarte, T. M., Rosso, P. G. D., Trattnig, R., Sax, S., List, E. J. W., Müllen, K. Adv. Mater., 2010, 22, 990. (b) Saleh, M., Park, Y.-S., Baumgarten, M., Kim, J.-J., Müllen, K. Macromol. Rapid Commun., 2009, 30, 1279. (c) Amarnath, C. A., Kim, H. K., Yi, D. K., Lee, S., Do, Y. R., Paik, U. Bull. Korean Chem. Soc., 2011, 32, 1495.

11. (a) Tang, C. W., VanSlyke, S. A. Appl. Phys. Lett., 1987, 51, 913. (b) Tang, C. W., VanSlyke, S. A., Chen, C. H. J. Appl. Phys., 1989, 65, 3610.

12. (a) Chen, C. H., Shi, J. Coord. Chem. Rev., 1998, 171, 161. (b) Leung, L. M., Lo, W. Y., So, S. K., Lee, K. M., Choi. W. K. J. Am. Chem. Soc., 2000, 122, 5640. (c) Pohl, R., Montes, V. A., Shinar, J., Anzenbacher, Jr., P. J. Org. Chem., 2004, 69, 1723. (d) Xie, J., Ning, Z., Tian, H. Tetrahedron Lett., 2005, 46, 8559. (e) Deda, M. L., Aiello, I., Grisolia, A., Ghedini, M., Amati, M., Lel, F. Dalton Trans., 2006, 330.

13. Pérez-Bolívar, C., Takizawa, S., Nishimura, G., Montes, V. A., Anzenbacher, Jr., P. Chem. Eur. J., 2011, 17, 9076.

14. Higginson, K. A., Zhang, X.-M., Papadimitrakopoulos, F. Chem. Mater., 1998, 10, 1017.

15. Kepler, R. G., Beeson, P. M., Jacobs, S. J., Anderson, R. A., Sinclair, M. B., Valencia, V. S., Cahill, P. A. Appl. Phys. Lett., 1995, 66, 3618.

16. (a) Chen, B. J., Sun, X. W., Li, Y. K. Appl. Phys. Lett., 2003, 82, 3017. (b) Burrows, P. E., Sapochak, L. S., McCarty, D. M., Forrest, S. R., Thompson, M. E. Appl. Phys. Lett., 1994, 64, 2718.

17. Liao, S.-H., Shiu, J.-R., Liu, S.-W., Yeh, S.-J., Chen, Y.-H., Chen, C.-T., Chow, T.-J., Wu, C.-I. J. Am. Chem. Soc., 2009, 131, 763.

18. Tao, S., Lai, S. L., Yu, J., Jiang, Y., Zhou, Y., Lee, C.-S., Zhang, X., Lee, S.-T. J. Phys. Chem. C, 2009, 113, 16792.

19. Donzé, N., Péchy, P., Grätzel, M., Schaer, M., Zuppiroli, L. Chem. Phys. Lett., 1999, 315, 405. 20. Roh, S.-G., Kim, Y.-H., Seo, K. D., Lee, D. H., Kim, H. K., Park, Y., Park, J.-W., Lee, J.-H. Adv. Funct. Mater., 2009, 19, 1663.

21. Yamamoto, T., Maruyama, T., Zhou, Z., Ito, T., Fukuda, T., Yoneda, Y., Begum, F., Ikeda, T., Sasaki, S., Takezoe, H., Fukuda, A., Kubota, K. J. Am. Chem. Soc., 1994, 116, 4832.

22. (a) Gebler, D. D., Wang, Y. Z., Blatchford, J. W., Jessen, S. W., Lin, L. B., Gustafson, T. L., Wang, H. L., Swager, T. M., MacDiarmid, A. G., Epstein, A. J. J. Appl. Phys. 1995, 78, 4264. (b) Onoda, M. J. Appl. Phys., 1995, 78, 1327.

23. (a) Sun, Y., Duan, L., Zhang, D., Qiao, J., Dong, G., Wang, L., Qiu, Y. Adv. Funct. Mater., 2011, 21, 1881. (b) Oh, J.-J., Pu, Y.-J., Sasabe, H., Nakayama, K., Kido, J. Chem. Lett. 2011, 40, 1092. (c) Oh, H.-Y., Lee, C., Lee, S. Org. Electron., 2009, 10, 163.

24. Ichikawa, M., Wakabayashi, K., Hayashi, S., Yokoyama, N., Koyama, T., Taniguchi, Y. Org. Electron., 2010, 11, 1966.

25. Togashi, K., Nomura, S., Yokoyama, N., Yasuda, T., Adachi, C. J. Mater. Chem., 2012, 22, 20689.

26. Liang, F., Chen, J., Cheng, Y., Wang, L., Ma, D., Jing, X., Wang, F. J. Mater. Chem., 2003, 13, 1392.

27. Kwon, T. W., Alam, M. M., Jenekhe, S. A. Chem. Mater. 2004, 16, 4657.

28. Hancock, J. M., Gifford, A. P., Tonzola, C. J., Jenekhe, S. A. J. Phys. Chem. C, 2007, 111, 6875.

29. Tonzola, C. J., Kulkarni, A. P., Gifford, A. P., Kaminsky, W., Jenekhe, S. A. Adv. Funct. Mater. 2007, 17, 863.

30. Jiang, P., Zhao, D.-D., Yang, X.-L., Zhu, X.-L., Chang, J., Zhu, H.-J. Org. Biomol. Chem., 2012, 10, 4704.

31. Wang, K.-Y., Chen, C., Liu, J.-F., Wang, Q., Chang, J., Zhu, H.-J., Li, C. Org. Biomol. Chem., 2012, 10, 6693.

32. Fernández-Mato, A., Quintela, J. M., Peinador, C. New. J. Chem., 2012, 36, 1634. 33. Naka, S., Okada, H., Onnagawa, H., Tsutsui, T. Appl. Phys. Lett., 2000, 76, 197.

34. Kathirgamanathan, P., Surendrakumar, S., Vanga, R. R., Ravichandran, S., Antipan-Lara, J., Ganeshamurugan, S., Kumaraverl, M., Paramaswara, G., Arkley, V. Org. Electron., 2011, 12, 666.

35. Li, Y.-J., Sasabe, H., Su, S.-J., Tanaka, D., Takeda, T., Pu, Y.-J., Kido, J. Chem. Lett., 2009, 38, 712.

36. Wang, R.-Y., Jia, W.-L., Aziz, H., Vamvounis, G., Wang, S., Hu, N.-X., Popović, Z. D., Coggan, J. A. Adv. Funct. Mater., 2005, 15, 1483.

37. (a) Gong, J.-R., Wan, L.-J., Lei, S.-B., Bai, C.-L., Zhang, X.-H., Lee, S.-T. J. Phys. Chem. B, 2005, 109, 1675. (b) Park, J. W., Shin, D. C., Park, S. H. Semicond. Sci. Technol., 2011, 26, 034002.

38. Lee, J.-F., Chen, Y.-C., Lin, J.-T., Wu, C.-C., Chen, C.-Y., Dai, C.-A., Chao, C.-Y., Chen, H.-Y., Liau, W.-B. Tetrahedron, 2011, 67, 1696.

39. Zhao, L., Perepichka, I. F., Türksoy, F., Batsanov, A. S., Beeby, A., Findlay, K. S., Bryce, M. R. New. J. Chem., 2004, 28, 912.

40. Xu, X., Chen, S., Yu, G., Di, C., You, H., Ma, D., Liu, Y. Adv. Mater., 2007, 19, 1281.

41. Xing, X., Zhang, L., Liu, R., Li, S., Qu, B., Chen, Z., Sun, W., Xiao, L., Gong, Q. ACS Appl. Mater. Interfaces, 2012, 4, 2877.

42. Huang, T.-H., Whang, W.-T., Shen, J. Y., Wen, Y.-S., Lin, J. T., Ke, T.-H., Chen, L.-Y., Wu, C.-C. Adv. Funct. Mater., 2006, 16, 1449.

43. Kim, R., OH, D. H., Hwang, M. C., Baek, J. Y., Shin, S. C., Kwon, S.-K., Kim, Y.-H. J. Nanosci. Nanotechnol., 2012, 12, 4370.

44. Park, S. M., Kang, I., Yun, H. J., Kim, R., Nam, S. Y., Hwang, J., Kim, Y.-H. Bull. Korean Chem. Soc., 2012, 33, 3469.

45. Wong, K.-T., Hung, T. S., Lin, Y., Wu, C.-C., Lee, G.-H., Peng, S.-M., Chou, C. H., Su, Y. O. Org. Lett., 2002, 4, 513.

46. (a) Wu, C. C., Lin, Y. T., Chiang, H. H., Cho, T. Y., Chen, C. W., Wong, K. T., Liao, Y. L., Lee, G. H., Peng, S. M. Appl. Phys. Lett., 2002, 81, 577. (b) Hughes, G., Wang, C., Batsanov, A. S., Fern, M., Frank, S., Bryce, M. R., Perepichka, I. F., Monkman, A. P., Lyons, B. P. Org. Biomol. Chem., 2003, 1, 3069.

47. Bettenhausen, J., Greczmiel, M., Jandke, M., Strohriegl, P. Synth. Met., 1997, 91, 223.

48. Jandke, M., Strohriegl, P., Berleb, S., Werner, E., Brütting, W. Macromolecules, 1998, 31, 6434.

49. Schmitz, C., Pösch, P., Thelakkat, M., Schmidt, H. W., Montali, A., Feldman, K., Smith, P., Weder, C. Adv. Funct. Mater., 2001, 11, 41.

50. Tyagi, P., Venkateswararao, A., Thomas, K. R. J. J. Org. Chem., 2011, 76, 4571.

51. Tonzola, C. J., Alam, M. M., Kaminsky, W., Jenekhe, S. A. J. Am. Chem. Soc., 2003, 125, 13548.

52. Ahmed, E., Earmme, T., Ren, G., Jenekhe, S. A. Chem. Mater., 2010, 22, 5786.

53. Thelakkat, M., Fink, R., Posch, P., Ring, J., Schmidt, H.-W. Polym. Prepr., 1997, 38, 394.

54. Fink, R., Heischkel, Y., Thelakkat, M., Schmidt, H.-W., Jonda, C., Hüppauff, M. Chem. Mater., 1998, 10, 3620.

55. (a) Stončius, S., Butkus, E., Žilinskas, A., Larsson, K., Öhrström, L., Berg, U., Wärnmark, K. J. Org. Chem., 2004, 69, 5196. (b) Ashmore, J., Bishop, R., Craig, D. C., Scudder, M. L. M. Cryst. Growth Des., 2009, 9, 2742.

56. Ishi-I, T., Yaguma, K., Thiemann, T., Yashima, M., Ueno, K., Mataka, S. Chem. Lett., 2004, 33, 1244.

57. Zhong, H., Xu, E., Zeng, D., Du, J., Sun, J., Ren, S., Jiang, B., Fang, Q. Org. Lett., 2008, 10, 709.

58. Klenkler, R. A., Aziz, H., Tran, A., Popovic, Z. D., Xu, G. Org. Electron., 2008, 9, 285.

59. Maindron, T., Dodelet, J. P., Lu, J., Hlil, A. R., Hay, A. S., D’Iorio, M. Synth. Met., 2002, 130, 247.

60. Jansson, E., Jha, P. C., Ågren, H. Chem. Phys., 2006, 330, 166.

61. Jordan, R. H., Dodabalapur, A., Strukelj, M., Miller, T. M. Appl. Phys. Lett., 1996, 68, 1192.

62. (a) Gao, Z. Q., Lee, C. S., Bello, I., Wu, S. K., Yan, Z. L., Zhang, X. H. Synth. Met., 1999, 105, 141. (b) Gao, Z. Q., Lee, C. S., Bello, I., Lee, S. T., Chen, R.-M., Luh, T.-Y. Shi, J., Tang, C. W. Appl. Phys. Lett., 1999, 74, 865. (c) Wang, Z., Lu, P., Chen, S., Gao, Z., Shen, F., Zhang, W., Xu, Y., Kwok, H. S., Ma, Y. J. Mater. Chem., 2011, 21, 5451.

63. Nomura, M., Shibasaki, Y., Ueda, M., Tugita, K., Ichikawa, M., Taniguchi,Y. Synth. Met. 2005, 151, 261.

64. White, W., Hudson, Z. M., Feng, X., Han, S., Lu, Z. H., Wang, S. Dalton Trans., 2010, 39, 892.

65. Mohammad, Q., Manoharan, S. S. J. Appl. Phys., 2005, 97, 096101.

66. Fu, H.-Y., Sun, X.-Y., Gao, X., Xiao, F., Shao, B.-X. Synth. Met., 2009, 159, 254.

67. (a) Adachi, C., Tsutsui, T., Saito, S. Appl. Phys. Lett., 1989, 55, 1489. (b) Adachi, C., Tsutsui, T., Saito, S. Appl. Phys. Lett., 1990, 56, 799.

68. (a) Zhi-Ming, Z., Rui-feng, Z., Fang, W., Yu-Guang, M., Guo-Wen, L., WenJiang, T., Jia-Cong, S. Chin. Phys. Lett., 2000, 17, 454. (b) Wang, C., Jung, G.-Y., Batsanov, A. S., Bryce, M. R., Petty, M. C. J. Mater. Chem., 2002, 12, 173. (c) Ichikawa, M., Kawaguchi, T., Kobayashi, K., Miki, T., Furukawa, K., Koyama, T., Taniguchi, Y. J. Mater. Chem., 2006, 16, 221. (d) Wu, C.-A., Chou, H.-H., Shih, C.-H., Wu, F.-I., Cheng, C.-H., Huang, H.-L., Chao, T.-C., Tseng, M.-R. J. Mater. Chem., 2012, 22, 17792.

69. (a) Oyston, S., Wang, C., Perepichka, I. F., Batsanov, A. S., Bryce, M. R., Ahn, J. H., Petty, M. C. J. Mater. Chem., 2005, 15, 194. (b) Wu, F.-I., Shu, C.-F., Chien, C.-H., Tao, Y.-T. Synth. Met., 2005, 148, 133.

70. Yeh, H.-C., Lee, R.-H., Chan, L.-H., Lin, T.-Y. J., Chen, C.-T., Balasubramaniam, E., Tao, Y.-T. Chem. Mater., 2001, 13, 2788. 71. Liang, F., Zhou, Q., Cheng, Y., Wang, L., Ma, D., Jing, X., Wang, F. Chem. Mater., 2003, 15, 1935.

72. Reddy, M. A., Thomas, A., Srinivas, K., Rao, V. J., Bhanuprakash, K., Sridhar, B., Kumar, A., Kamalasanan, M. N., Srivastava, R. J. Mater. Chem., 2009, 19, 6172.

73. Liu, Y., Chen, S., Lam, J. W. Y., Mahtab, F., Kwok, H. S., Tang, B. Z. J. Mater. Chem., 2012, 22, 5184.

74. Kido, J., Ohtaki, C., Hongawa, K., Okuyama, K., Nagai, K. Jpn. J. Appl. Phys. 1993, 32, L917.

75. Ichikawa, M., Mochizuki, S., Jeon, H. G., Hayashi, S., Yokoyamac, N., Taniguchi, Y. J. Mater. Chem., 2011, 21, 11791.

76. Ichikawa, M., Fujimoto, S., Miyazawa, Y., Koyama, T., Yokoyama, N., Miki, T., Taniguchi, Y. Org. Electron., 2008, 9, 77.

77. Brédas J. L., Heeger, A. J. Chem. Phys. Lett., 1994, 217, 507.

78. (a) Hudlicky, M., Pavlath, A. E., ed. Chemistry of Organic Fluorine Compounds II: A Critical Review, ACS Monograph 187, American Chemical Society: Washington, DC, 1995. (b) Yamamoto, H., ed. Organofluorine Compounds: Chemistry and Applications, Springer: Heidelberg, 2000. (c) Banks, R. E., Smart, B. E., Tatlow, J. C., ed. Organofluorine Chemistry: Principle and Commercial Applications, Topics in Applied Chemistry, Plenum Press: New York, 1994.

79. Babudri, F., Farinola, G. M., Naso, F., Ragni, R. Chem. Commun., 2007, 1003.

80. Winkler, B., Meghdadi, F., Tasch, S., Mtillner, R., Resel, R., Saf, R., Leising, G., Stelzer, F. Opt. Mater., 1998, 9, 159.

81. Heidenhain, S. B., Sakamoto, Y., Suzuki, T., Miura, A., Fujikawa, H., Mori, T., Tokito, S., Taga, Y. J. Am. Chem. Soc., 2000, 122, 10240.

82. Sakamoto, Y., Suzuki, T., Miura, A., Fujikawa, H., Tokito, S., Taga, Y. J. Am. Chem. Soc., 2000, 122, 1832.

83. Komatsua, S., Sakamotoa, Y., Suzukia, T., Tokito, S. J. Solid State Chem., 2002, 168, 470.

84. Geramita, K., McBee, J., Shen, Y., Radu, N., Tilley, T. D. Chem. Mater., 2006, 18, 3261.

85. (a) Khabashesku, V. N., Balaji, V., Boganov, S. E., Nefedov, O. M., Michl, J. J. Am. Chem. Soc., 1994, 116, 320. (b) Yamaguchi, S., Tamao, K. Bull. Chem. Soc. Jpn., 1996, 69, 2327. (c) Yamaguchi, S., Tamao, K. J. Chem. Soc., Dalton Trans., 1998, 3693.

86. Tamao, K., Uchida, M., Izumizawa, T., Furukawa, K., Yamaguchi, S. J. Am. Chem. Soc., 1996, 118, 11974.

87. Uchida, M., Izumizawa, T., Nakano, T., Yamaguchi, S., Tamao, K., Furukawa, K. Chem. Mater., 2001, 13, 2680.

88. Geramita, K., McBee, J., Tilley, T. D. J. Org. Chem., 2009, 74, 820.

89. Son, H.-J., Han, W.-S., Chun, J.-Y., Kwon, S.-N., Ko, J., Kang, S. O. Organometallics, 2008, 27, 2464.

90. Son, H.-J., Han, W.-S., Wee, K. R., Lee, S.-H., Hwang, A.-R., Kwon, S., Cho, D. W., Suh, I.-H., Kang, S. O. Mater. Chem., 2009, 19, 8964.

91. Lu, P., Hong, H., Cai, G., Djurovich, P., Weber, W. P., Thompson, M. E. J. Am. Chem. Soc., 2000, 122, 7480.

92. Wong, K.-T., Chen, R.-T., Fang, F.-C., Wu, C.-C., Lin, Y.-T. Org. Lett., 2005, 7, 1979.

93. Domercq, B., Grasso, C., Maldonado, J. L., Halik, M., Barlow, S., Marder, S. R., Kippelen, B. J. Phys. Chem. B, 2004, 108, 8647.

94. Wan, J., Zheng, C.-J., Fung, M.-K., Liu, X.-K., Lee, C.-S., Zhang, X.-H. J. Mater. Chem., 2012, 22, 4502.

95. Wakamiya, A., Taniguchi, T., Yanaguchi, S. Angew. Chem. Int. Ed., 2006, 45, 3170.

96. Horowitz, G. Adv. Mater., 1998, 10, 365.

97. Noda, T., Shirota, Y. J. Am. Chem. Soc., 1998, 120, 9714.

98. Li, D., Yuan, Y., Bi, H., Yao, D., Zhao, X., Tian, W., Wang, Y., Zhang, H. Inorg. Chem., 2011, 50, 4825. 99. Tao, Y., Yang, C., Qin, J. Chem. Soc. Rev., 2011, 40, 2943.

100. (a) Sun, C., Hudson, Z. M., Helander, M. G., Lu, Z.-H., Wang, S. Organometallics, 2011, 30, 5552. (b) Tanaka, D., Takeda, T., Chiba, T., Watanabe, S., Kido, J. Chem. Lett., 2007, 36, 262. (c) Inomata, H., Goushi, K., Masuko, T., Konno, T., Imai, T., Sasabe, H., Brown, J. J., Adachi, C. Chem. Mater., 2004, 16, 1285. (d) Sasabe, H., Chiba, T., Su, S.-J., Pu, Y.-J., Nakayama, K., Kido, J. Chem. Comm., 2008, 5821. (e) Sasabe, H., Gonmori, E., Chiba, T., Li, Y.-J., Tanaka, D., Su, S.-J., Takeda, T., Pu, Y.-J., Nakayama, K., Kido, J. Chem. Mater., 2008, 20, 5951. (f) Ahmed, E., Earmme, T., Jenekhe, S. A. Adv. Funct. Mater., 2011, 21, 3889. (g) Su, S.-J., Tanaka, D., Li, Y.-J., Sasabe, H., Takeda, T., Kido, J. Org. Lett., 2008, 10, 941. (h) Su, S.-J., Chiba, T., Takeda, T., Kido, J. Adv. Mater., 2008, 20, 2125. (i) Lee, C. W., Lee, J. Y. Chem. Eur. J., 2012, 18, 6457. (j) Kang, J.-W., Lee, D.-S., Park, H.-D., Park, Y.-S., Kim, J. W., Jeong, W.-I., Yoo, K.-M., Go, K., Kimb, S.-H., Kim, J.-J. J. Mater. Chem., 2007, 17, 3714. (k) Wu, C.-A., Chou, H.-H., Shih, C.-H., Wu, F.-I., Cheng, C.-H., Huang, H.-L., Chao, T.-C., Tseng, M.-R. J. Mater. Chem., 2012, 22, 17792.

101. Nicholson, J. W., ed. The Chemistry of Polymers, RSC Publishing: Cambridge, UK. 2006, Chapter 3, p. 46.

103. (a) Wang, S. D., Miyadera, T., Minari, T., Aoyagi, Y., Tsukagoshi, K. Appl. Phys. Lett., 2008, 93, 043311. (b) Kaake, L. G., Barbara, P. F., Zhu, X.-Y. J. Phys. Chem. Lett., 2010, 1, 628. 9 Chapter 9 - Electrochemical Deposition of Carbazole and Triarylamine Derivatives and Their Polymeric Optoelectronic Applications

1. AlSalhi, M. S., Alam, J., Dass, L. A., and Raja, M. (2011). Recent advances in conjugated polymers for light emitting device, Int. J. Mol. Sci., 12, 2036–2054.

2. Deng, X.-Y. (2011). light-emitting devices with conjugated polymers, Int. J. Mol. Sci., 12, 1575–1594.

3. Chen, S.-A., Jen, T.-H., and Lu, H.-H. (2010). A review on the emitting species in conjugated polymers for photo- and electro-luminescence, J. Chin. Chem. Soc., 57, 439–458.

4. Arias, A. C., MacKenzie, J. D., McCulloch, I., Rivnay, J., and Salleo, A. (2010). Materials and applications for large area electronics: solutionbased approaches, Chem. Rev., 110, 3–24.

5. Beaujuge, P. M., and Reynolds, J. R. (2010). Color control in p-conjugated organic polymers for use in electrochromic devices, Chem. Rev, 110, 268–320.

6. Crassous J., and Reau, R. (2008). p-Conjugated phosphole derivatives: synthesis, optoelectronic functions and coordination chemistry, Dalton Trans., 48, 6865–6876.

7. Chou, P.-T., and Chi, Y. (2006). Osmium- and ruthenium-based phosphorescent materials: design, photophysics, and utilization in OLED fabrication, Eur. J. Inorg. Chem., 17, 3319.

8. Liu, M., Niu, Y.-H., Luo, J., Chen, B., Kim, T.-D., Bardecker, J., and Jen, A. (2006). Material and interface engineering for highly efficient polymer light emitting diodes, Polym. Rev., 46, 7–26.

9. Klinea, R. J., and McGeheea, M. D. (2006). Morphology and charge transport in conjugated polymer, Polym. Rev., 46, 27–45.

10. Argun, A. A., Aubert, P.-H., Thompson, B. C., Schwendeman, I., Gaupp, C. L., Hwang, J, Pinto, N. J., Tanner, D. B., MacDiarmid, A. G., and Reynolds, J. R. (2004). Multicolored electrochromism in polymers: structures and devices, Chem. Mater., 16, 4401–4412. 11. Yimsiri, P., and Mackley, M.R. (2006). Spin and dip coating of lightemitting polymer solutions: matching experiment with modeling, Chem. Eng. Sci., 61, 3496–3505.

12. Guo, L. J. (2007). Nanoimprint lithography: methods and material requirements, Adv. Mater., 19, 495–513.

13. Søndergaard, R., Hösel, M., Angmo, D., Larsen-Olsen, T. T., and Krebs, F. C. (2012). Roll-to-roll fabrication of polymer solar cells, Mater. Today, 15(1–2), 36–49.

14. Braun, D., and Heeger, A. J. (1991). Visible light emission from semiconducting polymer diodes, Appl. Phys. Lett., 58, 1982–1984.

15. Ohmori, Y., Uchida, M., Muro, K., and Yoshino, K. (1991). Blue electroluminescent diodes utilizing poly(alkylfluorene), Jpn. J. Appl. Phys., 30, L1941–L1943.

16. Grice, A. W., Bradley, D. D. C., Bernius, M. T., Inbasekaran, M., Wu, W. W., and Woo, E. P. (1998). High brightness and efficiency blue light-emitting polymer diodes, Appl. Phys. Lett., 73, 629–361.

17. Muller, C. D., Falcou, A., Reckefuss, N., Rojahn, M., Wiederhirn, V., Rudati, P., Frohne, H., Nuyken, O., Becker, H., and Meerholz, K. (2003). Multicolour organic light-emitting displays by solution processing, Nature, 421, 829–833.

18. Burroughes, J. H., Bradley, D. D. C., Brown, A. R., Marks, R. N., Mackay, K., Friend, R. H., Burns, P. L., Holmes, A. B. (1990). Light-emitting diodes based on conjugated polymers, Nature, 347, 539–541.

19. Ling, Q.-D., Liaw, D.-J., Zhu, C.-X., Chan, D. S.-H., Kang, E.-T., and Neoh, K.-G. (2008). Polymer electronic memories: materials, devices and mechanisms, Prog. Polym. Sci., 33, 917–978.

20. Kim, J. (2002). Assemblies of conjugated polymers. Intermolecular and intramolecular effects on the photophysical properties of conjugated polymers, Pure Appl. Chem., 74, 2031–2044.

21. Heinze, J., Frontana-Uribe, B. A., and Ludwigs, S. (2010). Electrochemistry of conducting polymers—persistent models and new concepts, Chem. Rev., 110, 4724–4771.

22. de Gans, B.-J. Duinveld, P. C., and Schubert, U. S. (2004). Inkjet printing of polymers: State of the art and future developments, Adv. Mater., 16, 203–213.

23. Krebs, F. C. (2009). Fabrication and processing of polymer solar cells: a review of printing and coating techniques, Sol. Energy Mater. Sol. Cells, 93, 394–412.

24. Pardo, D. A., Jabbour, G. E., and Peyghambarian, N. (2000). Application of screen printing in the fabrication of organic light-emitting devices, Adv. Mater., 12, 1249–1252.

25. Nakamura, A., Tada, T., Mizukami, M., Hirose, S., and Yagyu, S. (2002). Three-color polymer light emitting diodes by stamped dye diffusion, Appl. Phys. Lett., 80, 2189–2191.

26. Chang, S.-C., He, G., Chen, F.-C., Guo, T.-F., and Yang, Y. (2001). Degradation mechanism of phosphorescent-dye-doped polymer lightemitting diodes, Appl. Phys. Lett., 79, 2088–2090.

27. Tada, K., and Onoda, M. (1999). Three-color polymer light-emitting devices patterned by maskless dye diffusion onto prepatterned electrode, Jpn. J. Appl. Phys. Lett., 38, L1143–L1145.

28. Pschenitzka, F., and Sturm, J. C. (1999). Three-color organic lightemitting diodes patterned by masked dye diffusion, Appl. Phys. Lett., 74, 1913–1915.

29. Loy, D. E., Koene, B. E., and Thompson, M. E. (2002). Thermally stable hole-transporting materials based upon a fluorene core, Adv. Funct. Mater., 12, 245–249.

30. Shirota, Y. (2000). Organic materials for electronic and optoelectronic devices, J. Mater. Chem., 10, 1–25.

31. Tanaka, H., Tokito, S., Taga, Y., and Okada, A. (1996). Novel holetransporting materials based on triphenylamine for organic electroluminescent devices, Chem. Commun., 2175–2176.

32. Adachi, C., Nagai, K., and Tamoto, N. (1996). Molecular design of hole transport materials for obtaining high durability in organic electroluminescent diodes, Appl. Phys. Lett., 66, 2679–2681.

33. Melnyk, A. R., and Pai, D. M. (1993). Physical Methods of Chemistry (ed. Rossiter, B. W., Baetzold, R. C.), 2nd ed., Wiley: New York, Vol. VIII, Chapter 5, pp. 321–386.

34. Fujino, M., Mikawa, H., and Yokoyama, M. (1982). Charge carrier transport in poly-N-vinylcarbazole Photogr. Sci. Eng., 26, 84–87.

35. Lange, J., and Bassler, H. (1982). Temperature dependence of the hopping mobility in amorphous tetracene, Phys. Status Solidi B, 114, 61–569.

36. Oshima, R., Uryu, T., and Seno, M. (1985). Improved hole mobility of polyacrylate having a carbazole chromophore, Macromolecules, 18, 1043–1045.

37. Shirota, Y. (2005). Photo- and electroactive amorphous molecular materials—molecular design, syntheses, reactions, properties, and applications, J. Mater. Chem., 15, 75–93.

38. Shirota, Y., and Kageyama, H., (2007). Charge carrier transporting molecular materials and their applications in devices, Chem. Rev., 107, 953–1010.

39. Borsenberger, P. M., Gruenbaum W. T., Magin, E. H., and Sorriero, L. J. (1995). Hole transport in tri-p-tolylamine doped polymers: the role of the polymer dipole moment, Chem. Phys., 195, 435–443.

40. Cravino, A., Roquet, S., Alévêque, O., Leriche, P., Frère, P., and Roncali, J. (2006). Triphenylamine−oligothiophene conjugated systems as organic semiconductors for opto-electronics, Chem. Mater., 18, 2584–2590.

41. Li, J.-C., Lee, S.-H., Hahn, Y.-B., Kim, K.-J., Zong K., and Lee, Y.-S. (2008). Synthesis and characterization of triphenylamine-3-hexylthiophene oligomer hybrids: a triphenylamine core carrying three terthiophene branches and triphenylamine end-capped quaterthiophene, Synth. Met., 158, 150–156.

42. Roquet, S., Cravino, A., Leriche, P., Alévêque, O., Frère, P., and Roncali, J. Triphenylamine-thienylenevinylene hybrid systems with internal charge transfer as donor materials for heterojunction solar cells, J. Am. Chem. Soc., 128, 3459–3466.

43. Leriche, P., Frère, P., Cravino, A., Alévêque, O., and Roncali, J. (2007). Molecular engineering of the internal charge transfer in thiophene− triphenylamine hybrid p-conjugated systems, J. Org. Chem., 72, 8332–8336.

44. Cravino, A., Leriche, P., Alévêque, O., Roquet, S., and Roncali, J. (2006). Light-emitting organic solar cells based on a 3D conjugated system with internal charge transfer, Adv. Mater., 18, 3033–3037.

45. Roncali, J., Leriche, P., Cravino, A. (2007). From one- to threedimensional organic semiconductors: in search of the organic silicon? Adv. Mater., 19, 2045–2060.

46. Ribierre, J., Aoyama, T., Kobayashi, T., Sassa, T., Muto, T., and Wada, T. (2007). Influence of the liquid carbazole concentration on charge trapping in C 60 sensitized photorefractive polymers, J. Appl. Phys., 102, 033106 (5 pp.).

47. Hirata, S., Kubota, K., Jung, H. H., Hirata, O., Goushi, K., Yahiro, M., and Adachi, C. (2011). Improvement of electroluminescence performance of organic light-emitting diodes with a liquid-emitting layer by introduction of electrolyte and a hole-blocking layer, Adv. Mater., 23, 889–893.

48. Xu, D., and Adachi, C. (2009). Organic light-emitting diode with liquid emitting layer, Appl. Phys. Lett., 95, 053304.

49. Ribirre, J. C., Aoyama, T., Muto, T., Imase, Y., and Wada, T. (2008). Charge transport properties in liquid carbazole, Org. Electron., 9, 396–400.

50. Kamino, B. A., Mills, B., Reali, C., Gretton, M. J., Brook, M. A., and Bender, T. P. (2012). Liquid triarylamines: the scope and limitations of Piers– Rubinsztajn conditions for obtaining triarylamine–siloxane hybrid materials, J. Org. Chem., 77, 1663–1674.

51. Snaith, H. J., Zakeeruddin, S. A., Wang, Q., Péchy, P., and Grätel, M. (2006). Dye-sensitized solar cells incorporating a “liquid” hole-transporting material, Nano. Lett., 6, 2000–2003.

52. Kamino, B. A., Bender, T. P., and Klenkler, R. A. (2012). Hole mobility of a liquid organic semiconductor, J. Phys. Chem. Lett., 3, 1002–1006.

53. Bidan, G. (2010). Electropolymerization: Concepts, Materials and Applications (ed. Cosnier, S., Karyakin, A.), Wiley-VCH, Weinheim, Chapter 1, pp. 1–26.

54. Ambrose, J. F., and Nelson, R. F. (1968). Anodic oxidation pathways of carbazoles: I. Carbazole and N-substituted derivatives, J. Electrochem. Soc. Electrochem. Sci., 115, 1159–1164.

55. Cosnier, S., Szunerits, S., Marks, R. S., Lellouche, J. P., and Perie, K. (2001). Mediated electrochemical detection of catechol by tyrosinase-based poly(dicarbazole) electrodes, J. Biochem. Biophys. Methods, 50, 65–77.

56. Desbene-Monvernay, A., Dubois, J. E., Lacaze, P. C. (1985). Controlled growth of poly(N-vinylcarbazole) films on Pt by scan technique electropolymerization of N-vinylcarbazole, J. Chem. Soc. Chem. Commun., 6, 370–371.

57. Desbene-Monvernay, A., Dubois, J. E., and Lacaze, P. E. (1985). Oxidative electropolymerization of N-vinylcarbazole: growth and electrochemical behavior of poly-N-vinylcarbazole films on Pt, J. Electroanal. Chem., 189, 51–63.

58. Desbene-Monvernay, A., Lacaze, P. C., and Delamar, M. (1992). A quantitative study of cross-linking in electrodeposited carbazole films using tetrabutylammonium tribromide bromination and XPS analysis, J. Electroanal. Chem., 334, 241–246.

59. Cattarin, S., Mengoli, G., Musiani, M., and Schreck, B. (1988). Synthesis and properties of film electrodes from n-substituted carbazoles in acid medium, J. Electroanal. Chem., 246, 87–100.

60. Kumru, M. E., Springer, J., Saraç, A. S., and Bismarck, A. (2001). Electrografting of thiophene, carbazole, pyrrole and their copolymers onto carbon fibers: electrokinetic measurements, surface composition and morphology, Synth. Met., 123, 391–402.

61. Saraç A. S., Bismarck, A., Kumru, M. E., and Springer, J. S. (2001). Electrografting of poly(carbazole-co-acrylamide) onto several carbon fibers: electrokinetic and surface properties, Synth. Met., 123, 411–423.

62. Ates, M., Uludag, N., and Sarac, S. (2011). Synthesis and electropolymerization of 9-tosyl-9H-carbazole, electrochemical impedance spectroscopic study and circuit modeling, Fibers Polym., 12, 8–14.

63. Sadki, S., and Chevrot, C. (2003). Electropolymerization of 3,4-ethylenedioxythiophene, ethylcarbazole and their mixtures in aqueous micellar solution, Electrochemica Acta, 48, 733–739.

64. Miao, H.-M., Zhang, H.-L., Xu, J.-K., Fan, C. L., Dong, B., Zeng, L.-Q., and Zhao, F. (2008). Electrochemical polymerization of carbazole in acetic acid containing boron trifluoride diethyl etherate, Chin. J. Chem., 26, 1922–1928.

65. Inzelt, G. (2003). Formation and redox behaviour of polycarbazole prepared by electropolymerization of solid carbazole crystals immobilized on an electrode surface, J. Solid State Electrochem., 7, 503–510.

66. del Valle, M. A., Díaz, F. R., Bustos, F. E., and Guerra, L. (2003). Electropolymerization of carbazole using TEMPO as radical trapping, J. Chilean. Chem. Soc., 48(4), 23–25.

67. Diamant, Y., Furmanovich, E., Landau, A., Lellouche, J.-P., and Zaban, A. (2003). Electrochemical polymerization and characterization of a functional dicarbazole conducting polymer, Electrochimica Acta, 48, 507–512.

68. Stahl, R., Lambert C., Kaiser, C., Wortmann, R., and Jakober, R. (2006). Electrochemistry and photophysics of donor-substituted triarylboranes: symmetry breaking in ground and excited state, Chem. Eur. J., 12, 2358–2370.

69. Felipe, M. J., Estillore, N., Pernites, R. B., Nguyen, T., Ponnapati, R., and Advincula, R. C. (2011). Interfacial behavior of OEG linear dendron monolayers: aggregation, nanostructuring, and electropolymerizability, Langmuir, 27, 9327–9336.

70. Park, J. Y., Kim, D. E., Ponnapati, R., Kim J.-M., Kwon, Y. S., and Advincula, R. C. (2011). Electroluminescent properties of an electrochemically cross-linkable carbazole peripheral poly(benzyl ether) dendrimer Chem. Phys. Chem., 12, 1010–1015.

71. BaBa, A., Onishi, K., Knoll, W., and Advincula, R. C. (2004). Investigating work function tunable hole-injection/transport layers of electrodeposited polycarbazole network thin films, J. Phys. Chem. B., 108, 18949–18955.

72. Inaoka, S., Roitman, D. V., and Advincula, R. C. (2005). Cross-linked polyfluorene polymer precursors: electrodeposition, PLED device characterization, and two-site co-deposition with poly(vinylcarbazole), Chem. Mater., 17, 6781–6789.

73. Saraswathi, R., Hillman, A. R., and Matin, S. J. (1999). Mechanical resonance effects in electroactive polycarbazole films, J. Electroanal. Chem., 460, 267–272.

74. Frau, A. F., Pernites, R. B., and Advincula, R. C. (2010). A conjugated polymer network approach to anticorrosion coatings: poly(vinylcarbazole) electrodeposition, Ind. Eng. Chem. Res., 49, 9789–9797.

75. Fulghum. T. M., Taranckar, P., and Advincula, R. C. (2008). Grafting Hole-transport precursor polymer brushes on ITO electrodes: surfaceinitiated polymerization and conjugated polymer network formation of PVK, Macromolecules, 41, 5681–5687.

76. Gu, C., Dong, W.-Y., Yao, L., Lv, Y., Zhang, Z.-B., Lu, D., and Ma, Y.-G. (2012). Cross-linked multifunctional conjugated polymers prepared by in situ electrochemical deposition for a highly-efficient blue-emitting and electron-transport layer, Adv. Mater., 24, 2413–2417.

77. Frau, A. F., Estillore, N. C., Fulghum, T. M., and Advincula, R. C. (2010). Intercalative poly(carbazole) precursor electropolymerization within hybrid nanostructured titanium oxide ultrathin films, ACS Appl. Mater. Interfaces, 2, 3726–3737.

78. Frau, A. F., Pernites, R. B., and Advincula, R. C. (2012). Nanocomposite p-n function polycarbazole CdSe/TiO 2 thin films on ITO via electrochemical crosslinking, Macromol. Mater. Eng., 297, 875–886.

79. Oral, A., Koyuncu, S., and Kaya, Ý. (2009). Polystyrene functionalized carbazole and electrochromic device application, Synth. Met., 159, 1620–1627.

80. Wang, B., Zhao, J.-S., Xiao, J., Cui, C.-S., Liu, R.-M. (2012). Synthesis and Electropolymerization of 9H-carbazol-9-ylpyrene and its electrochromic properties and electrochromic device application, Int. J. Electrochem. Sci., 7, 2781–2795. 81. Bonvoisin, J., Launay, J.-P., Van der Auweraer, M., and De Schryver, F. C. (1994). Organic mixed-valence systems: electrochemical and optical studies of intervalence transition in partly oxidized aromatic polyamines, J. Phys. Chem., 98, 5052–5057.

82. Bonvoisin, J., Launay, J.-P., Van der Auweraer, M., and De Schryver, F. C. (1996). Organic mixed-valence systems: intervalence transition in partly oxidized aromatic polyamines, Electrochem. Opt. Studies J. Phys. Chem., 100, 18006. (Additions/Correction).

83. Bonvoisin, J., Launay, J.-P., Verbouwe, W., Van der Auweraer, M., and De Schryver, F. C. (1996). Organic mixed valence systems. II. Two-centers and three-centers compounds with meta connections around a central phenylene ring, J. Phys. Chem., 100, 17079–17082.

84. Lambert, C., and Nöll, G. (1998). One- and two-dimensional electron transfer processes in triarylamines with multiple redox centers, Angew. Chem. Int. Ed., 37, 2107– 2110.

85. Lambert, C., and Nöll, G. (1999). The class II/III transition in triarylamine redox systems, J. Am. Chem. Soc., 121, 8434–8442.

86. Lambert, C. Nöll, G., and Hampel, F. (2001). Multidimensional electron Transfer pathways in a tetrahedral tetrakis{4-[N,N-di(4-methoxy- phenyl)amino]phenyl}phosphonium salt: one-step vs two-step mechanism, J. Phys. Chem. A, 105, 7751–7758.

87. Moll, T., and Heinze, J. (1993). Electrochemical and spectroscopic properties of oligoanilines, Synth. Met., 55, 1521–1526.

88. Wienk, M. M., and Janssen, R. A. (1997). High-spin cation radicals of meta−para aniline oligomers, J. Am. Chem. Soc., 119, 4492–4501.

89. Stickley, K. R., and Blackstock, S. C. (1994). Triplet dication and quartet trication of a triaminobenzene, J. Am. Chem. Soc., 116, 11576–11577.

90. Louie, J., Hartwig, J. F., and Fry, A. J. (1997). Discrete high molecular weight triarylamine dendrimers prepared by palladium-catalyzed amination, J. Am. Chem. Soc., 119, 11695–11696. 91. Katsuma, K., and Shirota, Y. (1998). A novel class of p-electron dendrimers for thermally and morphologically stable amorphous molecular materials, Adv. Mater., 10, 223–226.

92. Goodson, F. E., Hauck, S. I., and Hartwig, J. F. (1999). Palladium-catalyzed synthesis of pure, regiodefined polymeric triarylamines, J. Am. Chem. Soc., 121, 7527–7539.

93. Seo, E. T., Nelson, R. F., Fritsch, J. M., Marcoux, L. S., Leedy, D. W., and Adams, R. N. (1966). Anodic oxidation pathways of aromatic amines. Electrochemical Electron Paramagnetic Resonance Studies, 88, 3498–3503.

94. Yurchenko, O., Freytag D., zur Borg, L., Zentel, R., Heinze, J., and Ludwigs, S. (2012). Electrochemically induced reversible and irreversible coupling of triarylamines, J. Phys. Chem. B, 116, 30–39.

95. Petr, A., Kvarnström, C., Dunsch, L., Ivaska, A. (2000). Electro- chemical synthesis of electroactive polytriphenylamine, Synth. Met., 108, 245–247.

96. Kvarnström, C., Petr, A., Damlin, P., Linfors, T., Ivaska, A., and Dunsch, L. (2002). Raman and FTIR spectroscopic characterization of electrochemically synthesized poly(triphenylamine), PTPA, J. Solid State Elecrochem., 6, 505–512.

97. Lana-Villarreal, T., Campiña, J. M., Guijarro, N., and Gómez, R. (2011). Solid-state electropolymerization and doping of triphenylamine as a route for electroactive thin films, Phys. Chem. Chem. Phys., 13, 4013–4021.

98. Hayat, U., Barlett, P. N., and Dodd, G. H. (1987). Electrochemical synthesis and study of polydiphenylamine, J. Electroanal. Chem., 220, 287–294.

99. Coche, L., and Moutet, J.-C. (1985). Etude de la polymerisation electrochimique de triphenylamines substituees par le groupe hydroxy-1 ethyle. Preparation d’electrodes modifiees par des films de polymeres redox, Electrochimica Acta, 30, 1063–1070.

100. Bendrea, A.-D., Vacareanu, L., and Grigoras, M. (2010). Synthesis, characterization and (electro)chemical polymerization of triphenylamineend-functionalized poly(e-caprolactone), Polym. Int., 59, 624–629. 101. Sim, J. H., Kim, S. J., Yamada, K., Yokokura, S., Natori, I., Natori, S., and Sato, H. (2009). Synthesis and characterization of polytriphenylamine containing ether bond in the main chain, Synth. Met., 159, 85–90.

102. Low, P. J., Paterson, M. A. J., Yufit, D. S., Howard, J. A. K., Cherryman, J. C., Tackley, D. R., Brook, R., and Brown, B. (2005). Towards an understanding of structure–property relationships in hole-transport materials: the influence of molecular conformation on oxidation potential in poly(aryl)amines, J. Mater. Chem., 15, 2304–2315.

103. Low, P. J., Paterson, M. A. J., Goeta, A. E., Yufit, D. S., Howard, J. A. K., Cherryman, J. C., Tackley, D. R., and Brown, B. (2004). The molecular structures and electrochemical response of “twisted” tetra(aryl)benzidenes, J. Mater. Chem., 14, 2516–2523.

104. Lambert, C., and Nöll, G. (2003). Intervalence charge-transfer bands in triphenylamine-based polymers, Synth. Met., 139, 57–62.

105. Leung, M.-L., Chou, M.-Y., Su, Y.-L. O., Chiang, C. L., Chen, H.-L., Yang, C. F., Yang, C.-C., Lin, C.-C., and Chen H.-T. (2003). Diphenylamino group as an effective handle to conjugated donor acceptor polymers through electropolymerization, Org. Lett., 5, 839–842.

106. Kamtekar, K. T., Wang, C. S., Bettington, S., Batsanov, A. S., Perepichka, I. F., Bryce, M. R., Ahn, J. H., Rabinal, M., and Petty, M. C. (2006). New electroluminescent bipolar compounds for balanced charge-transport and tuneable colour in organic light emitting diodes: triphenylamine– oxadiazole–fluorene triad molecules, J. Mater. Chem., 16, 3823–3835.

107. Natera, J., Otero, L., Sereno, L., Fungo, F., Wang, N.-S., Tsai, Y.-M., Hwu, T. Y., and Wong, K.-T. (2007). A novel electrochromic polymer synthesized through electropolymerization of a new donor−acceptor bipolar system, Macromolecules, 40, 4456–4463.

108. Chiang, C. C., Chen, H.-C., Lee, C.-S., Leung, M.-K., Lin, K.-R., and Hsieh, K.-H. (2008). Electrochemical deposition of bis(N,N-diphenylaminoaryl) substituted ferrocenes, and their application as a hole-injection layer on polymeric light-emitting diodes, Chem. Mater., 20, 540–552. 109. Qiu, D. F., Bao, X. Y., Feng, Y. Q., Liu, K. C., Wang, H. W., Shi, H, Z., Guo, Y. C., Huang, Q. Z., Zeng, J. I., Zhou, J., and Xing, Z. C. (2012). Electrochromic films with high optical contrast prepared by oxidative electropolymerization of a novel multi-functionalized cyclometalating ligand and its neutral-charged Pt(II) complexes, Electrochimica Acta, 60, 339–346.

110. Qiu, D. F., Zhao, Q., Bao, X. Y., Liu, K. C., Wang, H. W., Shi, H, Z., Guo, Y. C., Zeng, J. I., and Wang, H. (2011). Electropolymerization and characterization of an alternatively conjugated donor-acceptor metallopolymer: poly-[Ru(4�-(4-(Diphenylamino) phenyl)-2,2�:6�,2�Terpyridine)(2)](2+), Inorg. Chem. Commun., 14, 296–299.

111. Subbaiyan, N. K., Obraztsov, I., Wijesinghe, C. A., Tran, K., Kutner, W., and D’Souza, F. (2009). Supramolecular donor−acceptor hybrid of electropolymerized zinc porphyrin with axially coordinated fullerene: formation, characterization, and photoelectrochemical properties, J. Phys. Chem. C., 113, 8982–8989.

112. Noworyta, K., Kutner, W., Wijesinghe, C. A., Srour and S. G., D’Souza, F. (2012). Nicotine, cotinine, and myosmine determination using polymer films of tailor-designed zinc porphyrins as recognition units for piezoelectric microgravimetry chemosensors, Anal. Chem., 84, 2154–2163.

113. Cocherel, N., Leriche, P., Ripaud, E., Gallego-Planas N., Frère, P., and Roncali, J. (2009). Electropolymerization of triphenylaminedithiafulvene hybrid extended pi-conjugated systems, New J. Chem., 33, 801–806.

114. Chou, M.-Y., Leung, M.-K., Su, Y.-I. O., Chiang, C. L., Lin, C.-C., Liu, J.-H., Kuo, C.-K., and Mou C.-Y. (2004). Electropolymerization of starburst triarylamines and their application to electrochromism and electroluminescence, Chem. Mater., 16, 654–661.

115. Lin, K.-R., Chang-Chien, Y.-H., Chang, C.-C., Hsieh, K.-H., and Leung, M.-K. (2008). Synthesis, electrochemical behavior, and electronic properties of hyperbranched poly(p-methylenetriphenylamine): an unexpected condensation polymerization from N-[4-(tosyloxybutyloxymethyl) phenyl]-N,N-diphenylamine, Macromolecules, 41, 4158–4164.

116. Son, H.-J., Han, W.-S., Lee, K. W., Jung, H. J., Lee, C. M., Ko, J. J., and Kang, S. O. (2006). Electrochemical deposition of end-capped triarylamine and carbazole dendrimers: alternate technique for the manufacture of multilayer films, Chem. Mater., 18, 5811–5813.

117. Son, H.-J., Han, W.-S., Han, S. J., Lee, C. M., and Kang, S. O. (2010). Electrochemically active dendrimers for the manufacture of multilayer films: electrochemical deposition or polymerization process by endcapped triarylamine or carbazole dendrimer, J. Phys. Chem. C., 114, 1064–1072.

118. Yamashita, H., Suzuki, Y., Rao, T. V., and Uchimaru, Y. (2012). Synthesis and electrochemical, optical, and thermal properties of polycarbosilanes with silylene-vinylene-phenylene-vinylene backbones and triphenylamine or carbazole unit-containing side chains, J. Organomet. Chem., 710, 59–67.

119. Nursalim, G., and Chen, Y. (2010). Electrocoupling process and electrochemical deposition of poly (9-vinylcarbazole-co-4-vinyltriphenylamine) films, Polymer, 5, 3187–3195.

120. Lin, K.-R., Chang, C.-C., Chang-Chien, Y.-H., Leung, M.-K., Liu, S.-W., Lee, J.-H., and K.-H. Hsieh (2010). Morphological control of the electrochemically deposited poly(4-vinyltriphenylamines) (PVTPAs), Langmuir, 26, 5147–5152.

121. Choi, K.-S., and Zentel, R. (2006). Multilayer thin film by layer-by-layer assembly of hole- and electron-transport polyelectrolytes: optical and electrochemical properties, Macromol. Chem. Phys., 207, 1870–1879.

122. Choi, K.,-S., Yoo, S. J., Sung, Y.-E., and Zentel, R. (2006). High contrast ratio and rapid switching organic polymeric electrochromic thin films based on triarylamine derivatives from layer-by-layer assembly, Chem. Mater., 18, 5823–5825.

123. Dei, D. K., Lund, B. R., Wu, J.-B., Simon, D., Ware, T., Voit, W. E., MacFarlane, D., Liff, S. M., and Smith, D. W. Jr. (2013). High performance and multipurpose triarylamine-enchained semifluorinated polymers, ACS Macro. Lett., 2, 35–39.

124. Maynor, B. W., Filocamo, S. F., Grinstaff, M. W., and Liu, J. (2002). Directwriting of polymer nanostructures: poly(thiophene). nanowires on semiconducting and insulating surfaces, J. Am. Chem. Soc., 124, 522–523.

125. Jegadesan, S., Advincula, R. C., and Valiyaveettil, S. (2005). Nanolithographic electropolymerization of a precursor polymer film to form conducting nanopatterns, Adv. Mater., 17, 1282–1285.

126. Albrecht, K., Prrnites, R., Felipe, M. J., Advincula, R. C., and Yamamoto, K. (2012). Patterning carbazole–phenylazomethine dendrimer films, Macromolecules, 45, 1288–1295.

127. Pernites, R. B., Foster, E. L., Felipe, M. J. L., Robinson, M., and Advincula, R. C. (2011). Patterned surfaces combining polymer brushes and conducting polymer via colloidal template electropolymerization, Adv. Mater., 23, 1287–1292.

128. Foster, E. L., Tria, M. C. R., Pernites, R. B., Addison, S. J., and Advincula, R. C. (2012). Patterned polymer brushes via electrodeposited ATRP, ROMP, and RAFT initiators on colloidal template arrays, Soft Matter, 8, 353–359.

129. Chang, C.-C., and Leung, M.-K. (2008). Photolithographic holetransport layer derived from electrochemical deposition of oligo(5vinyl-2-nitrobenzyl triphenylamine-4-carboxylate), Chem. Mater., 20, 5816–5821. 10 Chapter 10 - Solution-Processed Acenes and Their Applications on Field-Effect Transistor

1. Horowitz, G., Fichou, D., Peng, K., and Garnier, F. (1991). Thin-film transistors based on alpha-conjugated oligomers, Synth. Met., 41, 1127–1130.

2. Anthony, J. E. (2008). The larger acenes: versatile organic semiconductors. Angew. Chem. Int. Ed., 47, 452–483.

3. Allard, S., Forster, M., Souharce, B., Thiem, H., and Scherf, U. (2008). Organic semiconductors for solution-processable field-effect transistors (OFETs). Angew. Chem. Int. Ed., 47, 4070–4098.

4. Kao, J., and Lilly, A. C. Jr. (1987). Theoretical studies of electronic properties of polyacene, poly(1,4-dihydrobenzo-1,4-dihydrobenzene), poly(p-phen ylene), poly(p-1,4-dihydrobenzene), and their hetero (N, O, and S) substituted derivatives. J. Am. Chem. Soc., 109, 4149–4157.

5. Coropceanu, V., Cornil, J., da Silva Filho, D. A., Olivier, Y., Silbey, R., and Brédas, J. L. (2007). Charge transport in organic semiconductors. Chem. Rev., 107, 926–952.

6. Aleshin, A. N., Lee, J. Y., Chu, S. W., Kim, J. S., and Park, Y. W. (2004). Mobility studies of field-effect transistor structures based on anthracene single crystals. Appl. Phys. Lett., 84, 5383–5385.

7. De Boer, R. W., Klapwijk, T. M., and Morpurgo, A. F. (2003). Field- effect transistors on tetracene single crystals. Appl. Phys. Lett., 83, 4345–4347.

8. Kitamura, M., and Arakawa, Y. (2008). Pentacene-based organic fieldeffect transistors, J. Phys. Condens. Matter., 20, 184011.

9. Maliakal, A., Raghavachari, K., Katz, H., Chandross, E., and Siegrist, T. (2004). Photochemical stability of pentacene and a substituted pentacene in solution and in thin films. Chem. Mater., 16, 4980–4986.

10. Fergusona, J., and Maua, A. W.-H. (1974). A spectroscopic study of the photodimerization of anthracene sandwich dimers in dianthracene. Mol. Phys., 27, 377–387. 11. Caldwell. R. A. (1980). A predictor of reactivity in allowed photodimerizations and photocycloadditions. J. Am. Chem. Soc., 102, 4004–4007. 12. Berg, O., Chronister, E. L., Yamashita, T., and Scott, G. W. (1999). S-dipentacene: structure, spectroscopy, and temperature- and pressuredependent photochemistry. J. Phys. Chem. A., 103, 2451–2459.

13. Mondal, R., Adhikari, R. M., Shah, B. K., and Neckers D. C. (2007). Revisiting the stability of hexacenes. Org. Lett., 9, 2505–2508.

14. Mondal, R., Shah, B. K., and Neckers, D. C. (2006). Photogeneration of heptacene in a polymer matrix. J. Am. Chem. Soc., 128, 9612–96.13.

15. Mondal, R., Tönshiff, C., Khon, D., Neckers, D. C., and Bettinger, H. F. (2009). Synthesis, stability, and photochemistry of pentacene, hexacene, and heptacene: a matrix isolation study. J. Am. Chem. Soc., 131, 14281–14289.

16. Tönshoff, C., and Bettinger, H. F. Photogeneration of octacene and nonacene. (2010). Angew. Chem. Int. Ed., 49, 4125–4128.

17. Yamada, H., Yamashita, Y., Kikuchi, M., Watanabe, H., Okujima, T., Uno, H., Ogawa, T., Ohara, K., and Ono, N. (2005). Photochemical synthesis of pentacene and its derivatives. Chem. Eur. J., 11, 6212–6220.

18. Herwig, P. T., and Müllen, K. A. (1999). Soluble pentacene precursor: synthesis, solid-state conversion into pentacene and application in a field-effect transistor. Adv. Mater., 11, 480–483.

19. Afzali, A., Dimitrakopoulos, C. D., and Breen, T. L. (2002). Highperformance, solution-processed organic thin film transistors from a novel pentacene precursor. J. Am. Chem. Soc., 124, 8812–8813.

20. Afzali, A., Dimitrakopoulos, C. D., and Graham, T. O. (2003). Photosensitive pentacene precursor: synthesis, photothermal patterning, and application in thin-film transistors. Adv. Mater., 24, 2066–2069.

21. Weidkamp, K. P., Afzali, A., Tromp, R. M., and Harmers, R. J. A. (2003). Photopatternable pentacene precursor for use in organic thin-film transistors. J. Am. Chem. Soc., 126, 12740–12741.

22. Ogliaruso, M. A., Romanelli, M. G., and Becker, E. I. (1965). Chemistry of cyclopentadienones. Chem. Rev., 65, 262–367.

23. LeBlanc, B. F., and Sheridan, R. S. (1988). Observation and substituent control of medium-dependent hot-molecule reactions in lowtemperature matrices. J. Am. Chem. Soc., 110, 7250–7252.

24. Birney, D. M., and Berson, J. A. (1985). Norborna-2,5-dien-7-one: a covalent benzene-carbon monoxide adduct. A new point on the cycloreversion structure-reactivity correlation curve. J. Am. Chem. Soc., 107, 4553–4554.

25. McCulloch, R., Rye, A. R., and Wege, D. (1969). Steric acceleration in the thermal decarbonylation of highly compressed norbornen-7-ones. Tetrahedron Lett., 10, 5231–5234.

26. Wilt, J. W., and Chenier, P. J. (1970). Studies of benzonorbornene and derivatives. II. The ac-bromobenzonorbornenes and -dienes. J. Org. Chem., 35, 1562–1570.

27. Irie, T., and Tanida, H. (1979). Decarbonylation of 9,10-dihydro-9,10methanoanthracen-ll-one (dibenzonorbornadienone). Effects of nitro substituents and solvents. J. Org. Chem., 44, 1002–1003.

28. Lai, C. H., Li, E. Y., Chen, K. Y., Chow, T. J., and Chou, P. T. (2006). Theoretical investigation of cheletroptic decarbonylation reactions. J. Chem. Theory Comput., 2, 1078–1084.

29. Chen, K. Y., Hsieh, H. H., Wu, C. C., Hwang, J. J., and Chow, T. J. (2007). A new type of soluble pentacene precursor for organic thin-film transistors. Chem. Commun., 1065–1067.

30. Thuang, T. H., Hsieh, H. H., Chen, C. K., Wu, C. C., Lin, C. C., Chou, P. T., Chao, T. T., and Chow, T. J. (2008). Photogeneration and thermal generation of pentacene from soluble precursors for OTFT applications. Org. Lett., 10, 2869–2872.

31. Chien, C.-T., Chiang, T.-C., Watanabe, M., Chao, T.-H., Chang, Y. J., Lin, Y-.D., Lee, H.-K., Liu, C.-Y., Tu, C.-H., Sun, C.-H., and Chow, T. J. (2013). The synthesis and electronic properties of 1,2,3,4-tetrafluoropentacene, Tetraheron Lett., 5, 903–906.

32. Watanabe, M., Chao, T. H., Liu, S. W., Chein, C. T., Chang, Y. J., Yuan, C. H., Huang, K. C., Chien, S. H., Shinmyozu, T., and Chow, T. J. (2011). Solutionprocessed organic micro crystal transistor based on tetraceno[2,3-b]- thiophene from a monoketone precursor. J. Mater. Chem., 21, 11317–11322.

33. Huang, H.-H., Hsieh, H.-H., Wu, C.-C., Lin, C.-C., Chou, P.-T., Chuang, T.-H., Wen, Y.-S., and Chow, T. J. (2008). Thermal generation of pentacene from soluble precursors through expulsion of carbon dioxide. Tetrahedron Lett., 49, 4494–4497.

34. Chow, T. J., Chuang, T.-H., Huang, H.-H., Wu, C.-C., Hsieh, H.-H., and Chou, P.-T. (2008). Soluble pentacene precursors: strategic design, synthesis, and characterization. Proc. SPIE., 7054, 705404. 35. Chien, C.-T., Lin, C.-C., Watanabe, M., Lin, Y.-D., Chao, T.-H., Chiang, T.-C., Huang, X.-H., Wen, Y.-S., Tu, C.-H., Sun, C.-H., and Chow, T. J. (2012). Tetracene-based field-effect transistors using solution processes. J. Mater. Chem., 22, 13070–13075. 36. Watanabe, M., Chao, T.-H., Chien, T.-C., Liu, S.-W., Chang, Y. J., Chen, K.-Y., and Chow. T. J. (2012). 2-Halo-subsituted tetracenes: their generation and single crystal OFET characteristics. Tetrahedron Lett., 53, 2284–2287. 37. Watanabe, M., Chang, Y. J., Liu, S.-W., Chao, T.-H., Goto, K., Islam, M. M., Yuan, C. -H., Tao, Y.-T., Shinmyozu, T., and Chow, T. J. (2012). The synthesis, crystal structure and charge transport properties of hexacene. Nat. Chem., 4, 574–578. 38. Klevens, H. B., and Platt, J. R. (1949). Spectral resemblances of catacondensed hydrocarbons. J. Chem. Phys., 17, 470–481.

39. Davydov, A. S. (1964). The theory of molecular excitons. Sov. Phys. Usp., 7, 145–178.

40. Schroeder, P. G., France, C. B., Park, J. B., and Parkinson. B. A. (2003). Orbital alignment and morphology of pentacene deposited on Au(111) and SnS 2 studied using photoemission spectroscopy. J. Phys. Chem. B, 107, 2253–2261.

41. Laudise, R. A., Klic, C., Simpkins, P. G., and Siegrist, T. (1998). Physical vapor growth of organic semiconductors. J. Cryst. Growth. 187, 449–454.

42. Mattheus, C. C., Dros, A. B., Baas, J., Meetsma, A., de Boer, J. L., and Palstra, T. T. M. (2001). Polymorphism in pentacene. Acta Crystalloger. Sect. C: Cryst. Struct. Commun., 57, 939–941.

43. Anthony, J. E., Brooks, J. S., Eaton, D. L., and Parkin, S. R. (2001). Functionalized pentacene: improved electronic properties from control of solid-state order. J. Am. Chem. Soc., 123, 9482–9483.

44. Anthony, J. E., David, L. E., and Parkin, S. R. (2002). A road map to stable, soluble, easily crystallized pentacene derivatives. Org. Lett., 4, 15–18.

45. Payne, M. M., Parkin, D. R., and Anthony, J. E. (2005). Functionalized higher acenes: hexacene and heptacene. J. Am. Chem. Soc., 127, 8028–8029. 46. Purushothaman, B., Parkin, S. R., and Anthony, J. E. (2010). Synthesis and stability of soluble hexacenes. Org. Lett., 12, 2060–2063. 47. Payne, M. M., Odom, S. A., Parkin, S. R., and Anthony, J. E (2004). Stable, crystalline acenedithiophenes with up to seven linearly fused rings. Org. Lett., 6, 3325–3328. 48. Swartz, C. R., Parkin, S. R., Bullock, J. E., Anthony, J. E., Mayer, A. C., and Malliaras G. G. (2005). Synthesis and characterization of electrondeficient pentacenes. Org. Lett., 7, 3163–3166. 49. Subramanian, S., Park, S. K., Parkin, S. R., Podzorov, V., Jackson, T. N., and Anthony, J. E. (2008). Chromophore fluorination enhances crystallization and stability of soluble anthradithiophene semiconductors. J. Am. Chem. Soc., 130, 2706–2707.

50. Purushothaman, B., Parkin, S. R., Kendrick, M. J., David, D., Ward, J. W., Yu, L. Stingelin, N., Jurchescu, O. D., Ostroverkhova, O., and Anthony, J. E. (2012). Synthesis and charge transport studies of stable, soluble hexacenes. Chem. Commun., 48, 8261–8263.

51. Chun, D., Cheng, Y., and Wudl, F. (2008). The most stable and fully characterized functionalized heptacene. Angew. Chem. Int. Ed., 47, 8380–8385

52. Purushothaman, B., Bruzek, M., Parkin, S. R., Miller, A.-F., and Anthony, J. E. (2011). Synthesis and structural characterization of crystalline nonacenes. Angew. Chem. Int. Ed., 50, 7013–7017.

53. Kaur, I., Jia, W., Kopreski, R. P., Selvarasah, S., Dokmeci, M. R., Pramanik, C., McGruer, N. E., and Miller. G. P. (2008). Substituent effects in pentacenes: gaining control over HOMO-LUMO gaps and photooxidative resistances. J. Am. Chem. Soc., 130, 16274–16286.

54. Kaur, I., Stein, N. N., Kopreski, R. P., and Miller, G. P. (2009). Exploiting substituent effects for the synthesis of a photooxidatively resistant heptacene derivative. J. Am. Chem. Soc., 131, 3424–3425.

55. Kaur, I., Jazdzyk, M., Stein, N. N., Prusevich, P., and Miller, G. P. (2010). Design, synthesis, and characterization of a persistent nonacene derivative. J. Am. Chem. Soc., 132, 1261–1263.

56. Kappe, T., and Pocivalnik, D. (1983). Mesoionic six-membered heterocycles, XVII. Cycloaddition of benzyne to mesoionic pyrimidines. Heterocycles, 20, 1367–1371.

57. Friedrichsen, W., Kappe, T., and Böttcher, A. (1982). Six-membered mesoionic heterocycles of the m-quinodimethane dianion type. Heterocycles, 19, 1083–1148.

58. Kappe, T., and Golser, W. (1976). Mesoionische sechsringheterocyclen, VIII. 1,4-dipolare cycloadditionen an mesoionische 1,3-thiazine. Chem. Ber., 109, 3668–3674.

59. Kappe, T., and Lube, W. (1971). Cycloadditions with mesomeric pyrimidine betaines. Angew. Chem. Int. Ed., 10, 925–926.

60. Potts, K. T., and Sorm, A. (1971). Mesoionic compounds. XIII. 1,4Dipolar-type cycloaddition reactions of anhydro-2-hydroxy-1-methyl4-oxopyrido [1,2-a] pyrimidinium hydroxide. J. Org. Chem., 36, 8–10.

61. Potts, K. T., and Sorm, A. (1972). Mesoionic compounds. XVI. 1,4Dipolar type cycloaddition reactions utilizing pyrimidinium betaines. J. Org. Chem., 37, 1422–1425.

62. Li, G., Duong, H. M., Zhang, Z., Xiao, J., Liu, L., Zhao, Y., Zhang, H., Huo, F., Li, S., Ma, J., Wudl, F., and Zhang, Q. (2012). Approaching a stable, green twisted heteroacene through “clean reaction” strategy. Chem. Commun. 48, 5974–5976.

63. Xiao, J., Liu, S., Liu, Y., Ji, L., Liu, X., Zhang, H., Sun, X., and Zhang, Q. (2012). synthesis, structure, and physical properties of 5,7,14,16- t etraphenyl–8:9,12:13-bisbenzo-hexatwistacene. Chem. Asian. J., 7, 561–564.

64. Xiao, J., Malliakas, C. D., Liu, Y., Zhou, F., Li, G., Su, H., Kanatzidis, M. G., Wudl, F., and Zhang, Q. (2012). “Clean Reaction” strategy to approach a stable, green heptatwistacene containing a single terminal pyrene unit. Chem. Asian. J., 7, 672–675.

65. Xiao, J., Duong, H. M., Lin, Y., Shi, W., Ji, L., Li, G., Li, S., Liu, X.-W., Ma, J., Wudl, F., and Zhang, Q. (2012). Synthesis and structure characterization of a stable nonatwistacene. Angew. Chem. Int. Ed., 51, 6094–6098.

66. Duong, H. M., Bendikov, M., Steiger, D., Zhang, Q., Sonmez, G., Yamada, J., and Wudl, F. (2003). Efficient synthesis of a novel, twisted and stable, electroluminescent “twistacene”. Org. Lett., 5, 4433–4436.

67. Watanabe, M., Cheng, K. Y., Chang, Y. J., Chow, T. J. (2013). Acenes generated from precursors and their semiconductor properties. Acc. Chem. Res. 46, 1606–1615. 11 Chapter 11 - New Synthetic Route to Acenes

Angadi, M. A., Gosztola, D., Wasielewski, M. R., Mater. Sci. Eng., B., 1999,

63, 191–194. (c) Elemans, J. A. A. W., van Hameren, R., Nolte, R. J. M., Rowan, A. E., Adv. Mater., 2006, 18, 1251–1266. 24. Ilhan, F., Tyson, D. S., Stasko, D. J., Kirschbaum, K., Meador, M. A.,

J. Am. Chem. Soc., 2006, 128, 702–703. 25. (a) Li, C., Wonneberger, H., Adv. Mater., 2012, 24, 613–636. (b) Würthner, F., Chem. Commun., 2004, 1564–1579. (c) Avlasevich, Y., Li, C., Müllen, K., J. Mater. Chem., 2010, 20, 3814–3826. 26. Rao, B. B., Wei, J. R., Lin., C.-H., Org. Lett., 2012, 14, 3640–3643. 27. Lin, C.-H., Radhakrishnan, K., Chem. Comm., 2005, 504–506. 28. Lin, C.-H., Radhakrishnan, K., Synlett, 2005, 14, 2179–2182. 29. Lin, C.-H., Radhakrishnan, K., Unpublished results. 30. Lin, C.-H., Liu Y.-S., Unpublished results.