A Study of Secrecy Codes and Their Real-World Performance Thesis Directed by Assistant Professor Willie K

Total Page:16

File Type:pdf, Size:1020Kb

A Study of Secrecy Codes and Their Real-World Performance Thesis Directed by Assistant Professor Willie K ASTUDY OF SECRECY CODES AND THEIR REAL-WORLD PERFORMANCE BY JAYADEV VASANTH NAIR A THESIS SUBMITTED TO THE GRADUATE FACULTY OF THE UNIVERSITY OF COLORADO COLORADO SPRINGS IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING 2017 ii THIS THESIS FOR THE MASTER OF SCIENCE DEGREE BY JAYADEV VASANTH NAIR HAS BEEN APPROVED FOR THE DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING BY WILLIE K. HARRISON,CHAIR MARK A. WICKERT M. SCOTT TRIMBOLI Date 05/04/2017 iii Vasanth Nair, Jayadev (M.S. Electrical Engineering) A Study of Secrecy Codes and Their Real-World Performance Thesis directed by Assistant Professor Willie K. Harrison ABSTRACT This paper presents established works in the physical-layer security and information theory domain, discussing concepts and definitions relevant to the experimental setup. We discuss the wiretap channel model, its relevance, and the secrecy coding methods employed. These methods are then utilized with specific code constructions like LDPC, and Reed-Muller codes, and their performance over binary erasure channels (BEC) and binary symmetric chan- nels (BSC), using error rate curves, are studied. This is then expanded to a Gaussian channel with the help of radios and the transmission performance is studied. With this information, we seek to arrive at a ranking of codes, to determine if there is a better code suited to secrecy applications. iv ACKNOWLEDGEMENTS I would like to express my sincere gratitude to my advisor Dr. Willie Har- rison, for his guidance, support, and enthusiasm. Dr. Harrison’s willingness to help out with every roadblock I’ve hit through this research, has been im- mense and it has gone a long way in helping me achieve my goals. I would also like to thank Sam Schmidt, for his endless and patient sup- port during my Master’s course, and for always being only a phone call away for help. Above all, I would like to thank my family: my better half Lekshmi Prathap, my parents Jayashree Narayanan and Vasanth Kumar Nair, my brother Jayanth Nair, for all that they have blessed me with. v TABLE OF CONTENTS CHAPTER IINTRODUCTION .............................. 1 II PHYSICAL LAYER SECURITY ...................... 4 Linear Block Codes . 4 Wiretap Channel . 8 Secrecy and Secrecy Coding Fundamentals . 11 III CODING STRATEGY ........................... 16 Syndrome Coding. 16 Linear Codes to be Used in Secrecy Designs . 20 Low-Density Parity Check Codes. 20 Reed-Muller Codes . 23 Other Codes . 26 Bit Error Rate (BER) Curves . 26 IV EXPERIMENTS AND RESULTS ..................... 28 System Description . 28 LDPC Construction. 29 Reed-Muller Code Construction . 30 Random and Worst Code Constructions . 30 Simulation Setup . 31 Radio Transmission Setup . 33 Results . 35 Simulation Results . 35 Radio Transmission Results . 38 VCONCLUSION AND FUTURE WORK . 40 Conclusion . 40 Future Work . 42 BIBLIOGRAPHY .............................. 43 vi LIST OF FIGURES FIGURE 2.1 A standard array table [21]. 8 2.2 The wiretap channel model. 9 2.3 The BSC wiretap channel model. 10 3.1 The BEC channel model. 17 3.2 Syndrome table [21] with M number of codewords per coset, and N cosets. 18 3.3 Tanner graph for the parity check matrix in (3.7). The nodes on the right hand side are the check nodes, while the nodes on the left are the variable nodes. 21 3.4 Reed-Muller code is found to have the highest equivocation rates amongst all (8, 4) codes. 25 4.1 GNU Radio transmitter flowgraph. 34 4.2 GNU Radio receiver flowgraph. 34 4.3 Error performance of all (8, 4) codes over the binary erasure channel. 35 4.4 Error performance of all (128, 64) codes over the binary erasure channel. 36 4.5 Error performance of all (8, 4) codes over the binary symmetric channel. 37 4.6 Error performance of all (128, 64) codes over the binary sym- metric channel. 37 1 CHAPTER I INTRODUCTION Cryptography, in general, has taken on several different methods of im- plementation given the varying requirements for privacy and confidentiality today. With the Internet continually growing in complexity, calls for mea- sures that guarantee data security are more prominent. One of the earliest forms of encryption was in using mono-alphabetic substitution ciphers, and it has since evolved to much larger, and more complex forms with the advent of military strategies, and technology in general. Regardless of complexity, when attempting to transmit data, the two criteria relevant to this discussion are ‘reliability’ and ‘security’; how reliably can data be sent across a channel, such that the intended receiver is able to correctly decipher and decode the data, and how well does that encryption scheme guarantee that the data is not compromised to a third-party? Unlike other implementations of cryptography, physical layer security is a technique that specifically targets the physical layer of a communication system; exploiting characteristics like thermal noise, interference, and the time-varying nature of fading channels [3]. This technique also envelopes the addition of coding strategies to the transmitted signal which further ex- ploit the channel properties to ensure that a third-party, also termed an eaves- dropper, is unable to detect or decode the message. Such a method allows for the physical location of the eavesdropper to be detrimental in its attempt to Chapter I. INTRODUCTION 2 decipher the message. The wiretap channel model introduced by Wyner in [24] is an example of a system that exploits channel conditions to ensure that the eavesdropper is not able to read any transmitted message. This model works on the assump- tion that the channel between the sender and the eavesdropper is ‘noisier’ than the channel between the sender and the legitimate receiver. For discrete memoryless channels, a channel property that is often related to its ‘noisi- ness’ is its crossover/erasure probability, i.e., the probability with which a transmitted bit is flipped or lost. Therefore, if the sender-eavesdropper chan- nel has a greater chance of a bit-flip or a bit-loss than the sender-receiver channel, then that channel is said to be ‘noisier’. As [23] describes, there are two major reasons why a wiretap channel set- ting is of relevance: (1) no assumptions are made regarding the eavesdrop- per’s computational ability, and (2) there is no key distribution between the sender and receiver. Reason (1) essentially implies information-theoretic secu- rity, where the eavesdropper, even with unlimited computational power, can never have enough information to retrieve the message. The eavesdropper could also potentially have access to the encoding/decoding scheme that is followed. Therefore, the intention behind using a wiretap model is solely to disarm the eavesdropper’s ability to decipher the correct message, by using channel noise to distort the message. Secrecy codes are generally designed for such a channel model, and this is where the two criteria that we introduced earlier, reliability and security, come into play. The aim of any secrecy code would be to not only meet the reliabil- ity criterion, but also to ensure that in doing so, security is not compromised. The channel capacity, as Shannon describes in [18], is the maximum rate at which the reliability criterion can be met. The maximum achievable rate that also meets the security criterion, in a wiretap channel model, was found to Chapter I. INTRODUCTION 3 be the difference between the receiver channel capacity and the eavesdrop- per (or wiretapper’s) channel capacity, under certain specific conditions [23]. This rate is labeled as the secrecy capacity. This capacity was shown to be zero, unless the eavesdropper’s channel is noisier than the main channel, in [8]. Wyner in [24], explained how secrecy capacity is achieved by means of an encoder that separates codewords into cosets, allowing one message to be mapped to one of several random codewords within a large coset. This allows for data to be reliably decoded by the legitimate receiver, while guar- anteeing secrecy through the randomness that each sub-code provides. This forms the basis for the coding scheme that is relevant to our discussion, coset coding. In this paper, we attempt to study different code constructions, imple- mented through coset coding, and their performance over certain channels, in an effort to discern if there is a better or best code under fixed block lengths, for secrecy applications. The paper discusses the expected perfor- mances, determined by simulated error curves, and attempts to corroborate these with results from a real-world environment test using Universal Soft- ware Radio Peripheral (USRP) boards. 4 CHAPTER II PHYSICAL LAYER SECURITY Physical layer security, as introduced earlier, focuses on the physical layer of a communication system, to achieve security. This technique exploits char- acteristics like noise and interference, such that the channel statistics of a receiver allow system designers to make information-theoretic security guar- antees, implying that the eavesdropper can never have enough information to successfully decode the message. This chapter will provide a background into how this can be achieved in a communication system, and how the ad- dition of certain coding methods can improve secrecy. Before we begin describing the systems and code constructions we em- ploy in this paper, it is perhaps vital to know and understand what comprises a code. 2.1 Linear Block Codes In our experiments, and in coding theory in general, the transmitter aims to encode a certain message into a codeword, transmit over a channel, and subsequently have the receiver decode the message without error, even when the channel is noisy. Linear codes determine how a message is mapped to a codeword. Through this paper we aim to use only binary alphabets in {0, 1}, to represent our messages and codewords.
Recommended publications
  • Coset Codes. II. Binary Lattices and Related Codes
    1152 IEEE TRANSACTIONSON INFORMATIONTHEORY, VOL. 34, NO. 5, SEPTEMBER 1988 Coset Codes-Part 11: Binary Lattices and Related Codes G. DAVID FORNEY, JR., FELLOW, IEEE Invited Paper Abstract -The family of Barnes-Wall lattices (including D4 and E,) of increases by a factor of 21/2 (1.5 dB) for each doubling of lengths N = 2“ and their principal sublattices, which are useful in con- dimension. structing coset codes, are generated by iteration of a simple construction What may be obscured by the length of this paper is called the “squaring construction.” The closely related Reed-Muller codes are generated by the same construction. The principal properties of these that the construction of these lattices is extremely simple. codes and lattices, including distances, dimensions, partitions, generator The only building blocks needed are the set Z of ordinary matrices, and duality properties, are consequences of the general proper- integers, with its infinite chain of two-way partitions ties of iterated squaring constructions, which also exhibit the interrelation- 2/22/4Z/. , and an elementary construction that we ships between codes and lattices of different lengths. An extension called call the “squaring construction,” which produces chains of the “cubing construction” generates good codes and lattices of lengths 2N-tuples with certain guaranteed distance properties from N = 3.2”, including the Golay code and Leech lattice, with the use of special bases for 8-space. Another related construction generates the chains of N-tuples. Iteration of this construction produces Nordstrom-Robinson code and an analogous 16-dimensional nonlattice the entire family of lattices, determines their minimum packing.
    [Show full text]
  • Decoding Algorithms of Reed-Solomon Code
    Master’s Thesis Computer Science Thesis no: MCS-2011-26 October 2011 Decoding algorithms of Reed-Solomon code Szymon Czynszak School of Computing Blekinge Institute of Technology SE – 371 79 Karlskrona Sweden This thesis is submitted to the School of Computing at Blekinge Institute o f Technology in partial fulfillment of the requirements for the degree of Master of Science in Computer Science. The thesis is equivalent to 20 weeks of full time studies. Contact Information: Author(s): Szymon Czynszak E-mail: [email protected] University advisor(s): Mr Janusz Biernat, prof. PWR, dr hab. in ż. Politechnika Wrocławska E-mail: [email protected] Mr Martin Boldt, dr Blekinge Institute of Technology E-mail: [email protected] Internet : www.bth.se/com School of Computing Phone : +46 455 38 50 00 Blekinge Institute of Technology Fax : +46 455 38 50 57 SE – 371 79 Karlskrona Sweden ii Abstract Reed-Solomon code is nowadays broadly used in many fields of data trans- mission. Using of error correction codes is divided into two main operations: information coding before sending information into communication channel and decoding received information at the other side. There are vast of decod- ing algorithms of Reed-Solomon codes, which have specific features. There is needed knowledge of features of algorithms to choose correct algorithm which satisfies requirements of system. There are evaluated cyclic decoding algo- rithm, Peterson-Gorenstein-Zierler algorithm, Berlekamp-Massey algorithm, Sugiyama algorithm with erasures and without erasures and Guruswami- Sudan algorithm. There was done implementation of algorithms in software and in hardware.
    [Show full text]
  • Finite Fields: an Introduction. Part
    Finite fields: An introduction. Part II. Vlad Gheorghiu Department of Physics Carnegie Mellon University Pittsburgh, PA 15213, U.S.A. August 7, 2008 Vlad Gheorghiu (CMU) Finite fields: An introduction. Part II. August 7, 2008 1 / 18 Outline 1 Brief review of Part I (Jul 2, 2008) 2 Construction of finite fields Polynomials over finite fields n Explicit construction of the finite field Fq, with q = p . Examples 3 Classical coding theory Decoding methods The Coset-Leader Algorithm Examples Vlad Gheorghiu (CMU) Finite fields: An introduction. Part II. August 7, 2008 2 / 18 Examples The structure of finite fields 2 Classical codes over finite fields Linear codes: basic properties Encoding methods Hamming distance as a metric Brief review of Part I (Jul 2, 2008) Brief review of Part I 1 Finite fields Definitions Vlad Gheorghiu (CMU) Finite fields: An introduction. Part II. August 7, 2008 3 / 18 The structure of finite fields 2 Classical codes over finite fields Linear codes: basic properties Encoding methods Hamming distance as a metric Brief review of Part I (Jul 2, 2008) Brief review of Part I 1 Finite fields Definitions Examples Vlad Gheorghiu (CMU) Finite fields: An introduction. Part II. August 7, 2008 3 / 18 2 Classical codes over finite fields Linear codes: basic properties Encoding methods Hamming distance as a metric Brief review of Part I (Jul 2, 2008) Brief review of Part I 1 Finite fields Definitions Examples The structure of finite fields Vlad Gheorghiu (CMU) Finite fields: An introduction. Part II. August 7, 2008 3 / 18 Encoding methods Hamming distance as a metric Brief review of Part I (Jul 2, 2008) Brief review of Part I 1 Finite fields Definitions Examples The structure of finite fields 2 Classical codes over finite fields Linear codes: basic properties Vlad Gheorghiu (CMU) Finite fields: An introduction.
    [Show full text]
  • California State University, Northridge an Error
    CALIFORNIA STATE UNIVERSITY, NORTHRIDGE AN ERROR DETECTING AND CORRECTING SYSTEM FOR MAGNETIC STORAGE DISKS A project submitted in partial satisfaction of the requirements for the degree of Master of Science in Engineering by David Allan Kieselbach June, 1981 The project of David Allan Kieselbach is approved: Nagi M. Committee Chairman California State University, Northridge ii ACKNOWLEDGMENTS I wish to thank Professor Nagi El Naga who helped in numerous ways by suggesting, reviewing and criticizing the entire project. I also wish to thank my employer, Hughes Aircraft Company, who sponsored my Master of Science studies under the Hughes Fellowship Program. In addition the company prov~ded the services of the Technical Typing Center to aid in the preparation of the project manuscript. Specifically I offer my sincere gratitude to Sharon Scott and Aiko Ogata who are responsible for the excellent quality of typing and art work of the figures. For assistance in proof reading and remaining a friend throughout the long ordeal my special thanks to Christine Wacker. Finally to my parents, Dulcie and Henry who have always given me their affection and encouragement I owe my utmost appreciation and debt of gratitude. iii TABLE OF CONTENTS CHAPTER I. INTRODUCTION Page 1.1 Introduction . 1 1.2 Objectives •••••.• 4 1.3 Project Outline 5 CHAPTER II. EDCC CODES 2.1 Generator Matrix 11 2.1.1 Systematic Generator Matrix •. 12 2.2 Parity Check Matrix 16 2.3 Cyclic Codes .• . 19 2.4 Analytic Methods of Code Construction . 21 2.4.1 Hamming Codes • • 21 2.4.2 Fire Codes 21 2.4.3 Burton Codes- 24 2.4.4 BCH Codes • • .
    [Show full text]
  • Efficient Representation of Binary Nonlinear Codes
    Des. Codes Cryptogr. DOI 10.1007/s10623-014-0028-4 Efficient representation of binary nonlinear codes: constructions and minimum distance computation Mercè Villanueva · Fanxuan Zeng · Jaume Pujol Received: 16 December 2013 / Revised: 22 November 2014 / Accepted: 24 November 2014 © Springer Science+Business Media New York 2014 Abstract A binary nonlinear code can be represented as a union of cosets of a binary linear subcode. In this paper, the complexity of some algorithms to obtain this representation is analyzed. Moreover, some properties and constructions of new codes from given ones in terms of this representation are described. Algorithms to compute the minimum distance of binary nonlinear codes, based on known algorithms for linear codes, are also established, along with an algorithm to decode such codes. All results are written in such a way that they can be easily transformed into algorithms, and the performance of these algorithms is evaluated. Keywords Nonlinear code · Kernel · Minimum distance · Minimum weight · Decoding · Algorithms Mathematics Subject Classification 94B60 · 94B25 · 94B35 1 Introduction Z Zn Let 2 be the ring of integers modulo 2 and let 2 be the set of all binary vectors of length n. ( ,v) ,v ∈ Zn The (Hamming) distance d u between two vectors u 2 is the number of coordinates v w ( ) ∈ Zn w ( ) = ( , ) in which u and differ. The (Hamming) weight t u of u 2 is t u d u 0 ,where ( , , ) Zn 0 is the all-zero vector of length n.An n M d binary code C is a subset of 2 with M vectors and minimum Hamming distance d.
    [Show full text]
  • Part II Linear Codes
    Part II Linear codes CHAPTER 2: Linear codes ABSTRACT Most of the important codes are special types of so-called linear codes. Linear codes are of very large importance because they have very concise description, very nice properties, very easy encoding and, in principle, easy to describe decoding. prof. Jozef Gruska IV054 2. Linear codes 2/39 Linear codes Linear codes are special sets of words of the length n over an alphabet f0; ::; q − 1g, n where q is a power of prime. Since now on sets of words Fq will be considered as vector spaces V (n; q) of vectors of length n with elements from the set f0; ::; q − 1g and arithmetical operations will be taken modulo q. Definition A subset C ⊆ V (n; q) is a linear code if 1 u + v 2 C for all u; v 2 C 2 au 2 C for all u 2 C; a 2 GF (q) Example Codes C1; C2; C3 introduced in Lecture 1 are linear codes. Lemma A subset C ⊆ V (n; q) is a linear code if one of the following conditions is satisfied 1 C is a subspace of V (n; q) 2 sum of any two codewords from C is in C (for the case q = 2) If C is a k-dimensional subspace of V (n; q), then C is called[ n; k]-code. It has qk codewords. If minimal distance of C is d, then it is called[ n; k; d] code. Linear codes are also called "group codes". prof. Jozef Gruska IV054 2.
    [Show full text]
  • Coding Theory Via Groebner Bases
    Coding Theory via Groebner Bases Vom Promotionsausschuss der Technischen Universitat¨ Hamburg-Harburg zur Erlangung des akademischen Grades Doktorin der Naturwissenschaften genehmigte Dissertation von Mehwish Saleemi aus Islamabad 2012 1. Gutachter: Prof. Dr. Karl-Heinz Zimmermann Institute fur¨ Rechnertechnologie, Technische Universitat¨ Hamburg-Harburg 2. Gutachter: Prof. Dr. Rudolf Scharlau Fakultat¨ fur¨ Mathematik, Technische Universitat¨ Dortmund Tag der mundlichen¨ Prufung:¨ 14.02.2012 Vorsitzender des Prufungsausschusses:¨ Prof. Dr. Dieter Gollmann Institut fur¨ Sicherheit in verteilten Anwendungen, Technische Universitat¨ Hamburg- Harburg Abstract Coding theory plays an important role in efficient transmission of data over noisy communication channels. It consists of two steps; the first step is to encode the data to reduce its sensitivity to noise during transmission, and the second step is to decode the received data by detecting and correcting the noise induced errors. In this thesis an algebraic approach is used to develop efficient encoding and decod- ing algorithms for a very commonly used class of linear codes, the Reed-Muller codes and the Golay codes. To develop the approach first the algebraic structure of linear codes is explored. For this, the reduced Groebner basis for a class of ideals in commutative poly- nomial rings is constructed. The extension of these ideals to a residue class ring enabled us to find the parameters of the corresponding codes. It is found that the corresponding codes contains the primitive Reed-Muller codes. The added advan- tage of this approach is that, once these Groebner bases are constructed a standard procedure can be used to develop encoding and decoding processes. A binomial ideal, defined as a sum of toric ideal and a prime ideal over some arbitrary field, is explored.
    [Show full text]
  • New Decoding Methods for LDPC Codes on Error and Error-Erasure Channels
    New Decoding Methods for LDPC Codes on Error and Error-Erasure Channels MASTER OF SCIENCE THESIS by İlke ALTIN August 19, 2010 Committee Members Supervisor : Dr. ir. J.H. Weber Readers : Prof. dr. ir. I. Niemegeers Dr. ir. H. Wang Wireless and Mobile Communications Group Faculty of Electrical Engineering, Mathematics and Computer Science Delft University of Technology Delft, The Netherlands ii İlke ALTIN Master of Science Thesis Abstract New Decoding Methods for LDPC Codes on Error and Error-Erasure Channels For low-end devices with limited battery or computational power, low complexity decoders are beneficial. In this research we have searched for low complexity decoder alternatives for error and error-erasure channels. We have especially focused on low complexity error erasure decoders, which is a topic that has not been studied by many researchers. The separation of erasures from errors idea [1] seemed profitable to design a new error erasure decoder, so we have also worked on this idea. However, the methods that are described in that paper are not realizable for practical values of code length and number of erasures. Thus, a new separation method; the rank completer is proposed, which is realizable. In the part of the research that is related to error decoding, we have proposed a modification to reliability ratio based bit flipping algorithm [2], which improves the BER performance with very small additional complexity. In the part that is related to error erasure decoding, we have given a new guessing algorithm that performs better than some known guessing algorithms, and a new error erasure decoder that uses the rank completer idea.
    [Show full text]
  • Viterbi Decoding of Convolutional Codes
    MIT 6.02 DRAFT Lecture Notes Last update: February 29, 2012 Comments, questions or bug reports? Please contact hari at mit.edu CHAPTER 8 Viterbi Decoding of Convolutional Codes This chapter describes an elegant and efficient method to decode convolutional codes, whose construction and encoding we described in the previous chapter. This decoding method avoids explicitly enumerating the 2N possible combinations of N-bit parity bit sequences. This method was invented by Andrew Viterbi ’57 and bears his name. 8.1 The Problem At the receiver, we have a sequence of voltage samples corresponding to the parity bits that the transmitter has sent. For simplicity, and without loss of generality, we will assume that the receiver picks a suitable sample for the bit, or averages the set of samples corre- sponding to a bit, digitizes that value to a “0” or “1” by comparing to the threshold voltage (the demapping step), and propagates that bit decision to the decoder. Thus, we have a received bit sequence, which for a convolutionally-coded stream cor- responds to the stream of parity bits. If we decode this received bit sequence with no other information from the receiver’s sampling and demapper, then the decoding pro- cess is termed hard-decision decoding (“hard decoding”). If, instead (or in addition), the decoder is given the stream of voltage samples and uses that “analog” information (in digitized form, using an analog-to-digital conversion) in decoding the data, we term the process soft-decision decoding (“soft decoding”). The Viterbi decoder can be used in either case.
    [Show full text]
  • High Throughput Error Correction in Information Reconciliation For
    www.nature.com/scientificreports OPEN High throughput error correction in information reconciliation for semiconductor superlattice secure key distribution Jianguo Xie1,3, Han Wu2,3, Chao Xia1, Peng Ding2, Helun Song2, Liwei Xu1 & Xiaoming Chen1* Semiconductor superlattice secure key distribution (SSL-SKD) has been experimentally demonstrated to be a novel scheme to generate and agree on the identical key in unconditional security just by public channel. The error correction in the information reconciliation procedure is introduced to eliminate the inevitable diferences of analog systems in SSL-SKD. Nevertheless, the error correction has been proved to be the performance bottleneck of information reconciliation for high computational complexity. Hence, it determines the fnal secure key throughput of SSL-SKD. In this paper, diferent frequently-used error correction codes, including BCH codes, LDPC codes, and Polar codes, are optimized separately to raise the performance, making them usable in practice. Firstly, we perform multi-threading to support multi-codeword decoding for BCH codes and Polar codes and updated value calculation for LDPC codes. Additionally, we construct lookup tables to reduce redundant calculations, such as logarithmic table and antilogarithmic table for fnite feld computation. Our experimental results reveal that our proposed optimization methods can signifcantly promote the efciency of SSL-SKD, and three error correction codes can reach the throughput of Mbps and provide a minimum secure key rate of 99%. Semiconductor superlattice secure key distribution (SSL-SKD) is a new secure key distribution technique based on chaos synchronization in superlattice PUF pairs 1 driven by a synchronizing digital signal. SSL-SKD only uses the public channel with all electronic structures to create and provide secure key data for cryptography in unconditional security2.
    [Show full text]
  • On the Optimality of the Hamming Metric for Decoding Block Codes Over Binary Additive Noise Channels
    On the Optimality of the Hamming Metric for Decoding Block Codes over Binary Additive Noise Channels by Ghady Azar A thesis submitted to the Department of Mathematics and Statistics in conformity with the requirements for the degree of Master of Applied Science Queen’s University Kingston, Ontario, Canada July 2013 Copyright c Ghady Azar, 2013 Abstract Most of the basic concepts of algebraic coding theory are derived for the mem- oryless binary symmetric channel. These concepts do not necessarily hold for time-varying channels or for channels with memory. However, errors in real-life channels seem to occur in bursts rather than independently, suggesting that these channels exhibit some statistical dependence or memory. Nonetheless, the same algebraic codes are still commonly used in current communication systems that employ interleaving to spread channel error bursts over the set of received code- words to make the channel appear memoryless to the block decoder. This method suffers from immediate shortcomings as it fails to exploit the channel’s memory while adding delay to the system. We study optimal maximum likelihood block decoding of binary codes sent over several binary additive channels with infinite and finite memory. We derive con- ditions on general binary codes and channels parameters under which maximum likelihood and minimum distance decoding are equivalent. The channels consid- ered in this work are the infinite and finite memory Polya contagion channels [1], the queue-based channel [29], and the Gilbert-Elliott channel [9, 12]. We also present results on the optimality of classical perfect and quasi-perfect codes when used over the aforementioned channels under maximum likelihood decoding.
    [Show full text]
  • Capacity-Achieving Guessing Random Additive Noise Decoding
    Capacity-Achieving Guessing Random Additive Noise Decoding The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Duffy, Ken R. et al. “Capacity-Achieving Guessing Random Additive Noise Decoding.” IEEE Transactions on Information Theory, 65, 7 (July 2019): 4023 - 4040 © 2019 The Author(s) As Published 10.1109/TIT.2019.2896110 Publisher Institute of Electrical and Electronics Engineers (IEEE) Version Author's final manuscript Citable link https://hdl.handle.net/1721.1/129702 Terms of Use Creative Commons Attribution-Noncommercial-Share Alike Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/ 1 Capacity-achieving Guessing Random Additive Noise Decoding (GRAND) Ken R. Duffy∗, Jiange Li† and Muriel Medard´ † ∗Hamilton Institute, Maynooth University, Ireland. E-mail: [email protected]. †Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, U. S. A. E-mail: [email protected], [email protected]. Abstract We introduce a new algorithm for realizing Maximum Likelihood (ML) decoding in discrete channels with or without memory. In it, the receiver rank orders noise sequences from most likely to least likely. Subtracting noise from the received signal in that order, the first instance that results in a member of the code-book is the ML decoding. We name this algorithm GRAND for Guessing Random Additive Noise Decoding. We establish that GRAND is capacity-achieving when used with random code-books. For rates below capacity we identify error exponents, and for rates beyond capacity we identify success exponents. We determine the scheme’s complexity in terms of the number of computations the receiver performs.
    [Show full text]