<<

H O O O O H Br Br t-BuO3C The Platonic Solids Total SynOthesis of Convex Polyhedral Br Ph Ph COOH Ph Ph

Br O Ph Ph HOOC Ph Ph Nat Sherden & Kevin Allan Monday, July 18, 2005 8 pm 147 Noyes

O MeO C O 2 HO I I I OH I O O CO2Me

The Five Elements - Platonic Solids

Tetrahedron Hexahedron (Cube) Octahedron Fire Earth Air 4 + 4 - 6 = 2 8 + 6 - 12 = 2 6 + 8 - 12 = 2

Dodecahedron Icosahedron Heavenly Matter 20 + 12 - 30 = 2 12 + 20 - 30 = 2

• Polyhedron: a closed surface made up of polygonal regions. • Regular polyhedron: a polyhedron whose faces are congruent regular polygonal regions, and each vertex is the intersection of the same number of edges. • There are exactly FIVE that can be made: the Platonic solids, first emphasized by Plato. • Plato believed that each of the polyhedra represented an element, the combination of which resulted in the creation of all matter. • Each polyhedron obeys Euler’s Formula: # vertices + # faces - # edges = 2 http://www.3quarks.com/GIF-Animations/PlatonicSolids/

1 The Platonic Solids as Hydrocarbons

Reported: R

R R R Substituted Maier (1978) Eaton (1964) Paquette (1983)

Not Yet Reported (Chemically Unlikely):

-- : C6 -- bonding orbitals are 60° away from each other. -- 8-sided octahedranes have been reported, though none with Oh symmetry. Impossible : Octahedrane

-- 5 coordinate vertices make the use of carbon impossible.

Icosahedrane

In the Beginning there was Cubane. . .

Ph • The first containing the cubane carbon skeleton was reported in 1961 by Ph Ph Ph H. H. Freedman et al. in their "serendipitous" syntheses of octaphenyl cubane.1,2 (not discussed) Ph Ph Ph Ph COOH • Philip E. Eaton and Thomas W. Cole, Jr. finish the first "Tactical" synthesis of the cubane skeleton in 1964 with the synthesis of cubane-1,4-dicarboxylic acid.3 (not discussed) HOOC

• Following a route elaborated from their cubane diacid synthesis, Eaton and Cole, publish the first synthesis of cubane later the same year (1964).4 - This synthesis was later streamlined by N.B. Chapman who combined a number of steps from the original Eaton and Cole synthesis creating the process used today to commercially manufacture cubane.

• A shorter cubane synthesis was reported by James C. Barborak, L. Watts, and R. Pettit in 1966. At four steps from commercial materials it is still the shortest synthesis of cubane known to date.5

1) Freedman, H. H. J. Am. Chem. Soc., 1961, 83, 2195 - 2196. 2) Freedman, H. H.; Persen, D. R. J. AM. Chem. Soc., 1962, 84, 2837 - 2838. 3) Eaton, P. E.; Cole, T. W. J. Am. Chem. Soc., 1964, 86, 962 - 964. 4) Eaton, P.E.; Cole, T.W. J. Am. Chem. Soc., 1964, 86, 3157 - 3158. 5) Barborak, J. C.; Watts, L.; Pettit, R. J Am. Chem. Soc., 1966, 88, 1328 - 1329

2 Cubane Retrosyntheses

O Br

Br

O O Br O

Eaton Synthesis O

is es O th Br yn it S Br ett d P an ak or rb Ba

O O O O O Br Br Br Fe + Br Br OC OC CO Br O

Original Synthesis by Eaton and Cole

NBS Br 0 - 10 °C Br Br -20 °C "Radical-initiated" Br2 Et2NH Br Et O Br CCl4 Pentane/DCM 2 O O O O

Diels-Alder stereochemical considerations Br Br Spontaneous O favorable O secondary Diels-Alder orbital overlap

Br Br O O O Br exo endo

Diels-Alder regiochemical considerations - Br Br ! O O O Only observed and ! - diastereomer Br minimization of like dipoles 40 % overall yield Br Br across three steps O O ! - ! - Eaton, P. E.; Cole, T. W. J. Am. Chem. Soc., 1964, 86, 962 - 964. 3 Original Synthesis by Eaton and Cole

O + Br 1) (CH2OH)2 / H O O O O 2) HCl / H O Br 2 O hv O (85% over two steps) (95%) O O Br Br Br O Br Br Br O

10% KOH(aq) (95%)

O O O 1) SOCl O O 2 O cumene 152 °C 2) t-BuO2H

Br (55%) Br (95% over two steps) Br t-BuO3C HOOC

75% H2SO4 (aq) (30%)

O

1) SOCl2 25% KOH COOH CO3t-Bu (aq) 2) t-BuO2H 100 °C Br (55%) (95% over two steps) diisopropylbenzene (30%)

Eaton, P.E.; Cole, T.W. J. Am. Chem. Soc., 1964, 86, 3157 - 3158.

Barborak, Watts, Pettit synthesis

O Ce(IV) Br Br (CAN) O O Br Fe + Br favorable O O OC OC CO secondary Br Br orbital O overlap exo endo

spontaneous 2 + 2 (80%)

O O O O O O hv Br Br Br Br (90%) Br Br

KOH(aq) (90%)

1) SOCl HOOC 2 2) t-BuO2H COOH 3) !H

Barborak, J. C.; Watts, L.; Pettit, R. J Am. Chem. Soc., 1966, 88, 1328 - 1329 4 Dodecahedrane

C20H20 stabilomer Ih symmetry -- 12 pentagonal faces -- 30 edges -- 20 vertices First synthesis reported by Paquette and co-workers in 1983 -- 23 steps from cyclopentadienide -- followed synthesis of 1,16-dimethyldodecahedrane in 1982 by same -- most intermediates contain C2 rotational axis or mirror plane, thus simplifying characterization

For a review of dodecahedrane and related spherical : Paquette, L. A. Chem. Rev. 1989, 89, 1051-1065. Paquette, L. A.; Wyvratt, M. J.; J. Am. Chem. Soc. 1974, 96, 4673. Paquette, L. A.; Wyvratt, M. J.; Schallner, O.; Schneider, D. F.; Begley, W. J.; Blankenship, R. M. J. Am. Chem. Soc. 1976, 98, 6744-6745. Paquette, L. A.; Wyvratt, M. J.; Schallner, O.; Muthard, J. L.; Begley, W. J.; Blankenship, R. M.; Balogh, D. J. Org. Chem. 1979, 44, 3616-3630. Paquette, L. A.; Balogh, D. J. Am. Chem. Soc. 1982, 104, 774-783. Paquette, L. A.; Ternansky, R. J.; Balogh, D. W. J. Am. Chem. Soc. 1982, 104, 4502-4503. Paquette, L. A. Proc. Natl. Acad. Sci. USA. 1982, 79, 4495-4500. Paquette, L. A.; Ternansky, R. J.; Balogh, D. W., Kentgen, G. J. Am. Chem. Soc. 1983, 105, 5446-5450.

Retrosynthetic Analysis

CO2R R CO2R X

X

Dodecahedrane CO2R

O CO R CO2R 2

Na H O

H

CO2R CO2R

5 Formation of the Tetracyclic Core via 'Domino Diels-Alder'

H I2 Na THF, -78 °C H

MeO2C CO2Me

R R

R R

CO2Me

CO2Me

CO2Me CO2Me A B CO2Me 40% combined yield over 2 steps, 1:1.4 A:B CO2Me

Paquette, L. A.; Wyvratt, M. J.; J. Am. Chem. Soc. 1974, 96, 4673.

Functionalization of Olefins O CO Me 2 CO2MO e AcOHg HO OH Hg(OAc)2 AcOHg HgOAc HgOAc O

CO2Me CO Me O 2 CO Me O 2 O O CO2Me 1) BH 2 O 2) NaOH, H2O2, CrO3, H2SO4 acetone CO2Me CO2Me C : 50% s C2: 29% O O 1) KOH, H2O/MeOH I 2) I2, KI, NaHCO3 H O, dark 2 I 94% over 2 steps O

O Paquette, L. A. et al. J. Org. Chem. 1979. 44, 3616-3630. van Tamelen, E. E.; Shamma, M. J. Am. Chem. Soc. 1954, 76, 2315-2317. 6 Diketone Formation

O MeO C O 2 HO I I NaOMe -- SM is strained, so mild conditions at room temp I MeOH OH I open the lactones. -- rigidity of product and steric congestion within O cupped skeleton prevents epoxide formation. CO Me O 2

CO Me CO Me 2 O 2 O I CrO3, H2SO4 Zn-Cu acetone O I MeOH O 92% over 2 steps 78%

CO2Me CO2Me

Paquette, L. A. et al. J. Org. Chem. 1979. 44, 3616-3630. Paquette, L. A. et al. J. Am. Chem. Soc. 1976, 98, 6744-6745.

Spirocyclobutanone Condensation

CO2Me MeO2C O O SPh SPh2 2 O DMSO O

CO2Me CO2Me

MeO C MeO C O 2 O 2

HBF4 O O

CO2Me CO2Me

MeO2C O 77% yield

O No monocondensation product observed

CO2Me Paquette, L. A. et al. J. Org. Chem. 1979. 44, 3616-3630.

7

HO OH MeO2C O MeO C 2 O

H2O2 O MeOH/H2O quantitative O Baeyer-Villiger Oxidation

CO2Me CO2Me O MeO C MeO C 2 O 2 HO O OH

8% P2O5 O O O CH3SO3H 83%

CO2Me CO2Me

O CO2Me

Friedel-Crafts acylation O

CO2Me Paquette, L. A. et al. J. Org. Chem. 1979. 44, 3616-3630.

Expanding the Cage

O O CO2Me CO2Me

H , 10% Pd/C O 2 EtOAc O quantitative 1) NaBH4 2) HCl work-up CO2Me NaBH4 CO2Me 86% MeOH O O O O

p-TsOH, PhH, reflux O HO 81% over 2 steps O

CO2Me Cl CO2Me HCl MeOH Cl 62% olefin elimination products

CO2Me Paquette, L. A. et al. J. Org. Chem. 1979. 44, 3616-3630.

8 Norrish Photocyclization

CO2Me CO Me Cl PhOH2C CO2Me 2

1) Li, NH3 Cl THF, -78 °C O HO 2) PhOCH2Cl

48% 22% CO2Me h! 90% PhOH2C CO2Me PhOH2C CO2Me PhOH2C CO2Me

TsOH HN=NH PhH, reflux MeOH 85% over 2 steps HO

Norrish Radical Cleavage of and HO Norrish Type I: O O h! R1 R2 R1 R2 Norrish Type II: H H O h! O HO OH

Paquette, L. A. et al. J. Am. Chem. Soc. 1983, 105, 5446-5450. Norrish, R. G. W.; Bamford, C. H. Nature 1936, 138, 1016. Norrish, R. G. W.; Bamford, C. H. Nature 1937, 140, 195.

Blocking Group Removal O PhOH2C CO2Me PhOH2C

1) DIBAL 2) PCC 92% over 2 steps

OH OH CH2OPh CH2OH

1) Li, NH3 h! EtOH Norrish Type II 2) 3 M HCl 36% 99% over 2 steps

O O O

PCC KOH

CH2Cl2 EtOH 77% retro- 48%

Paquette, L. A. et al. J. Am. Chem. Soc. 1983, 105, 5446-5450.

9 Completion of Dodecahedrane

O OH

h! Norrish Type II quantitative

TsOH HN=NH PhH, reflux MeOH quantitative 66%

isododecahedrane, C20H20 secododecahedrane, C20H22

H2, 10% Pd/C (H2 pre-sat.) 250 °C 34%

Dodecahedrane

Paquette, L. A. et al. J. Am. Chem. Soc. 1983, 105, 5446-5450.

Characterization of Dodecahedrane

1 H NMR (CDCl3): 3.38 ppm

Crystal Structure: Face-centered cubic C-C : 1.55742-1.55844 Å

13 C NMR (CDCl3): 66.93 ppm

13C-1H coupling constant: 134.9 Hz

-1 IR (3T1u): 2945, 1298, 728 cm

m/e (M+): calcd 260.1565, obsd 260.1571

MP: 430 ± 10 °C Paquette, L. A. et al. J. Am. Chem. Soc. 1983, 105, 5446-5450. Hudson, B. S. J. Phys. Chem. A. 2005, 109, 3418-3424.

10 Alternate Route to Dodecahedrane via

h! - OR - " H2 - OR - MLn retro [2 + 2]

retro [2 + 2] then >600 °C [4 + 2] FVP

Dodecahedrane

60% Fessner, W.-D.; Murty, B. A. R. C.; Prinzbach, H. Angew. Chem. I. E. 1987, 26, 451-452.

Alternate Route to Dodecahedrane via Pagodane

CH 3 CH3 H3C H3C

1,10-dimethyldodecahedrane 29% H2 (50 atm) Pd/C 250 °C 2.5 h

CH 3 CH3 CH3 CH3 1,11-dimethyldodecahedrane 1%

Prinzbach, H.; Schleyer, P. v.-R.; Maier, W. F. Angew. Chem. I. E. 1987, 26, 452-454.

11 The On-going Saga of Tetrahedrane

• Günther Maier, Stephan Pfriem, Ulrich Schäfer and Rudolf Matusch complete tetra-tert-butyltetrahedrane in 1978. Tetra-tert-butyltetrahedrane is the first isolated molecule that contains the tetrahedrane carbon skeleton deep within its core. Synthesis is 12 steps and low yeilding.1

Si

• Gunther Maier creates a fast synthesis for tetra-tert-butyltetrahedrane in 1991,2 that he later uses Si Si to make Tetrakis(trimethylsilyl)tetrahedrane in 2002. Tetrakis(trimethylsilyl)tetrahedrane reveals an unpredicted method of stabilization via the trimethylsilyl groups that allow the Si molecule to be stable up to 300 °C.3

Si Si • The Sekiguchi group notes that one of the silyl groups can be removed and replaced with a number of other groups including a lone . This represents a small step farther towards the desired 4 Si parent hydrocarbon, tetrahedrane. (Not discussed)

• The base hydrocarbon, tetrahedrane, has yet to be synthesized. Unstabilized ring makes for an exceedingly difficult synthesis. Theoreticians do not believe it is necessarily impossible, but it is unanimously thought to be highly unstable and likely to decompose at or below room .5 (Not discussed)

1) Maier, G.; Pfriem, S., Angew. Chem., 1978, 17, 520 - 521. 2) Maier, G., Pure & Appl. Chem., 1991, 63, 275 - 282. 3) Maier, G.; Neudert, J.; Wolf, O.; Pappusch, D.; Sekiguchi, A.; Tanaka, M.; Matsuo, T., J. Am. Chem. Soc., 2002, 124, 13819 - 13826. 4) Sekiguchi, A.; Tanaka, M., J. AM. Chem. Soc., 2003, 125, 12684 - 12685. 5) Zhou, G.; Zhang, J.; Wong, N.; Tian, A., Theo. Chem., 2004, 668, 189 - 195.

Tetrahedrane Retrosyntheses

O O

is s e th n y S t s ir F

s si e th n y S d n o ec S

- SbCl6

N2

12 First Synthesis of Tetra-tert-butytetrahedrane

1 2 2 1)Br2 -10 to 25 °C 2)KOH(aq) t-BuLi CCl 1,2-dimethoxyethane 4 Br (80%) 2 days O O (22 %) O

3 hv Tetra-tert-butyltetrahedrane3 Rigisolve "Corset effect"3

3 hv -CO Rigisolve

O O (35% from first iradiation) O

At 130°C tetra-tert-butyltetrahedrane isomerizes to Tetra-tert-butylcyclobutadiene, which is a stabile derivative because the tert-butyl groups prevent the cyclobutadiene from getting close enough to any other molecule to do a 2 + 2 cycloaddition, the usual decomposition pathway for . Upon irradiation tetra-tert-butylcyclobutadiene spontaneously rearranges back into tetra-tert-butyltetrahedrane.3

1) Known from Maier, G.; Bosslet, F. Lett., 1972, 1025. 2) Part of the partial synthesis from Maier, G. Pfriem, S. Angew. Chem., 1978, 17, 519 - 520 3) Final stage of synthesis from Maier, G.; Pfriem, S., Angew. Chem., 1978, 17, 520 - 521.

Second Synthesis of Tetra-tert-butyltetrahedrane and Synthesis of Tetrakis(trimethylsilyl)tetrahedrane

1) MeLi at 0°C 1 R = t-Bu, TMS R - SbCl6 R R 2) at -90°C 2 R R R N N R i-Pr3N Et2O R N2 !H (10.7%) -d6 (45%) Tetrakis(trimethylsilyl)tetrahedrane

2 "Corset effect"2 2 R R R R hv

R pentane R (50%) R R

1) Maier, G.; Volz, D.; Neudert, J. Synthesis 1992, 561 - 564. 2) Maier, G.; Neudert, J.; Wolf, O.; Pappusch, D.; Sekiguchi, A.; Tanaka, M.; Matsuo, T., J. Am. Chem. Soc., 2002, 124, 13819 - 13826. 13 Important Techniques for Construction of 3-Dimensional Carbon Scaffolds . Domino Diels-Alder

Br EWG EWG KOH(aq) O COOH n ! 1 n ! 1 EWG EWG Allows for contraction of already Forms 4+ rings in a single reaction. Variation of the strained rings into even smaller and more EWG affects reaction rate and ratio of product constrained rings. Works with or . without target ring being fused within extremely strained systems. Norrish Photocyclization

PhOH C CO Me PhOH C CO Me Corset Effect 2 2 2 2 h! (any reaction that O opens or alters the ) HO O OH n ! 1 n ! 1

h! Can be used to lower the of products that are otherwise unattainable relative to starting materials via elevation of massive plane enforced steric clashing. Also forces a trans product over a potential cis. Often Used in conjunction with a rigid superstructure, this reaction has the ability to form carbon-carbon the thermodynamics of the product can be bonds in nearly quantitative yield and with favored as well as the relevant kinetics preservation of convex architecture. via this process.

14