Hyper Transport TECHNOLOGY.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
RS-485: Still the Most Robust Communication Table of Contents
TUTORIAL RS-485: Still the Most Robust Communication Table of Contents Abstract...........................................................................................................................1 RS-485 vs. RS-422..............................................................................................................................2 An In-Depth Look at RS-485...........................................................................................................3 Challenges of the Industrial Environment.....................................................................................5 Protecting Systems from Harsh Environments.........................................................................5 Conclusion......................................................................................................................10 References......................................................................................................................10 Abstract Despite the rise in popularity of wireless networks, wired serial networks continue to provide the most robust, reliable communication, especially in harsh environments. These well-engineered networks provide effective communication in industrial and building automation applications, which require immunity from noise, electrostatic discharge and voltage faults, all resulting in increased uptime. This tutorial reviews the RS-485 protocol and discusses why it is widely used in industrial applications and the common problems it solves. www.maximintegrated.com -
Tms320dm643x DMP Peripherals Overview Reference Guide (Rev. A
TMS320DM643x DMP Peripherals Overview Reference Guide Literature Number: SPRU983A June 2007 2 SPRU983A–June 2007 Submit Documentation Feedback Contents Preface ............................................................................................................................... 4 1 Overview.................................................................................................................... 5 2 Asynchronous External Memory Interface (EMIF)............................................................ 6 3 DDR2 Memory Controller ............................................................................................. 6 4 DSP Megamodule Internal Direct Memory Access (IDMA) Controller ................................. 7 5 DSP Megamodule Interrupt Controller (INTC) ................................................................. 7 6 DSP Megamodule Power-Down Controller (PDC) ............................................................ 8 7 Enhanced Direct Memory Access (EDMA) Controller....................................................... 8 8 Ethernet Media Access Controller (EMAC)/Management Data Input/Output (MDIO) Module....................................................................................................................... 8 9 General-Purpose Input/Output (GPIO)............................................................................ 8 10 High-End CAN Controller (HECC).................................................................................. 9 11 Host Port Interface (HPI) ............................................................................................. -
HD3SS214 8.1Gbps Displayport 1.4 2:1/1:2
Product Order Technical Tools & Support & Folder Now Documents Software Community HD3SS214 SLAS907B –DECEMBER 2015–REVISED JUNE 2017 HD3SS214 8.1 Gbps DisplayPort 1.4 2:1/1:2 Differential Switch 1 Features 3 Description HD3SS214 is a high-speed passive switch capable of 1• Compatible with DisplayPort 1.4 Electrical Standard switching two full DisplayPort 4 lane ports from one of two sources to one target location in an application. It • 2:1 and 1:2 Switching Supporting Data Rates up will also switch one source to one of two sinks. For to 8.1 Gbps DisplayPort Applications, the HD3SS214 supports • Supports HPD, AUX and DDC Switching switching of the Auxiliary (AUX), Display Data • Wide Differential BW of 8 GHz Channel (DDC) and Hot Plug Detect (HPD) signals in the ZQE package. • Excellent Dynamic Electrical Characteristics • V Operating Range 3.3 V ±10% One typical application would be a mother board that DD includes two GPUs that need to drive one DisplayPort • Extended Industrial Temperature Range of sink. The GPU is selected by the Dx_SEL pin. -40°C to 105°C Another application is when one source needs to • 5 mm x 5 mm, 50-Ball ųBGA Package switch between one of two sinks, example would be a • Output Enable (OE) Pin Disables Switch to Save side connector and a docking station connector. The Power switching is controlled using the Dx_SEL and AUX_SEL pins. The HD3SS214 operates from a • Power Consumption single supply voltage of 3.3 V over extended – Active < 2 mW Typical industrial temperature range -40°C to 105°C. -
Displayport to TMDS Level Shifting Re-Driver Check for Samples: SN75DP139
SN75DP139 www.ti.com SLLS977D –APRIL 2009–REVISED JULY 2013 DisplayPort to TMDS Level Shifting Re-driver Check for Samples: SN75DP139 1FEATURES • DisplayPort Physical Layer Input Port to TMDS • Enhanced ESD: 10kV on All Pins Physical Layer Output Port • Enhanced Commercial Temperature Range: • Integrated TMDS Level Shifting Re-driver With 0°C to 85°C Receiver Equalization • 48 Pin 7 × 7 QFN (RGZ) Package • Supports Data Rates up to 3.4Gbps • 40 Pin 5 x 5 QFN (RSB) Package • Achieves HDMI 1.4b Compliance • 3D HDMI Support With TMDS Clock Rates up APPLICATIONS to 340MHz • Personal Computer Market • 4k x 2k Operation (30Hz, 24bpp) – DP/TMDS Dongle • Deep Color Supporting 36bpp – Desktop PC • Integrated I2C Logic Block for DVI/HDMI – Notebook PC Connector Recognition – Docking Station 2 • Integrated Active I C Buffer – Standalone Video Card DESCRIPTION The SN75DP139 is a Dual-Mode DisplayPort input to Transition-Minimized Differential Signaling (TMDS) output. The TMDS output has a built in level shifting re-driver supporting Digital Video Interface (DVI) 1.0 and High Definition Multimedia Interface (HDMI) 1.4b standards. The SN75DP139 is specified up to a maximum data rate of 3.4Gbps, supporting resolutions greater then 1920x1200 or HDTV 12 bit color depth at 1080p (progressive scan). SN75DP139 is compliant with the HDMI 1.4b specifications and supports optional protocol enhancements such as 3D graphics at resolutions demanding a pixel rate up to 340MHz. An integrated Active I2C buffer isolates the capacitive loading of the source system from that of the sink and interconnecting cable. This isolation improves overall signal integrity of the system and allows for considerable design margin within the source system for DVI / HDMI compliance testing. -
LVDS Application and Data Handbook
LVDS Application and Data Handbook High-Performance Linear Products Technical Staff Literature Number: SLLD009 November 2002 Printed on Recycled Paper IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third–party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. -
Front Panel I/O Connectivity Design Guide
Front Panel I/O Connectivity Design Guide Revision 1.1 July 2018 Document Number: 600569 Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein. No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document. Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system configuration. No computer system can be absolutely secure. Check with your system manufacturer or retailer or learn more at intel.com. Intel technologies may require enabled hardware, specific software, or services activation. Check with your system manufacturer or retailer. The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade. All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product specifications and roadmaps. Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548- 4725 or visit www.intel.com/design/literature.htm. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. -
Serial ATA Interface
Serial ATA Interface Frank R. Chu Senior Engineer Hitachi Global Storage Technologies June 2003 Why do we need a new interface? Limitations of parallel ATA Serial ATA was designed to overcome a number of limitations of parallel ATA. The most significant limitation of parallel ATA is the difficulty in increasing the data rate beyond 100MB/s. Parallel ATA uses a single-ended signaling system that is prone to induced noise. Increasing the parallel data rate beyond 100 MB/s would require a new signaling system that would not be backward compatible with existing systems. Desktop HDDs can be expected to outrun the 100 Mbytes/sec data rate in the next few years so a new system is needed. An additional limitation is that parallel ATA uses 5V signaling levels and upcoming silicon microelectronic processes are not compatible with 5V signaling. Serial ATA overcomes these issues by moving to 250mV differential signaling method. Differential signaling rejects induced noise. The 250mV differential signal level is compatible with future microelectronic fabrication processes. Parallel ATA Topology Serial ATA Topology Parallel ATA Topology Serial ATA Topology Operating system Operating System Serial ATA ATA Application 1 Application 1 Standard Adapter adapter Disk Driver Application 2 Driver Application 2 Drive Disk Application 3 Disk Disk Application 3 Drive drive drive Forecasts Indicate ATA Dominance ATA is the dominant HDD interface in the industry. The ATA interface market is expected to be approximately 190 million units in 2003, accounting for about 90% of all HDDs shipped, according to International Data Corporations (IDC) 2002/03 forecasts. By 2006, IDC projects ATA unit shipments will increase to beyond 310 million and continue to account for 90% of all HDDs shipments. -
Getting Started with Microchip's Low Pin Count USB Solutions
Slide 1 Getting Started with Microchip's Low Pin Count USB solutions Welcome to “Getting Started with Microchip’s Low Pin Count USB Solutions”. This self-directed course is intended to provide the user with a quick overview of the USB, introduce the new Low Pin Count USB Development kit, and Microchip’s Full-Speed USB Firmware Framework to ease the development of your own USB applications quickly. Slide 2 Class Prerequisites O Attendees should have a the following: - A general knowledge of the Universal Serial Bus (USB) - A working knowledge of the C programming language - Familiarity with Microchip’s High Performance PIC18 Microcontrollers Getting Started with Microchip’s Low Pin Count USB Solutions Slide 2 In order to fully benefit from this self-directed course the user should have a very basic knowledge of the USB, have programmed in C, and be familiar with Microchip’s High Performance PIC18 Microcontrollers. Once completed, the user should complete the Project Labs listed in the Low Pin-Count USB Development kit user’s guide. Slide 3 Agenda O High-level overview of the USB and how it relates to the PIC18F1XK50 Device - Physical and Logical Topologies - “Plug and Play” - Communication O Overview of Microchip’s Low Pin Count USB Solutions - Low Pin-Count USB Development Kit - Microchip’s Full Speed USB Firmware Framework Getting Started with Microchip’s Low Pin Count USB Solutions Slide 3 This class will begin with an overview, albeit moderately high-level, of the USB. This is a complex protocol. Therefore, you should not feel discouraged if you don’t understand everything the first time through this class. -
Memory Technology and Trends for High Performance Computing Contract #: MDA904-02-C-0441
Memory Technology and Trends for High Performance Computing Contract #: MDA904-02-C-0441 Contract Institution: Georgia Institute of Technology Project Director: D. Scott Wills Project Report 12 September 2002 — 11 September 2004 This project explored the impact of developing memory technologies on future supercomputers. This activity included both a literature study (see attached whitepaper), plus a more practical exploration of potential memory interfacing techniques using the sponsor recommended HyperTransport interface. The report indicates trends that will affect interconnection network design in future supercomputers. Related publications during the contract period include: 1. P. G. Sassone and D. S. Wills, On the Scaling of the Atlas Chip-Scale Multiprocessor, to appear in IEEE Transaction on Computers. 2. P. G. Sassone and D. S. Wills, Dynamic Strands: Collapsing Speculative Dependence Chains for Reducing Pipeline Communication, to appear in IEEE/ACM International Symposium on Microarchitecture, Portland, OR, December 2004. 3. B. A. Small, A. Shacham, K. Bergman, K. Athikulwongse, C. Hawkins, and D. S. Wills, Emulation of Realistic Network Traffic Patterns on an Eight-Node Data Vortex Interconnection Network Subsystem, to appear in OSA Journal of Optical Networking. 4. P. G. Sassone and D. S. Wills, On the Extraction and Analysis of Prevalent Dataflow Patterns, to appear in The IEEE 7th Annual Workshop on Workload Characterization (WWC-7), 8 pages, Austin, TX, October 2004. 5. H. Kim, D. S. Wills, and L. M. Wills, Empirical Analysis of Operand Usage and Transport in Multimedia Applications, in Proceedings of the 4th IEEE International Workshop on System-on-Chip for Real-Time Applications(IWSOC'04), pages 168-171, Banff, Alberta, Canada, July 2004. -
Data Communication Technologies & Architectures for Distributed Sdr Transceiver Systems
DATA COMMUNICATION TECHNOLOGIES & ARCHITECTURES FOR DISTRIBUTED SDR TRANSCEIVER SYSTEMS Frank Van Hooft (Spectrum Signal Processing, Burnaby, BC, Canada; [email protected]) 1. INTRODUCTION some number of modem / codec / baseband processing instances. Assume greater than one for all of these. In The increasing visibility of SDR as a viable addition there is a control plane to manage the system. communications technology is driving equipment This architecture is illustrated in Figure 1. consumers to demand ever-greater performance. Today On the receive side, this subsystem receives either even the highest bandwidth & datarate waveforms are digitized IF or baseband signals, extracts multiple user candidates for SDR implementations. Coupled with a channels from these signals in the channelizer, then desire for the maximum possible number of simultaneous channels, the high-end SDR implementations can absorb forwards these channels to channel processing for all of the processing power that can physically be applied demodulation and decoding. This process is reversed on to them. the transmit side, with payload data being encoded and In concert with high processing power comes a high modulated in the channel processor and then inserted into data throughput requirement. Wide RF bandwidths and the output signal by the channelizer for transmission. In a multi-channel implementations generate massive amounts distributed transceiver architecture, the channelization and of data that must be routed in real-time between various channel processing functions are distributed across elements of the SDR system. Without reliable data paths multiple signal processing elements, with a single the SDR system could not function. Yet the datarates channelizer often supporting multiple channel processors. -
COM Express Type 6
COM Express Type 6 MSC C6B-8SB Description Intel® Core™ - 5th Generation The MSC C6B-8SB module is based on Intel's 5th generation of Core™ processors manufactured in 14 nm technology. It supports triple independent displays, DirectX 11.1, fast low-power DDR3L-1600 memory and USB 3.0 on a COM Express module. This product family brings a significant gain in computing and graphics performance compared to its predecessor. The new design supplements the 4th generation platform at the high end with four quad-core i7 and Xeon processors. Besides an extensive set of interfaces and features, the MSC C6B-8SB offers turbo boost capabilities for CPU and graphics controller, accelerated video encoding / decoding and hardware based security compliant to the requirements of TCG (Trusted Computing Group). The Type 6 pin-out allows direct access to the latest 125 x 95 digital display interfaces like DisplayPort, HDMI and DVI. Four USB 3.0 interfaces support the fastest peripheral 55W devices currently available. 0 +60 Highlights . Intel® Core™ i7-5850EQ (quad-core, 2.7/ . DirectX 11.1, OpenGL 3.2, OpenCL 1.2 3.4GHz), . Resolution up to 3800 x 2400 . Intel® Core™ i7-5700EQ (quad-core, 2.6/ . Seven PCI Express™ x1 lanes 3.4GHz), . Four USB 3.0 and four USB 2.0 interfaces . Intel® Xeon® E3-1278LV4 (quad-core, 2.0/ . UEFI Firmware 3.3GHz), . Intel® Xeon® E3-1258LV4 (quad-core, 1.8/ 3.2GHz) . Intel® HD Graphics GT2 or GT3e . Intel® 8-Series chipset . Up to 16GB DDR3L-1600 SDRAM, dual channel . Four SATA mass storage interfaces (up to 6Gb/s) . -
FUSB1500 — USB2.0 Full-Speed / Low-Speed Transceiver with Charger Detection
FUSB1500 / FUSB1501 — USB2.0 Full-Speed April 2011 FUSB1500 — USB2.0 Full-Speed / Low-Speed Transceiver with Charger Detection Features Description . Complies with USB2.0 Specification The FUSB1500 is a USB2.0 FS/LS transceiver with resistive charger detection. It is compliant with the . Supports 12Mbps and 1.5Mbps USB2.0 Speeds Universal Serial Bus Specification, Rev. 2.0 (USB2.0). - Single Ended (SE) Mode Signaling Ideal for portable electronic devices; such as mobile - Slew-Rate Controlled Differential Data Driver phones, digital still cameras, and personal digital - Differential Input Receiver with Wide Common- assistants; it allows USB Application Specific ICs Mode Range and High Input Sensitivity (ASICs) and Programmable Logic Devices (PLDs) with Low-Speed Transceiver with Charger Detection - Stable RCV Output during SE0 Condition power supply voltages from 1.65V to 3.6V to interface with the physical layer of the Universal Serial Bus. - Two Single-Ended Receivers with Hysteresis The FUSB1500 can be used as a USB device Supports I/O Voltage: 1.65V to 3.6V . transceiver or a USB host transceiver. It can transmit and receive serial data at both full-speed (12Mbps) and Applications low-speed (1.5Mbps) data rates. The FUSB1500 supports the SE Mode controller . Dual-Camera Applications for Cell Phones interface. Dual-LCD Applications for Cell Phones, Digital Camera Displays, and Viewfinders IMPORTANT NOTE: For additional performance information, please contact [email protected]. Ordering Information Operating Top Packing Part Number Temperature Package Mark Method Range FUSB 16-Pin, Molded Leadless Package (MLP), FUSB1500MHX -40 to +85°C Tape and Reel 1500 JEDEC MO217 Equivalent, 3mm Square © 2008 Fairchild Semiconductor Corporation www.fairchildsemi.com FUSB1500 • Rev.