Cubane and Triptycene As Scaffolds in the Synthesis of Porphyrin Arrays

Total Page:16

File Type:pdf, Size:1020Kb

Cubane and Triptycene As Scaffolds in the Synthesis of Porphyrin Arrays Cubane and Triptycene as Scaffolds in the Synthesis of Porphyrin Arrays Submitted by Gemma M. Locke B.A. (Mod.) Medicinal Chemistry Trinity College Dublin, Ireland A thesis submitted to the University of Dublin, Trinity College for the degree of Doctor of Philosophy Under the Supervision of Prof. Dr. Mathias O. Senge University of Dublin, Trinity College September 2020 Declaration I declare that this thesis has not been submitted as an exercise for a degree at this or any other university and it is entirely my own work. I agree to deposit this thesis in the University’s open access institutional repository or allow the Library to do so on my behalf, subject to Irish Copyright Legislation and Trinity College Library conditions of use and acknowledgement. I consent to the examiner retaining a copy of the thesis beyond the examining period, should they so wish. Furthermore, unpublished and/or published work of others, is duly acknowledged in the text wherever included. Signed: ____________________________________________ March 2020 Trinity College Dublin ii Summary The primary aim of this research was to synthesise multichromophoric arrays that are linked through rigid isolating units with the capacity to arrange the chromophores in a linear and fixed orientation. The electronically isolated multichromophoric systems could then ultimately be tested in electron transfer studies for their applicability as photosynthesis mimics. Initially, 1,4-diethynylcubane was employed as the rigid isolating scaffold and one to two porphyrins were reacted with it in order to obtain the coupled product(s). Pd-catalysed Sonogashira cross-coupling reactions were used to try and achieve these bisporphyrin complexes. After extensive optimisation attempts, of both copper and copper-free Sonogashira reaction conditions, the desired alkynylcubane-linked bisporphyrin was detected, but unfortunately not isolated. The instability of the alkynylcubane-linked systems prevented efficient purification and inhibited further reactions, and while the cubane porphyrin dimer was identified, its insolubility prevented further analysis. Overall, five new alkynylcubane-linked monoporphyrin compounds were synthesised, albeit in very low yields. 1,4-Bis(phenylethynyl)cubane was obtained suggesting that coupling with the large porphyrin systems may have been the issue rather than solely the instability of 1,4- diethynylcubane. Following on from the work with 1,4-diethynylcubane, 9,10-diethynyltriptycene was investigated for its uses as a rigid isolating unit. Initially, Sonogashira cross-coupling conditions that were developed from the previous work with cubane, were utilised with various porphyrins and boron dipyrromethenes (BODIPYs) and worked seamlessly. Although there are previous examples of triptycene porphyrin complexes, this was the first example of a linear porphyrin dimer that was connected to triptycene through the bridgehead carbons. Symmetric and unsymmetric examples of these complexes were obtained. The unsymmetric porphyrin dimer proved more difficult to access, owing to the unreliability of the Diels–Alder reaction of benzyne with 9-[(triisopropylsilane)ethynyl]-10- [(trimethylsilane)ethynyl]-anthracene to access the triptycene starting material. In a slightly different vein, a series of porphyrin-cubane/bicyclo[1.1.1]pentane-porphyrin arrays were synthesised via amide coupling reactions. The utilisation of semi-rigid amide bonds to attach the porphyrin skeletons to a rigid scaffold introduced a controlled conformational flexibility into porphyrin dyad/s. This allowed significant modulation of the photophysical properties in the porphyrin dyad/s through the coordination of transition metal(II) ions. These reversible photophysical changes suggest that the dimeric systems are acting like switchable porphyrin tweezers. The (1-[bis(dimethylamino)methylene]-1H- 1,2,3-triazolo[4,5-b]pyridinium iii 3-oxid hexafluorophosphate) (HATU) amide coupling procedure employed was robust and versatile, allowing access to the very first porphyrin-cubane/ bicyclo[1.1.1]pentane- porphyrin arrays, representing the largest non-polymeric structures available for cubane/bicyclo[1.1.1]pentane derivatives. These reactions demonstrated considerable substrate scope, from utilisation of small phenyl moieties to large porphyrin rings, with varying lengths and different angles. Depending on the orientation of the substituents around the amide bond of the cubane/bicyclo[1.1.1]pentane units different intermolecular interactions were identified through single crystal X-ray analysis. Moreover, X-ray structural analysis revealed non-covalent interactions that are the first-of-their-kind, including a unique iodine-oxygen interaction between cubane molecules. Lastly on a different note, a cationic dimer with a phenylene linker and an anionic porphyrin dimer with a conjugated butadiene linker were synthesised. The central aim of this work was to introduce water-soluble moieties into porphyrin dimers as there are very limited examples in the literature of porphyrin dimers with application in photodynamic therapy. It was hoped that by introducing cation/anionic moieties to a dimer that these water-soluble moieties would allow it to be suitable for biological application. The porphyrin dimer was successfully obtained, but tests to see its efficiency as a photodynamic therapy agent are still underway. iv Publications G. M. Locke, M. O. Senge, “Towards Electron Transfer Compounds with Rigid Resistor Units” ECS Trans. 2016, 16, 1–11. doi:10.1149/07216.0001ecst S. S. R. Bernhard, G. M. Locke, S. Plunkett, A. Meindl, K. J. Flanagan, M. O. Senge, “Cubane Cross-Coupling and Cubane-Porphyrin Arrays” Chem. Eur. J. 2018, 24, 1026– 1030. doi:10.1002/chem.201704344 Front Cover: Cubane Cross‐Coupling and Cubane– Porphyrin Arrays (Chem. Eur. J. 2018, 24, 997). doi:10.1002/chem.201705227 Invited review: G. M. Locke, S. S. R. Bernhard, M. O. Senge, “Nonconjugated Hydrocarbons as Rigid‐Linear Motifs: Isosteres for Material Sciences and Bioorganic and Medicinal Chemistry” Chem. Eur. J. 2019, 25, 4590–4647. doi:10.1002/chem.201804225 N. Grover‡, G. M. Locke‡, K. J. Flanagan, M. H. R. Beh, A. Thompson, M. O. Senge, “Bridging and Conformational Control of Porphyrin Units through Non-Traditional Rigid Scaffolds” submitted for publication. Conference Abstracts G. M. Locke, M. Roucan, S.Plunkett, M. O. Senge. “Functionalisation of cubane scaffolds- Towards the use of cubane as a rigid linker in energy transfer compounds” in the Centre for Synthesis and Chemical Biology (CSCB) Recent Advances in Synthesis and Chemical Biology XVI, (04.12.15), Dublin, Ireland. This poster won one of three prizes for the best poster award. G. M. Locke, S. S. R. Bernhard, S. Plunkett and M. O. Senge “Advances in the Functionalisation of Cubane, for Use as a Scaffold in the Synthesis of Multiporphyrin Arrays” in the Tetrapyrrole Discussion Group Meeting (21.03.16–22.03.16), Liverpool John Moores University, Liverpool, England. Abstract book page 17. v G. M. Locke, S. S. R. Bernhard, S. Plunkett and M. O. Senge “Advances in the Functionalisation of Cubane, for Use as a Scaffold in the Synthesis of Multiporphyrin Arrays” in the ORCHEM 2016 conference (05.09.16–07.09.16), Weimar, Germany. Abstract-ID: 6243_15208. G. M. Locke, S. S. R. Bernhard, S. Plunkett and M. O. Senge “Advances in the Functionalisation of Cubane, for Use as a Scaffold in the Synthesis of Multiporphyrin Arrays” in the CSCB conference (09.12.16) Trinity College Dublin, Dublin, Ireland. Abstract P023. G. M. Locke, S. S. R. Bernhard, S. Plunkett, K. J. Flanagan and M. O. Senge “The Synthesis of Multiporphyrin Arrays with non-Heteroatom Linkers” in the GDCh Scientific Forum Chemistry 2017 (10.09.17–14.09.17), Berlin, Germany. Abstract-ID: 7210-14218. G. M. Locke, S. S. R. Bernhard and M. O. Senge, “Rolling the Die for Dyes” in 16th Belgian Organic Synthesis Symposium, (08.07.18–13.07.18), Brussels, Belgium, Abstract book P152. G. M. Locke, A. F. Syeda and M. O. Senge, “Triptycene and its use as a scaffold in the synthesis of multiporphyrin arrays” in Centre for Synthesis and Chemical Biology (CSCB) Recent Advances in Synthesis and Chemical Biology XVI, (07.12.18), Dublin, Ireland. vi Acknowledgements First of all, I would like to thank Prof. Dr. Mathias O. Senge for giving me the opportunity to pursue this research and offering me a position in his research group. Also for his encouragement, belief in my capabilities and supervision which encourages self-thought and the constant pursuit of new knowledge. I would also like to thank the Irish Research Council for their funding support. A big thank you goes out to my valued colleagues Alina, Bhavya, Elisabeth, Harry, Ganapathi, Jess, Karolis, Keith, Marc, Marie, Mikhail, Nitika, Stefan, Susan, Piotr and Zoi who helped make our workplace a safe, fun and encouraging environment. A place where laughter was a part of everyday life and there was never a shortage of advice or people who wanted a coffee break. All the brave international souls must also be noted who were always up for an after work swim in the Irish sea, sometimes regardless of the weather. I want to additionally thank Keith for his X-ray crystallography work, Ganapathi and Alina for supplying some of the starting materials for my work and for everyone’s help proof-reading this thesis. I especially want to thank our two brilliant post-Docs Dr. Stefan Bernard and Dr. Nitika Grover (the referencing Queen) for their unwavering patience and consistent help in all things chemistry and for being a part of team cubane/BCP. I am also indebted to Dr. Gary Hessman, Dr. Martin Feeney, Dr. John O’Brien and Dr. Manuel Rüther for their help in analytical questions and I would like to express my gratitude to everyone working behind the curtains at Trinity College Dublin. Finally, I want to thank my family and friends, who have listened to my failures, cheered me up when I was down, consistently prayed for me and my chemistry and celebrated with me in my successes. I want to thank God who is my constant strength and encouragement, who gave me hope at times when I could have despaired and who has taught me what “His mercies are new every morning” truly means over the past four years.
Recommended publications
  • Cumulative Chapter Titles by Volume
    bindcom.tex 4/18/06 12:24 PM Page 659 CUMULATIVE CHAPTER TITLES BY VOLUME Volume 1 (1942) 1. The Reformatsky Reaction: Ralph L. Shriner 2. The Arndt-Eistert Reaction: W. E. Bachmann and W. S. Struve 3. Chloromethylation of Aromatic Compounds: Reynold C. Fuson and C. H. McKeever 4. The Amination of Heterocyclic Bases by Alkali Amides: Marlin T. Leffler 5. The Bucherer Reaction: Nathan L. Drake 6. The Elbs Reaction: Louis F. Fieser 7. The Clemmensen Reduction: Elmore L. Martin 8. The Perkin Reaction and Related Reactions: John R. Johnson 9. The Acetoacetic Ester Condensation and Certain Related Reactions: Charles R. Hauser and Boyd E. Hudson, Jr. 10. The Mannich Reaction: F. F. Blicke 11. The Fries Reaction: A. H. Blatt 12. The Jacobson Reaction: Lee Irvin Smith Volume 2 (1944) 1. The Claisen Rearrangement: D. Stanley Tarbell 2. The Preparation of Aliphatic Fluorine Compounds: Albert L. Henne 3. The Cannizzaro Reaction: T. A. Geissman 4. The Formation of Cyclic Ketones by Intramolecular Acylation: William S. Johnson 5. Reduction with Aluminum Alkoxides (The Meerwein-Ponndorf-Verley Reduction): A. L. Wilds 659 bindcom.tex 4/18/06 12:24 PM Page 660 660 CUMULATIVE CHAPTER TITLES BY VOLUME 6. The Preparation of Unsymmetrical Biaryls by the Diazo Reaction and the Nitrosoacetylamine Reaction: Werner E. Bachmann and Roger A. Hoffman 7. Replacement of the Aromatic Primary Amino Group by Hydrogen: Nathan Kornblum 8. Periodic Acid Oxidation: Ernest L. Jackson 9. The Resolution of Alcohols: A. W. Ingersoll 10. The Preparation of Aromatic Arsonic and Arsinic Acids by the Bart, Béchamp, and Rosenmund Reactions: Cliff S.
    [Show full text]
  • Photoremovable Protecting Groups Used for the Caging of Biomolecules
    1 1 Photoremovable Protecting Groups Used for the Caging of Biomolecules 1.1 2-Nitrobenzyl and 7-Nitroindoline Derivatives John E.T. Corrie 1.1.1 Introduction 1.1.1.1 Preamble and Scope of the Review This chapter covers developments with 2-nitrobenzyl (and substituted variants) and 7-nitroindoline caging groups over the decade from 1993, when the author last reviewed the topic [1]. Other reviews covered parts of the field at a similar date [2, 3], and more recent coverage is also available [4–6]. This chapter is not an exhaustive review of every instance of the subject cages, and its principal focus is on the chemistry of synthesis and photocleavage. Applications of indi- vidual compounds are only briefly discussed, usually when needed to put the work into context. The balance between the two cage types is heavily slanted to- ward the 2-nitrobenzyls, since work with 7-nitroindoline cages dates essentially from 1999 (see Section 1.1.3.2), while the 2-nitrobenzyl type has been in use for 25 years, from the introduction of caged ATP 1 (Scheme 1.1.1) by Kaplan and co-workers [7] in 1978. Scheme 1.1.1 Overall photolysis reaction of NPE-caged ATP 1. Dynamic Studies in Biology. Edited by M. Goeldner, R. Givens Copyright © 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 3-527-30783-4 2 1 Photoremovable Protecting Groups Used for the Caging of Biomolecules 1.1.1.2 Historical Perspective The pioneering work of Kaplan et al. [7], although preceded by other examples of 2-nitrobenzyl photolysis in synthetic organic chemistry, was the first to apply this to a biological problem, the erythrocytic Na:K ion pump.
    [Show full text]
  • And 5,10,15,20-Tetraalkylporphyrins: Implications For
    336 J. Am. Chem. SOC.1988, 110, 336-342 values being Ai,(IH) = 127.2 G and gs0= 2.0042. Since these intermediates produced under reactive laser sputtering21and other results are very similar to those calculated from the neon data, high-energy condition^.^' The use of the neon ESR matrix namely, Ais0(lH) = 128.6 G and giso= 2.0038, it is reasonable technique for studying ion products formed injon-neutral reactions to conclude that these parameters are characteristic of the un- has also been demonstrated for the following reactions which are complexed cation irrespective of the nature of the matrix. Con- important in stratospheric chemistry: CO + CO' -+ C202+,42 sequently, the significantly different parameters observed for the N2 + N2+- N4+,43N2 + CO+ - N2CO+,'and O2 + 02+- cation above 120 K in the CFC1, matrix (Table 111) now become 04+.44 anomalous for a dissociated cation. On the other hand, these 120 K parameters are just what would be expected if the complex Acknowledgment. The neon matrix ESR experiments were persists and the loss of fine structure results simply from a motional conducted at Furman University with support from the National averaging of the 35Cl hyperfine tensor components. Science Foundation (CHE-8508085), the General Electric Except for a recent investigation of the cubane radical cation Foundation, the Amoco Foundation, and Research Corporation. (C8H8+),39the acetaldehyde ion is the largest cation studied to A new ESR spectrometer was made possible by a chemistry date by the neon matrix ESR method. Given the high resolution equipment grant to Furman University from the Pew Memorial that can be achieved in neon and the chance of preferential Trust.
    [Show full text]
  • LIST of PUBLICATIONS of JOSEF MICHL B: Book P: Patent C
    LIST OF PUBLICATIONS OF JOSEF MICHL B: Book P: Patent C: Communication R: Review or Chapter in a Book P 1. Kopecký, J.; Michl, J. "Zpùsob výroby pyrrolo(2,3-d)-pyrimidinù", Czechoslovak patent no. 97821, August 11, 1959. C 2. Zuman, P.; Michl, J. "Role of Keto-Enol Tautomerism in the Polarographical Reduction of Some Carbonyl Compounds", Nature 1961, 192, 655. C 3. Horák, V.; Michl, J.; Zuman, P. "A Contribution to the Studies of Elimination Reactions of Mannich Bases, Using Polarographic Method", Tetrahedron Lett. 1961, 744. C 4. Zahradník, R.; Michl, J.; Koutecký, J. "Fluoranthene-like Hydrocarbons: MO-LCAO Study of Electronic Spectra, Charge-Transfer Spectra and Polarographic Reduction", J. Chem. Soc. 1963, 4998. 5. Koutecký, J.; Hochman, P.; Michl, J. "Calculation of Electronic Spectra of Non-Alternant Conjugated Hydrocarbons by the Semiempirical Method of Limited Configuration Interaction", J. Chem. Phys. 1964, 40, 2439. 6. Zahradník, R.; Michl, J.; Koutecký, J. "Tables of Quantum Chemical Data. II. Energy Characteristics of Some Non-Alternant Hydrocarbons", Collect. Czech. Chem. Commun. 1964, 29, 1932. 7. Zahradník, R.; Michl, J.; Koutecký, J. "Tables of Quantum Chemical Data. III. Molecular Orbitals of Some Fluoranthene-like Hydrocarbons, Cyclopentadienyl, and Some of its Benzo and Naphtho Derivatives", Collect. Czech. Chem. Commun. 1964, 29, 3184. 8. Zahradník, R.; Michl, J. "Electronic Structure of Non-Alternant Hydrocarbons, Their Analogues and Derivatives. Introductory Remarks", Collect. Czech. Chem. Commun. 1965, 30, 515. 9. Zahradník, R.; Michl, J. "Electronic Structure of Non-Alternant Hydrocarbons, Their Analogues and Derivatives. I. A Theoretical Treatment of Reid's Hydrocarbons", Collect. Czech. Chem. Commun.
    [Show full text]
  • A New Method for Synthesis of Aziridine 2-Phosphonates and Their Biological Activities
    A NEW METHOD FOR SYNTHESIS OF AZIRIDINE 2-PHOSPHONATES AND THEIR BIOLOGICAL ACTIVITIES A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY BY HAKAN BAB İZ IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN CHEMISTRY SEPTEMBER 2010 Approval of the thesis: A NEW METHOD FOR SYNTHESIS OF AZIRIDINE 2-PHOSPHONATES AND THEIR BIOLOGICAL ACTIVITIES submitted by HAKAN BAB İZ in partial fulfillment of the requirements for the degree of Master of Science in Chemistry Department, Middle East Technical University by, Prof. Dr. Canan Özgen _____________________ Dean, Graduate School of Natural and Applied Sciences Prof. Dr. İlker Özkan _____________________ Head of Department, Chemistry Prof. Dr. Özdemir Do ğan ______________________ Supervisor, Chemistry Dept., METU Examining Committee Members: Prof. Dr. Ayhan S. Demir ______________________ Chemistry Dept., METU Prof. Dr. Özdemir Do ğan ______________________ Chemistry Dept., METU Prof. Dr. Cihangir Tanyeli ______________________ Chemistry Dept., METU Prof. Dr. Metin Zora ______________________ Chemistry Dept., METU Assoc. Prof. Dr. Adnan Bulut ______________________ Chemistry Dept., Kırıkkale Üniv. Date: 17.09.2010 I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work. Name, Last name : Hakan Babiz Signature : iii ABSTRACT SYNTHESIS OF AZIRIDINE 2-PHOSPHONATES AND THEIR BIOLOGICAL ACTIVITIES Babiz, Hakan M.S., Department of Chemistry Supervisor: Prof. Dr. Özdemir Do ğan September 2010, 74 pages A systematic study was carried out for the synthesis of aziridine 2-phosphonates by using two methods.
    [Show full text]
  • 01Isinmain.Pdf (377.6Kb)
    STUDIES ON THE SYNTHESIS AND REARRANGEMENT OF INDAZOLYLPYRIDINIUM DERIVATIVES, PRECURSORS TO POTENTIAL NEUROPROTECTIVE PRODRUGS BEARING A 1,2,3,6-TETRAHYDROPYRIDINYL CARRIER By Emre M. Işın Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY IN CHEMISTRY Professor Neal Castagnoli, Jr., Chairman Professor David R. Bevan Professor Paul R. Carlier Professor David G.I. Kingston Professor James M. Tanko March 22, 2004 Blacksburg, Virginia Keywords: Monoamine Oxidase, Bioactivation, Docking, Neuroprotection, Rearrangement, Regiospecific Synthesis Copyright 2004, Emre M. Isin STUDIES ON THE SYNTHESIS AND REARRANGEMENT OF INDAZOLYLPYRIDINIUM DERIVATIVES, PRECURSORS TO POTENTIAL NEUROPROTECTIVE PRODRUGS BEARING A 1,2,3,6-TETRAHYDROPYRIDINYL CARRIER By Emre M. Işın Professor Neal Castagnoli, Jr., Chairman ABSTRACT The neuronal nitric oxide synthase (nNOS) inhibitor 7-nitroindazole (7-NI) protects against the neurotoxicity of MPTP in a mouse model of neurodegeneration. Since 7-NI also inhibits the monoamine oxidase-B (MAO-B) catalyzed bioactivation of MPTP, the role of nNOS inhibition as a mediator of 7-NI’s neuroprotective properties have been challenged. In order to examine in greater detail the neuroprotective effects of indazolyl derivatives, the synthesis of water soluble indazolyltetrahydropyridinyl derivatives as potential “prodrugs” that may undergo MAO bioactivation in the brain was undertaken. During the course of the studies on the synthesis of indazolylpyridinium derivatives, precursors to these “prodrugs”, an interesting reaction involving the rearrangement of 4-(2H-indazolyl)-1-methylpyridinium iodide to the corresponding 1H- isomer was encountered. A detailed investigation of this rearrangement reaction is reported in this thesis.
    [Show full text]
  • Structure and Bonding of New Boron and Carbon Superpolyhedra
    Structural Chemistry (2019) 30:805–814 https://doi.org/10.1007/s11224-019-1279-5 ORIGINAL RESEARCH Structure and bonding of new boron and carbon superpolyhedra Olga A. Gapurenko1 & Ruslan M. Minyaev1 & Nikita S. Fedik2 & Vitaliy V. Koval1 & Alexander I. Boldyrev2 & Vladimir I. Minkin1 Received: 16 November 2018 /Accepted: 1 January 2019 /Published online: 10 January 2019 # Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract Using the DFT methods, we computationally predict the stability of cage compounds E4nRn (E = B, C; R = H, F; n = 4, 8, 12, 24) based on Platonic bodies and Archimedean polyhedrons in which all vertices are replaced by tetrahedral E4R fragments. Cage compounds B60R12 and C60 with pyramidal units B5RorC5 are also examined and it is shown that only boron compounds are stable. The nature of chemical bonding in the discussed compounds is analyzed using the AdNDP and NBO methods. The hydrocarbons have classical 2c-2e C-C σ-bonds, while the boron compounds are formed by the polyhedral units with the delocalized multicenter bonds which connected three and more boron atoms. The new example of spherical aromaticity accord- 2 ing to the 2(N+1) rule in the case of B16F4 with multicenter 16c-2e bonds are revealed. Stable compound B60H12 contains 12 5c- 2e B-B bonds. Keywords Сage clusters . Chemical bonding . 3c-2e bond . Spherical aromaticity . AdNDP . NBO Construction of novel allotropic forms of carbon based on was proposed [1] as the system with the same symmetry as the tetrahedrane- and cubane-like building blocks was pro- sp3-carbon to replace the carbon atoms in the diamond posed by Burdett and Lee [1] and by Johnston and lattice.
    [Show full text]
  • Advanced Physical Techniques in Inorganic Chemistry: Probing Small Molecule Activation
    Advanced Physical Techniques in Inorganic Chemistry: Probing Small Molecule Activation The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Anderson, Bryce L. 2016. Advanced Physical Techniques in Inorganic Chemistry: Probing Small Molecule Activation. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:33493292 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Advanced Physical Techniques in Inorganic Chemistry: Probing Small Molecule Activation A dissertation presented by Bryce L. Anderson To The Department of Chemistry and Chemical Biology in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Chemistry Harvard University Cambridge, Massachusetts May 2016 © 2016 Bryce L. Anderson All rights reserved Dissertation Advisor: Professor Daniel G. Nocera Bryce L. Anderson Advanced Physical Techniques in Inorganic Chemistry: Probing Small Molecule Activation Abstract Robust and efficient catalysts are necessary for realizing chemical energy storage as a solution for the intermittency associated with renewable energy sources. To aid in the development of such catalysts, physical methods are used to probe the photochemistry of small molecule activation in the context of solar-to-fuels cycles. Three systems are studied in the context of HX splitting (X=Br, Cl): polypyridyl nickel complexes, NiX3(LL) (LL = bidentate phosphine) complexes, and dirhodium phosphazane complexes.
    [Show full text]
  • Synthetic Advances in the C‐H Activation of Rigid Scaffold Molecules
    Synthesis Review Synthetic Advances in the C‐H Activation of Rigid Scaffold Molecules Nitika Grovera Mathias O. Senge*a a School of Chemistry, Trinity College Dublin, The University of Dublin, Trinity Biomedical Sciences Institute, 152–160 Pearse Street, Dublin 2, Ireland [email protected] Dedicated to Prof. Dr. Henning Hopf Received: only recall the epic endeavors involved in Eaton’s cubane Accepted: Published online: synthesis,3 Parquette’s preparation of dodecahedrane, DOI: Prinzbach’s pagodane route thereto, or Maier’s synthesis of Abstract The remarkable structural and electronic properties of rigid non‐ tetra-tert-butyltetrahedrane.4 conjugated hydrocarbons afford attractive opportunities to design molecular building blocks for both medicinal and material applications. The bridgehead positions provide the possibility to append diverse functional groups at specific angles and in specific orientations. The current review summarizes the synthetic development in CH functionalization of the three rigid scaffolds namely: (a) cubane, (b) bicyclo[1.1.1]pentane (BCP), (c) adamantane. 1 Introduction 2 Cubane 2.1 Cubane Synthesis 2.2 Cubane Functionalization 3 BCP 3.1 BCP Synthesis 3.2 BCP Functionalization 4 Adamantane 4.1 Adamantane Synthesis 4.2 Adamantane Functionalization 5 Conclusion and Outlook Key words Cubane, bicyclo[1.1.1]pentane, adamantane, rigid scaffolds, CH‐ functionalization. Figure 1 The structures of cubane, BCP and adamantane and the five platonic hydrocarbon systems. The fascinating architecture of these systems significantly 1 Introduction differs from scaffolds realized in natural compounds. Hence, they attracted considerable attention from synthetic and The practice of synthetic organic chemistry of non-natural physical organic chemists to investigate their properties and to compounds with rigid organic skeletons provides a deep establish possible uses.3,5 Significantly, over the past twenty understanding of bonding and reactivity.
    [Show full text]
  • Cheminformatics for Genome-Scale Metabolic Reconstructions
    CHEMINFORMATICS FOR GENOME-SCALE METABOLIC RECONSTRUCTIONS John W. May European Molecular Biology Laboratory European Bioinformatics Institute University of Cambridge Homerton College A thesis submitted for the degree of Doctor of Philosophy June 2014 Declaration This thesis is the result of my own work and includes nothing which is the outcome of work done in collaboration except where specifically indicated in the text. This dissertation is not substantially the same as any I have submitted for a degree, diploma or other qualification at any other university, and no part has already been, or is currently being submitted for any degree, diploma or other qualification. This dissertation does not exceed the specified length limit of 60,000 words as defined by the Biology Degree Committee. This dissertation has been typeset using LATEX in 11 pt Palatino, one and half spaced, according to the specifications defined by the Board of Graduate Studies and the Biology Degree Committee. June 2014 John W. May to Róisín Acknowledgements This work was carried out in the Cheminformatics and Metabolism Group at the European Bioinformatics Institute (EMBL-EBI). The project was fund- ed by Unilever, the Biotechnology and Biological Sciences Research Coun- cil [BB/I532153/1], and the European Molecular Biology Laboratory. I would like to thank my supervisor, Christoph Steinbeck for his guidance and providing intellectual freedom. I am also thankful to each member of my thesis advisory committee: Gordon James, Julio Saez-Rodriguez, Kiran Patil, and Gos Micklem who gave their time, advice, and guidance. I am thankful to all members of the Cheminformatics and Metabolism Group.
    [Show full text]
  • Copper and Nickel Catalysis for Alkynylation Reactions
    Université de Montréal Copper and Nickel Catalysis for Alkynylation Reactions par Jeffrey Santandrea Département de chimie Faculté des arts et des sciences Thèse présentée à la Faculté des études supérieures et postdoctorales en vue de l’obtention du grade de Philosophiæ Doctor (Ph.D.) en chimie Avril 2018 © Jeffrey Santandrea, 2018 Résumé Les alcynes sont reconnus comme étant des groupements fonctionnels polyvalents pouvant participer à de multiples transformations chimiques. Conséquemment, le développement de nouvelles méthodologies efficaces et chimiosélectives pour permettre la formation d’alcynes internes substitués par des atomes de carbone ou par des hétéroatomes est intéressant. La thèse suivante décrit ainsi le développement de nouveaux systèmes catalytiques à base de cuivre et de nickel pour effectuer des réactions d’alcynylation. Les travaux présentés au Chapitre 3 décrivent le premier couplage croisé de type Sonogashira catalysé par le cuivre menant à la formation de macrocycles à partir de précurseurs linéaires non-biaisés conformationnellement. Le couplage croisé macrocyclique de type Sonogashira a exploité un système catalytique CuCl/phen/Cs2CO3 pour générer 17 macrocycles de différentes tailles de cycle (10 à 25 chaînons) et différents groupements fonctionnels avec des rendements compris entre 38 et 83 %. De plus, la méthode a été réalisée à une concentration relativement élevée (24 mM) sans recourir à des techniques d'addition lente. Les conditions réactionnelles optimisées ont aussi été appliquées à la synthèse du (S)-zéaralane, un produit biologiquement actif. Les travaux présentés au Chapitre 6 décrivent la première synthèse de thioalcynes arylés par le biais de la catalyse photorédox et de la catalyse au nickel. Le couplage C(sp)-S a été réalisé entre des thiols et des bromoalcynes aromatiques en utilisant un système catalytique 4CzIPN/NiCl2•glyme/pyridine sous irradiation de la lumière visible à température ambiante.
    [Show full text]
  • Photoremovable Protecting Groups in Chemistry and Biology: Reaction Mechanisms and Efficacy Petr Klan,́*,†,‡ Tomaś̌solomek,̌ †,‡ Christian G
    Review pubs.acs.org/CR Photoremovable Protecting Groups in Chemistry and Biology: Reaction Mechanisms and Efficacy Petr Klan,́*,†,‡ Tomaś̌Solomek,̌ †,‡ Christian G. Bochet,§ Aurelień Blanc,∥ Richard Givens,⊥ Marina Rubina,⊥ Vladimir Popik,# Alexey Kostikov,# and Jakob Wirz∇ † Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic ‡ Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 3, 625 00 Brno, Czech Republic § Department of Chemistry, University of Fribourg, Chemin du Museé 9, CH-1700 Fribourg, Switzerland ∥ Institut de Chimie, University of Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France ⊥ Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, 5010 Malott Hall, Lawrence, Kansas 66045, United States # Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States ∇ Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland 7.3. Arylsulfonyl Group 160 7.4. Ketones: 1,5- and 1,6-Hydrogen Abstraction 160 7.5. Carbanion-Mediated Groups 160 7.6. Sisyl and Other Silicon-Based Groups 161 7.7. 2-Hydroxycinnamyl Groups 161 7.8. α-Keto Amides, α,β-Unsaturated Anilides, CONTENTS and Methyl(phenyl)thiocarbamic Acid 162 7.9. Thiochromone S,S-Dioxide 162 1. Introduction 119 7.10. 2-Pyrrolidino-1,4-Benzoquinone Group 162 2. Arylcarbonylmethyl Groups 121 7.11. Triazine and Arylmethyleneimino Groups 162 2.1. Phenacyl and Other Related Arylcarbonyl- 7.12. Xanthene and Pyronin Groups 163 methyl Groups 121 o 7.13. Retro-Cycloaddition Reactions 163 2.2. -Alkylphenacyl Groups 123 8. Sensitized Release 163 2.3. p-Hydroxyphenacyl Groups 125 p 8.1.
    [Show full text]