Correlation of Stress Intensity Range with Deviation of the Crack
Total Page:16
File Type:pdf, Size:1020Kb
CORRELATION OF STRESS INTENSITY RANGE WITH DEVIATION OF THE CRACK FRONT FROM THE PRIMARY CRACK PLANE IN BOTH HAND AND DIE FORGED ALUMINUM 7085-T7452 Thesis Submitted to The School of Engineering of the UNIVERSITY OF DAYTON In Partial Fulfillment of the Requirements for The Degree of Master of Science in Mechanical Engineering By Jared Adam Neely Dayton, Ohio May 2019 CORRELATION OF STRESS INTENSITY RANGE WITH DEVIATION OF THE CRACK FRONT FROM THE PRIMARY CRACK PLANE IN BOTH HAND AND DIE FORGED ALUMINUM 7085-T7452 Name: Neely, Jared Adam APPROVED BY: ________________________________ _______________________________ David H. Myszka, Ph.D. James J. Joo, Ph.D. Advisory Committee Chairman Committee Member Professor Graduate Faculty School of Engineering School of Engineering ________________________________ _______________________________ Thomas J. Spradlin, Ph.D. Mark A. James, Ph.D. Committee Member Committee Member Aerospace Structures Engineer Technical Specialist Air Force Research Laboratory Arconic Technology Center ________________________________ _______________________________ Robert J. Wilkens Ph.D., P.E. Eddy M. Rojas, Ph.D., M.A., P.E. Associate Dean for Research and Innovation Dean, School of Engineering Professor School of Engineering ii © Copyright by Jared Adam Neely All Rights Reserved 2019 iii ABSTRACT CORRELATION OF STRESS INTENSITY RANGE WITH DEVIATION OF THE CRACK FRONT FROM THE PRIMARY CRACK PLANE IN BOTH HAND AND DIE FORGED ALUMINUM 7085-T7452 Name: Neely, Jared Adam University of Dayton Advisor: Dr. David H. Myzka Experimental study accomplished the characterization of fatigue crack growth rates and mechanisms in both hand and die forged Aluminum 7085-T7452. Testing was conducted at various positive and negative loading ratios, primarily focused on L-S and T-S orientations to discover a correlation between crack tip branching or turning mechanisms and stress intensity. Interior delaminations were found to originate in the interior of the specimen and propagate outward to the surface and manifested as splitting cracks parallel to the loading direction. Stress intensity ranges have been correlated with the onset of crack deviation from the primary crack plane, as well as, the transition to branching dominated fatigue crack growth. iv Dedicated to my mother, Rhonda J. Schilling v ACKNOWLEDGEMENTS I would first like to thank my sponsor, Dr. Thomas Spradlin, from the Aerospace Systems Directorate of the Air Force Research Laboratory. Dr. Spradlin made himself available on countless occasions to offer his expertise, guidance, patience, and finely-honed repartee. I would also like to thank Dr. Mark James of the Aerospace and Defense Arconic Technology Center, who on numerous occasions, offered his knowledge and experience pertaining to the crack branching behavior in Aluminum alloys. I would like to thank my Advisor, Dr. David Myszka, for his guidance and assistance in drafting and formalizing this Thesis document. I would additionally like to thank Dr. Steve Thompson and Nick Jacobs of the Materials Test and Evaluation Team for the Air Force Research Laboratory, who provided testing equipment, ACORN crack growth testing software, and technical support. I would also like to thank Brian Smyers and his team from the Air Force Research Laboratory’s Structural Validation Branch, for providing testing space, load frames, specimen fabrication, and technical support throughout the testing process. Finally, I would like to thank my wonderful wife and my best friend, Jamie Neely. The unconditional love, encouragement, patience and the continuous support of my goals and aspirations she has provided throughout this and all other endeavors. This accomplishment would not have been possible without the assistance and support of each of these individuals. Thank you. Jared A. Neely vi TABLE OF CONTENTS ABSTRACT .................................................................................................................................... iv DEDICATION ................................................................................................................................. v ACKNOWLEDGEMENTS ............................................................................................................ vi LIST OF FIGURES ........................................................................................................................ ix LIST OF TABLES ........................................................................................................................ xiii LIST OF ABBREVIATIONS AND NOTATIONS ..................................................................... xiv CHAPTER I INTRODUCTION ............................................................................................... 1 1.1 Motivation ........................................................................................................................ 1 1.2 Prior Work ........................................................................................................................ 2 CHAPTER II BACKGROUND ................................................................................................. 5 2.1 Fatigue Crack Growth ...................................................................................................... 5 2.1.1 Linear Elastic Fracture Mechanics (LEFM) .......................................................... 6 2.1.2 Fatigue Crack Growth (FCG) Rate Testing ......................................................... 10 2.1.3 Compliance and Crack Closure ........................................................................... 12 2.2 Importance of Microstructure ......................................................................................... 16 CHAPTER III TESTING PROCEDURES ............................................................................... 23 3.1 Fatigue Specimens Details ............................................................................................. 23 3.1.1 M(T) Specimens .................................................................................................. 24 3.1.2 C(T) Specimens ................................................................................................... 25 3.1.3 Polishing Procedure ............................................................................................. 27 3.2 Testing Standards ........................................................................................................... 29 vii 3.2.1 Compliance Based Crack Calculation Method .................................................... 29 3.2.2 Validity Criteria ................................................................................................... 31 3.3 Test Setup ....................................................................................................................... 32 3.3.1 Load Frame and Control Systems ........................................................................ 32 3.3.2 Sensors, External Command and Data Acquisition ............................................. 32 3.3.3 ACORN Fatigue Crack Growth Software ........................................................... 34 3.3.4 Test Fixtures and Measuring Instruments ............................................................ 36 3.4 Testing Methods ............................................................................................................. 41 3.4.1 Precracking .......................................................................................................... 41 3.4.2 M(T) Testing and Data Collection ....................................................................... 41 3.4.3 C(T) Testing and Data Collection ........................................................................ 43 CHAPTER IV DATA REDUCTION ........................................................................................ 46 4.1 Calculation Methods ...................................................................................................... 46 4.2 Crack Length Correction Methods ................................................................................. 48 CHAPTER V RESULTS ......................................................................................................... 51 5.1 L-S and S-L Orientations ............................................................................................... 52 5.2 T-S and S-T Orientations ............................................................................................... 61 5.3 L-T Orientation .............................................................................................................. 69 CHAPTER VI DISCUSSION AND CONCLUSIONS ............................................................. 71 6.1 Discussion ...................................................................................................................... 71 6.2 Conclusions .................................................................................................................... 79 6.3 Future Work ................................................................................................................... 80 REFERENCES ................................................................................................................................. 82 APPENDIX A Testing Setup and Procedures ........................................................................... 84 APPENDIX B Specimen Photographs ...................................................................................... 86