III Core (6). the a Subunit, the Dnae Gene Product (7), Has the 5' -+ 3' Polymerase Activity (8)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mutations That Separate the Functions of the Proofreading Subunit of the Escherichia Coli Replicase
G3: Genes|Genomes|Genetics Early Online, published on April 15, 2015 as doi:10.1534/g3.115.017285 Mutations that separate the functions of the proofreading subunit of the Escherichia coli replicase Zakiya Whatley*,1 and Kenneth N Kreuzer*§ *University Program in Genetics & Genomics, Duke University, Durham, NC 27705 §Department of Biochemistry, Duke University Medical Center, Durham, NC 27710 1 © The Author(s) 2013. Published by the Genetics Society of America. Running title: E. coli dnaQ separation of function mutants Keywords: DNA polymerase, epsilon subunit, linker‐scanning mutagenesis, mutation rate, SOS response Corresponding author: Kenneth N Kreuzer, Department of Biochemistry, Box 3711, Nanaline Duke Building, Research Drive, Duke University Medical Center, Durham, NC 27710 Phone: 919 684 6466 FAX: 919 684 6525 Email: [email protected] 1 Present address: Department of Biology, 300 N Washington Street, McCreary Hall, Campus Box 392, Gettysburg College, Gettysburg, PA 17325 Phone: 717 337 6160 Fax: 7171 337 6157 Email: [email protected] 2 ABSTRACT The dnaQ gene of Escherichia coli encodes the ε subunit of DNA polymerase III, which provides the 3’ 5’ exonuclease proofreading activity of the replicative polymerase. Prior studies have shown that loss of ε leads to high mutation frequency, partially constitutive SOS, and poor growth. In addition, a previous study from our lab identified dnaQ knockout mutants in a screen for mutants specifically defective in the SOS response following quinolone (nalidixic acid) treatment. To explain these results, we propose a model whereby in addition to proofreading, ε plays a distinct role in replisome disassembly and/or processing of stalled replication forks. -
DNA POLYMERASE III HOLOENZYME: Structure and Function of a Chromosomal Replicating Machine
Annu. Rev. Biochem. 1995.64:171-200 Copyright Ii) 1995 byAnnual Reviews Inc. All rights reserved DNA POLYMERASE III HOLOENZYME: Structure and Function of a Chromosomal Replicating Machine Zvi Kelman and Mike O'Donnell} Microbiology Department and Hearst Research Foundation. Cornell University Medical College. 1300York Avenue. New York. NY }0021 KEY WORDS: DNA replication. multis ubuni t complexes. protein-DNA interaction. DNA-de penden t ATPase . DNA sliding clamps CONTENTS INTRODUCTION........................................................ 172 THE HOLO EN ZYM E PARTICL E. .......................................... 173 THE CORE POLYMERASE ............................................... 175 THE � DNA SLIDING CLAM P............... ... ......... .................. 176 THE yC OMPLEX MATCHMAKER......................................... 179 Role of ATP . .... .............. ...... ......... ..... ............ ... 179 Interaction of y Complex with SSB Protein .................. ............... 181 Meclwnism of the yComplex Clamp Loader ................................ 181 Access provided by Rockefeller University on 08/07/15. For personal use only. THE 't SUBUNIT . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 182 Annu. Rev. Biochem. 1995.64:171-200. Downloaded from www.annualreviews.org AS YMMETRIC STRUC TURE OF HOLO EN ZYM E . 182 DNA PO LYM ER AS E III HOLO ENZ YME AS A REPLIC ATING MACHINE ....... 186 Exclwnge of � from yComplex to Core .................................... 186 Cycling of Holoenzyme on the LaggingStrand -
Gene Disruption of a G4-DNA-Dependent Nuclease In
Proc. Natl. Acad. Sci. USA Vol. 92, pp. 6002-6006, June 1995 Genetics Gene disruption of a G4-DNA-dependent nuclease in yeast leads to cellular senescence and telomere shortening (guanine-quartet/KEMI/SEPI/checkpoint/meiosis) ZHIPING Liu, ARNOLD LEE, AND WALTER GILBERT Department of Molecular and Cellular Biology, The Biological Laboratories, 16 Divinity Avenue, Harvard University, Cambridge, MA 02138-2092 Contributed by Walter Gilbert, April 3, 1995 ABSTRACT The yeast gene KEMI (also named (11). A highly conserved feature is that one of the strands is SEPI/DST2/XRNI/RAR5) produces a G4-DNA-dependent very G-rich and always exists as a 3' overhang at the end of the nuclease that binds to G4 tetraplex DNA structure and cuts in chromosome. Telomeres carry out two essential functions. a single-stranded region 5' to the G4 structure. G4-DNA They protect, or stabilize, the ends of linear chromosomes, generated from yeast telomeric oligonucleotides competitively since artificially generated ends (by means of mechanical inhibits the cleavage reaction, suggesting that this enzyme sheering, x-ray irradiation, or enzymatic cleavage) are very may interact with yeast telomeres in vivo. Homozygous dele- unstable (12-14). Furthermore, they serve to circumvent the tions ofthe KEMI gene in yeast block meiosis at the pachytene incomplete DNA replication at the ends of linear chromo- stage, which is consistent with the hypothesis that G4 tetra- somes (15) by extending the G-rich strand through a de novo plex DNA may be involved in homologous chromosome pairing synthesis catalyzed by telomerase to counterbalance the se- during meiosis. We conjectured that the mitotic defects of quence loss at an end in lagging-strand replication (16, 17). -
Purification and Propertiesof a DNA-Binding Protein With
Proc. Natl. Acad. Sci. USA Vol. 73, No. 7, pp. 2249-2253, July 1976 Biochemistry Purification and properties of a DNA-binding protein with characteristics expected for the Cro protein of bacteriophage X, a repressor essential for lytic growth (bacteriophage X cro gene/promoter-operator DNA) ATIS FOLKMANIS, YOSHINORI TAKEDA, JOSEF SIMUTH, GARY GUSSIN*, AND HARRISON ECHOLS Department of Molecular Biology, University of California, Berkeley, Calif. 94720, and * Department of Zoology, University of Iowa, Iowa City, Iowa 52242 Communicated by A. D. Kaiser, April 14, 1976 ABSTRACT The Cro protein specified by bacteriophage X viously (8), X DNA was labeled with P2p by growth of phage in is a repressor essential for normal lytic growth of the virus, thus low phosphate medium containing 5 ,Ci/ml of UP-labeled having a physiological role distinct from that of cI, the repressor that maintains lyso We have purified a X-specific DNA- inorganic phosphate. Phage were purified by precipitation with binding protein witheny.the requirements for synthesis and bio- polyethylene glycol and centrifugation to equilibrium in a CsCI chemical activities expected for Cro protein from studies in vivo. density gradient (2-3 times). DNA was extracted with redis- As isolated, the protein appears to be a dimer of molecular tilled phenol, the phenol was removed by extraction with ether, weight approximately 18,000 with DNA-binding properties that and the DNA was dialyzed into and stored in 10mM Tris-HCl, are very similar, but not identical, to those of the cI protein. We 0.2 mM EDTA, at pH 7.3. infer that bacteriophage X uses the same regulatory region of DNA for two different DNA-binding repressor proteins with DNA-Binding Assay. -
Distinct Co-Evolution Patterns of Genes Associated to DNA Polymerase III Dnae and Polc Stefan Engelen1,2, David Vallenet2, Claudine Médigue2 and Antoine Danchin1,3*
Engelen et al. BMC Genomics 2012, 13:69 http://www.biomedcentral.com/1471-2164/13/69 RESEARCHARTICLE Open Access Distinct co-evolution patterns of genes associated to DNA polymerase III DnaE and PolC Stefan Engelen1,2, David Vallenet2, Claudine Médigue2 and Antoine Danchin1,3* Abstract Background: Bacterial genomes displaying a strong bias between the leading and the lagging strand of DNA replication encode two DNA polymerases III, DnaE and PolC, rather than a single one. Replication is a highly unsymmetrical process, and the presence of two polymerases is therefore not unexpected. Using comparative genomics, we explored whether other processes have evolved in parallel with each polymerase. Results: Extending previous in silico heuristics for the analysis of gene co-evolution, we analyzed the function of genes clustering with dnaE and polC. Clusters were highly informative. DnaE co-evolves with the ribosome, the transcription machinery, the core of intermediary metabolism enzymes. It is also connected to the energy-saving enzyme necessary for RNA degradation, polynucleotide phosphorylase. Most of the proteins of this co-evolving set belong to the persistent set in bacterial proteomes, that is fairly ubiquitously distributed. In contrast, PolC co- evolves with RNA degradation enzymes that are present only in the A+T-rich Firmicutes clade, suggesting at least two origins for the degradosome. Conclusion: DNA replication involves two machineries, DnaE and PolC. DnaE co-evolves with the core functions of bacterial life. In contrast PolC co-evolves with a set of RNA degradation enzymes that does not derive from the degradosome identified in gamma-Proteobacteria. This suggests that at least two independent RNA degradation pathways existed in the progenote community at the end of the RNA genome world. -
Pamela L. Mellon, Ph.D
Pamela L. Mellon, Ph.D. Vice-Chair for Research, Department of Reproductive Medicine Distinguished Professor, Departments of Reproductive Medicine and Neurosciences Director, Center for Reproductive Science and Medicine University of California, San Diego, School of Medicine 3A14 Leichtag Biomedical Research Building 9500 Gilman Drive, La Jolla, CA 92093-0674 (858) 534-1312, Fax (858) 534-1438, e-mail: [email protected] Departmental Web page: http://repromed.ucsd.edu/divisions/endocrinology/mellon.shtml Laboratory Web Page: http://repro.ucsd.edu/Mellon/SitePages/home.aspx ORCID 0000-0002-8856-0410 EDUCATION B.A., 1975, University of California at Santa Cruz Degrees in both Biology and Chemistry with Highest Honors Ph.D., 1979, University of California at Berkeley Department of Molecular Biology Dissertation: Two Transforming Genes and Three Replicative Genes of Avian RNA Tumor Viruses: Identification, Gene Order, and Gene Expression APPOINTMENTS Research Associate, 1975, University of California at Berkeley Department of Molecular Biology with Dr. Harrison Echols Postdoctoral Fellow with Dr. Tom Maniatis 1979-1980, California Institute of Technology, Division of Biology 1980-1984, Harvard University, Department of Biochemistry and Molecular Biology Assistant Professor 1984-1990, The Salk Institute for Biological Studies, Regulatory Biology Laboratory Assistant Adjunct Professor 1988-1991, University of California, San Diego Associate Professor 1990-1991, The Salk Institute for Biological Studies, Regulatory Biology Laboratory Associate -
Conversion of OX174 and Fd Single-Stranded DNA to Replicative Forms in Extracts of Escherichia Coli (Dnac, Dnad, and Dnag Gene Products/DNA Polymerase III) REED B
Proc. Nat. Acad. Sci. USA Vol. 69, No. 11, pp. 3233-3237, November 1972 Conversion of OX174 and fd Single-Stranded DNA to Replicative Forms in Extracts of Escherichia coli (dnaC, dnaD, and dnaG gene products/DNA polymerase III) REED B. WICKNER, MICHEL WRIGHT, SUE WICKNER, AND JERARD HURWITZ Department of Developmental Biology and Cancer, Division of Biological Sciences, Albert Einstein College of Medicine, Bronx, New York 10461 Communicated by Harry Eagle, August 28, 1972 ABSTRACT 4X174 and M13 (fd) single-stranded cir- MATERIALS AND METHODS cular DNAs are converted to their replicative forms by ex- tracts of E. coli pol Al cells. We find that the qX174 DNA- [a-32P]dTTP was obtained from New England Nuclear Corp. dependent reaction requires Mg++, ATP, and all four de- OX174 DNA was prepared by the method of Sinsheimer (7) oxynucleoside triphosphates, but not CTP, UTP, or GTP. or Franke and Ray (8), while fd viral DNA was prepared as This reaction also involves the products of the dnaC, dnaD, dnaE (DNA polymerase III), and dnaG genes, described (9). Pancreatic RNase was the highest grade ob- but not that of dnaF (ribonucleotide reductase). The in tainable from Worthington Biochemical Corp. It was further vitro conversion of fd single-stranded DNA to the replica- freed of possible contaminating DNase by heating a solution tive form requires all four ribonucleoside triphosphates, (2 mg/ml in 15 mM sodium citrate, pH 5) at 800 for 10 min. Mg++, and all four deoxynucleoside triphosphates. The E. protein was purified from E. coli strain reaction involves the product of gene dnaE but not those coli unwinding of genes dnaC, dnaD, dnaF, or dnaG. -
Journal of Virology
JOURNAL OF VIROLOGY VOLUME 37 0 NUMBER 1 0 JANUARY 1981 EDITORIAL BOARD Robert R. Wagner, Editor-in-Chief (1982) University of Virginia School of Medicine, Charlottesville Dwight L. Anderson, Editor (1983) Haold S. Ginsberg, Editor (1984) School ofDentistry, Columbia University University of Minnesota, New York, N. Y. Minneapolis David T. Denhardt, Editor (1982) Edward M. Scolnick, Editor (1982) University of Western Ontario National Cancer Institute London, Ontario, Canada Bethesda, Md. David Baltimore (1981) Calderon Howe (1982) Dan S. Ray (1983) Amiya K. Banerjee (1982) Alice S. Huang (1981) M. E. Reichmann (1982) Kenneth I. Berns (1982) Tony Hunter (1983) Bernard E. Reilly (1983) David H. L. Bishop (1982) D. C. Kelly (1982) Wiliam S. Robinson (1983) David Botstein (1982) Thomas J. Kelly, Jr. (1982) Bernard Roizman (1982) Dennis T. Brown (1981) George Khoury (1981) Roland R. Rueckert (1982) Ahmad 1. Bukhari (1981) Jonathan A. King (1981) Norman P. Salzman (1981) Purnell Cboppin (1983) David W. Kingsbury (1982) Joseph Sambrook (1982) John M. Coffin (1983) Daniel Kolakofsky (1983) PrisciUa A. Schaffer (1981) Richard W. Compans (1982) Lloyd M. Kozboff (1982) Sondra Schlesinger (1983) Geoffrey M. Cooper (1981) Robert M. Krug (1983) June R. Scott (1983) Clive Dickson (1981) Robert A. Lazzarini 1981) Phillip A. Sharp (1982) Walter Doerfler (1983) Richard A. Lerner (1981) Aaron J. Shatkin (1982) Harrison Echols (1981) Myron Levine (1982) Saul J. Sllverstein (1982) Elvera Ehrenfeld (1983) Tomas Lindahl (1981) Lee D. Simon (1981) Robert N. Eisenman (1982) Douglas R. Lowy (1983) Kai Simons (1981) Suzanne U. Emerson (1983) Ronald B. Luftig (1981) Patrcia G. Spear (1981) Lynn Enquist (1981) Robert Martin (1981) Mark F. -
Duplication Mutation As an SOS Response in Escherichia Coli
Copyright 0 1989 by the Genetics Society of America Duplication Mutation as anSOS Response in Escherichia coli: Enhanced Duplication Formationby a Constitutively Activated RecA Joan Dimpfl and Harrison Echols Department of Molecular Biology, University of CaE$ornia, Berkeley, California 94720 Manuscript received March 10, 1989 Accepted for publication July 6, 1989 ABSTRACT The SOS response in Escherichia coli involves the induction of a multioperon regulatory system, which copes withthe presence of DNA lesions that interfere with DNA replication. Induction depends on activation of the RecA protein to cleave the LexA repressor of SOS operons. In addition to inducible DNA repair, the SOS system producesa large increasein the frequency of point mutations. To examine the possibility that other types of mutations are induced as partof the SOS response, we have studied the production of tandem duplications.To avoid the complications of indirect effectsof the DNA lesions, we have activated the SOS response by a constitutive mutation in the recA gene, recA730. The introduction of the recA730 mutation results in an increase in duplications in the range of tenfold or greater, as judged by two different criteria. Based on its genetic requirements, the pathway for induced duplication formation is distinct from the point mutation pathway and also differs from the major normal recombination pathway.The induction of pathways for both duplica- tions and point mutationsshows that the SOS system produces a broad mutagenic response.We have suggested previously that many typesof mutations might be inducedby severe environmental stress, thereby enhancing genetic variationin an endangered population. HE introduction of a replication-inhibitinglesion deletions, translocations) (ECHOLS198 1 ; 1982; Mc- T (by UV light or a chemical mutagen) into the DONALD1984). -
Activity of the Hsp7o Chaperone Complex-Dnak, Dnaj, And
Proc. Natl. Acad. Sci. USA Vol. 89, pp. 12108-12111, December 1992 Biochemistry Activity of the Hsp7O chaperone complex-DnaK, DnaJ, and GrpE- in initiating phage A DNA replication by sequestering and releasing A P protein (heat shock proteins/DNA replication/protein-protein interaction) HEIDI J. HOFFMANN, SUSAN K. LYMAN, CHI Lu, MARIE-AGNES PETIT, AND HARRISON ECHOLS Division of Biochemistry and Molecular Biology, University of California, Berkeley, CA 94720 Contributed by Harrison Echols, September 24, 1992 ABSTRACT Initiation of DNA replication by phage A occurs efficiently with less DnaK, and the unwinding reaction requires the ordered assembly and disassembly ofa specialized is more often bidirectional, indicating a more efficient disas- nucleoprotein structure at the origin of replication. In the sembly reaction (C. Wyman, C. Vasilikiotis, D. Ang, C. disasembly pathway, a set of Escherichia coli heat shock Georgopoulos, and H.E., unpublished work). Based on a proteins termed the Hsp7O complex-DnaK, DnaJ, and variety of data, the three-protein set of heat shock proteins GrpE-act with ATP to release A P protein from the nucleo- appears likely to function typically together. DnaJ and GrpE protein complex, freeing the DnaB helicase for its DNA- markedly stimulate the ATPase activity of DnaK, the bac- unwinding reaction. To investigate the mechanism of the terial homolog ofthe eukaryotic -70-kDa heat shock protein release reaction, we have exmned the interaction between P Hsp7O (14). Moreover, the three-protein set ("Hsp7O com- and the three heat shock proteins by glycerol gradient sedi- plex") acts together in other reactions, including control of mentation and gel electrophoresis. -
Analysis of DNA Polymerases II and III in Mutants of Escherichia Coli Thermosensitive for DNA Synthesis (Polal Mutants/Phosphocellulose Chromatography/Dnae Locus)
Proc. Nat. Acad. Sci. USA Vol. 68, No. 12, pp. 3150-3153, December 1971 Analysis of DNA Polymerases II and III in Mutants of Escherichia coli Thermosensitive for DNA Synthesis (polAl mutants/phosphocellulose chromatography/dnaE locus) MALCOLM L. GEFTER, YUKINORI HIROTA*, THOMAS KORNBERG, JAMES A. WECHSLER, AND C. BARNOUX* Department of Biological Sciences, Columbia University, New York, N.Y. 10027; and * Service de G6n6tique Cellulaire de l'Institut Pasteur, Paris Communicated by Cyrus Levinthal, October 18, 1971 ABSTRACT A series of double mutants carrying one of (5) PC79: F- his- strr malA xyl- mtlh thi- polAl sup- the thermosensitive mutations for DNA synthesis (dnaA, dnaD7 B, C, D, E, F, and G) and the polAl mutation of DeLucia and Cairns, were constructed. Enzyme activities of DNA (6) E5111: F- his- strr malA xylh mtlh arg- thi- sup- Polymerases II and III were measured in each mutant. polAl dnaE511 DNA Polymerase II activity was normal in all strains (7) E4860: F- his- str' malA xylh mtlh arg- thi- sup- tested. DNA Polymerase III activity is thermosensitive dnaE486 specifically in those strains having thermosensitive muta- tions at the dnaE locus. From these results we conclude (8) E4868: F- his- strr malA xyl- mtlh arg thi- sup- that DNA Polymerases II and III are independent en- polAl dnaE486 zymes and that DNA Polymerase III is an enzyme required (9) BT1026: H560thy-endoI- polAl dnaE for DNA replication in Escherichia coli. (10) BT1040: H560 thy endoI polAl dnaE (11) E1011: F- his- strr malA xyl- mtl- arg- thi- sup- The isolation by DeLucia and Cairns (1) of an Escherichia polAl dnaFI01 coli mutant that lacks DNA Polymerase I activity (polA1) (12) JW207: thy-rha-strrpolAl dnaF101 has prompted many investigations into the nature of the (13) NY73: leu- thy- metE rifr strr polAl dnaG3 DNA synthetic capacity of such strains. -
Activity of the Purified Mutagenesis Proteins Umuc, Umud', and Reca
Proc. Natl. Acad. Sci. USA Vol. 89, pp. 10777-10781, November 1992 Biochemistry Activity of the purified mutagenesis proteins UmuC, UmuD', and RecA in replicative bypass of an abasic DNA lesion by DNA polymerase III (SOS respon/fdelity of DNA repfcatlon/umutatlo) MALINI RAJAGOPALANt, CHI Lut, ROGER WOODGATEtt, MIKE O'DONNELL§, MYRON F. GOODMAN$, AND HARRISON ECHOLSt tDivision of Biochemistry and Molecular Biology, University of California, Berkeley, CA 94720; 1Department of Microbiology, Cornell University Medical College, New York, NY 10021; and IDepartment of Biological Science, University of Southern California, Los Angeles, CA 90089 Contributed by Harrison Echols, August 17, 1992 ABSTRACT The introduction of a replication-inhibiting SOS mutagenesis (C. Bonner, S. Creighton and M.F.G., lesion Into the DNA ofEscherichia colU generates the Induced, unpublished work). multigene SOS response. One component of the SOS response Together, the studies noted above give clear indications is a marked increase in mutation rate, de t on RecA that SOS mutagenesis is a consequence ofreplicative bypass protein and the induced muta p us UmuC and of DNA lesions mediated by a damage-localized nucleopro- UmuD. A variety of previous indirect ap es have Indi- tein complex involving RecA, UmuC-UmuD', and pol III-a cated that SOS mutagenesi results from replicative bypass of "mutasome" (14, 17). However, direct evidence for such a the DNA lesion by DNA polymerase (pol ) me in pathway has been lacking in the absence of a defined bio- a reaction mediated by RecA, UmuC, and a prcsd form of chemical system. In the work reported here, we have used UmuD termed UmuD'.